SIR/XS Database 1

SIRIKX S DBLADASES.eeeee e ettt ettt eeee ettt et et e ae e eeeeseaseeeeeessaaasseereeesssaaareeeeessseaarseeeeessesanrenees 4
OVEIVIBWW ..ottt e ettt et e e e ettt eeeeea e e eeeeee s saeeeeessaassaeeeeesesaseeeeeseseasasseeeeesessanrseees 5
CASE SITUCIUIEd DaLaDASESevveeee et eeeeeeeee e e eeeeeeeee e e s sasaeeeeessssaseeeeesssssasssseeessssanans 6
The Common INfOrmMation RECOIM...........ooieeeeeeee ettt e s e e e e e e e e e e eeeeaees 6
CASELESS Dalabhasts.ueeeieiieeeieie et eeeeeeeteeseesaesseesessssasssesessasassssseesssssaaseneessssasans 7
[N TSP SO PRRPPRPOPRRRPRR 8
DefiNiNg VariallES........ooueiiiieeeee et ne 9
V=T E= o (Y o 1 110> KT ORI 14
Variable QUality CONLIOL..........ccoueiirieeiieiees e 16

AV = L= o [N = o < 17
Variabl € DOCUMENTALIONc.eeveeiee ettt et e e e e e s s r e e e e s s s e esaa e e e e e e s senreees 17
AV 1 TS] = o =R 17
(DI o] a1 = I 011 LT 17
SCHEMA COMMEBINGS. ..ot e e e e e e e e e s s s st e e e e e e e s st b e e e e e s sssnsrseeeeseseesseens 18
OVErall COMMEANGS ...t e e s e e e s e s sere e e e e s s sebreeeeeseesans 18
RECOI DEfINITION. ...ttt e e e e s e e e e e s s s ebba e e e e e s senreees 19
Modifying Database DefiNITIONS.........ccoiueiueiieeieesieie e e e e e s 22
Format Of COMMANTSoeeiiiiiee e e e e e e e e e e s e et a e e e e e s searrees 24
Order Of COMMEANGS........cceeeiiee ettt e e e et r e e e e s s sssabe e e e e s s sebraeeeeesseareeees 25
Example Record SPeCIfiCatiON..........cccueiieiieiiiiie et nnee s 27
CREATE DATABASEttt e et e e e e e e e bae e e e e e e e s nrens 29
CONNECT DATABASE ...ttt r e e s e e e e e e e s s earaees 30
DISCONNECT DATABASE ...ttt e 32
SET DA T ABASE ..ottt e e ettt e e e e e a et e e e e sa e e teeessasraeeeeessansaees 33
SHOW DA T ABASE ...ttt e e et e e e e e et et e e e e ea e e e e eeseasereeeeeseesaarees 33
L ST DA T AB A SE ...ttt et e e et e e e e e e s et e e e e s saae et e e e s seasrreeeeseesaanrnees 33
JOURNAL ONJOFF ...ttt sttt sttt ee st sseeeessesneesreas 34
PASSWORD ...ttt ettt ettt ettt e et e e et et e e s eae e eeeesssaasteeeeeessaneeeeeesseaatraneeeessaarrees 35
R OLU] { I 1 /RO OPR 36
PURGE SIR FILE ...ttt ettt e ettt et e e e ettt e e s e aseasaseeeaessaansereesssaansseeeessssansnees 37
DELETE SCHEMAottt ettt et e ettt e s e e e e e e e e e s eaaesaeeeeeeseaesrareeeessaneaees 38
DELETE STANDARD SCHEMA ...ttt e v aee e e e s e eeenaee e e e e s snannaes 38
(@7 N o | TR 39
COMMON SECURITY ettt ettt ettt e et e et e e et et e e s saaraeeteeseassssaeeeesssasrreeeesssaasnees 40
COMMON VARS ..ottt et e e ettt e e e e e e et et e e e s aa et e e e e ssasrrareeeeesaaarrees 41
[N I 1 I TSP 42
DATABASE LABEL ...ttt ettt ettt e e st e e s e e s aaenaeeeeesseaesreeeeassranneees 44
(D10 01U 1Y = AN RSP 45
[N[O 72 = IR 46
MAX INPUT COLS ...ttt ettt st e e e s s et e e e e e s s e st e e e e e s e s snrarees 47
Y G L o S 74 O 48
LY G = { = O @ 11\ N T 49
Y G = O I = s T 50
N OF CASES ... e e e e e s e e e e e s s e e e e e e e s e ssbereeeessesreees 51
N OF RECORDS..... .ottt ettt e e s e e st e e e e s e s s e bt e e e e e s s sesnraseeeesserrees 52

READ SECURITY .o s 53

SIR/XS Database 2

RECS PER CASE ... ettt 54
RECTYPE COLS.... .ottt sttt sttt st st sbe e e nbesseeneennenaas 55
SYSTEM SECURITY oottt sttt sttt st st ne e e 56
SYSTEM SECURITY LEVEL...ociiiiiiiieeeee et e 56
TEMP VARS ...ttt sttt sttt et et e st et et e teene et e 57
WRITE SECURITY .ottt sttt sttt sbe e tesnesnessneas 58
ACCEPT REC IF ...ttt sttt st sne et e e e nne s 59
CAT VARS . ettt e bt et e b e st et e e ae et e s be e s e et e tenne et e 60
CHARACTER ...ttt sttt ettt st sttt et te e 61
COMPUTE ...ttt sttt bt sttt et et et et e st et e st et e e e e eneas 62
CONTROL VARS . ..ottt sttt sttt be st besteste e e e neeneas 63
[N 1 I PSSR 64
DATE VARS ...ttt st sttt ettt b et et e e 66
DOCUMENT ...ttt sttt s b et st e st et et e et e e e sesbeste e e e ene e 67
END SCHEMA ...t st ettt st 68
L ettt bR e e e R e R e R e R e A e e nA et et et Rt Re b b e te e et enes 69
INPUT FORMAT ..ottt sttt st sttt sttt et 70
INTEGER ...ttt sttt ettt bt st e b e ens 72
KEY FIELDS......o oottt st sttt st 73
MAX REC COUNT ...otiiiiieieieee ettt st st se et ss e sse bbb sae e e e enens 74
MISSING VALUES ...ttt 75
OBSERVATION VARS.......oeoieiesere ettt sttt st st 77
REAL ettt et b bR e Rt A e Rt R e bbb e et et ne 78
REC SECURITY oottt sttt sttt sbe e e nbesneeneensennas 79
RECODE ...ttt ettt sttt st be e b e sbe et e teebe e besseentestenneeneennas 80

Variable SPECITICAION.cceeiiriee e nee 80

ReCOAE SPECITICALION ...t 80
RECORD SCHEMA ...ttt ettt st sre e et e sneene e 83
REJECT REC IF ...ttt s e sttt st sneenennas 85
SCALED VARS ...ttt et sttt b e ne et e e e e e 86
STANDARD SCHEMA ...ttt e 87
STANDARD VARS ...ttt sttt besbe et e ne b e 88
TIME VARS ...ttt sttt b e et e be et e besbe et e e beene et e 89
VALID VALUES ...ttt ettt bbb nne s 90
VALUE LABELS......c.c ettt sttt st neenne s 91
VARIABLE LIST ..ottt sttt st nne s 92
VAR DOCo ettt sttt s ae et e be et e be bt et e s be s bt e eesbesseentesbenneentens 93
VAR LABEL ...ttt sttt tesn e e nne s 9
VAR RANGES. ..ottt sttt ettt e e ens 95
VAR SECURITY Lottt sttt sttt nbe e 96
CREATE DBINDEX ...ttt sttt sne e naenens 97
DROP DBINDEXoiiitiitisieiesieieieie st sttt st e see e esesseste s ssenseneenenns 98
SIR SCHEMA LIST .ottt st 99
WRITE SCHEMA ...ttt sttt ene s 102

Resubmitting Whole SChema............ooiiiiiececece e 104

DyNamiC RESIFUCIUININGecveiiieieeieesieesieesee st sae s ee sttt s e sse et sse s e nneesnee e 106

SIR/XS Database 3

Database RESIIUCLUIEeoiiriiiieie ettt sttt te e e nnens 107
DELETE SCHEMA ...ttt sttt st sttt st naenne e 108
Batch Data INPUL ULIHITIES ..ot 109
Batch Data Input SPECITICALIONS........ccveeiieiieiie e 110
ADD REC ettt st ettt bbb eenaennes 112
EVICT REC ... ottt st ettt sttt be et st eeneenaenne e 115
READ INPUT DATA ..ottt sttt st besneeneestesneeneens 117
REPLACE REC ... oottt sttt sttt st naenne e 120
UPDATE REC ...ttt st sttt ettt ne bt es 123
SIR FILE DUMP ...ttt st sttt 127
SIR FILE LIST ettt sttt st sttt 129
SIR SPREADSHEET ..ottt st st 132
Backup and RECOVENYcccueiiiiieiecie ettt et 134
8018 [= T P TRRPRPRR 135
IMPORT .ottt b e bt e st e b et et et et e neeneebeneeeas 137
[0 @ = USSR 138
SIR SUBSET ..ottt sttt sne e 142
UNLOAD FILE ...ttt sttt 144
[@ T I SR 146
ITEMIZE FILE ...ttt bbbt 148
(IS IS 17N 1S TSR 150
JOURNAL RESTORE........ccoiiiiieiriirienie ettt st e e sre e see e 153
JOURNAL ROLLBACK ...ttt st sne e e e 155
VERIFY FILE. ... ittt st ettt a e nae s 156
DOWNLOAD ..ottt sttt sttt sttt e st e et entesbeeseestesseeneesaenaens 161
SIRMERGE ...ttt bt s renneas 162
RELOAD FILE ...ttt st sttt neesaenne e 165
TabfileS aNd TADIES........eoeeeee e e 167
CONNECT TABFILE ...ttt st 169
CREATE TABFILE. ...ttt sttt 170
CREATE INDEX ...ttt sttt sttt sbe st sbe e sresne s 171
VERIFY TABFILE. ..o ottt nnenaenannens 172
TUNING AN EffICIENCY ... st 173
D1 S 0= o TSR 174
CIR SIZE.. ettt sttt et et b e e s re e e e naennean 174
VaTaDIE SIZES ... et 176
Processing EffiCIENCYcouiiiiiiiee s 179
EffiCient ON-LiNE ACCESS.......oiieierierieiiesieesiesie st see e st ste s ae st neesaesneas 179
Efficient BatCh PrOCESSING.......coiiiiiiiieiie ettt ettt 180
Database INternal SEIUCLUIE...........coiiieieeiee et 181
BIOCK OrganiSationccueiieiieiiecieesieeiesie sttt sneesnae e snaeenns 182

S = (] = T e PR 187

SIR/XS Database 4

SIR/XS Databases

This section of the documentation describes how to manage databases using SIR/XS.
Anyone intending to create or change the definitions of a database or act as a database
administrator should be familiar with this material. If you are smply going to access
SIR/X'S databases using applications developed by someone else, then the Database
Overview provides agood introduction.

SIR/XS database management is covered under a number of topics:

Introduction outlines the major database facilitiesin SIR/XS.

Database Definition Commands describes the commands to define databases and
records. Use these same commands to modify existing definitions together with
some additional commands that only apply to updating existing definitions.

File Input describes utilities that |oad data into a database from text files.

Writing Data and Backing Up describes utilities that produce copies of a database
and the verification and recovery utilities, including utilities to upload changes
from another database, to merge data from another database and to reload a
database.

Tabfiles and Tables provides an overview of the various facilities available for the
creation and maintenance of tabfiles and tables.

Tuning and Efficiency discusses the internals of the SIR/X S database physical
organisation.

Virtualy all of the features are available through the menus and dialogs and thisis the
normal way to manage a database on aregular basis.

SIR/XS provides a concurrent environment if multiple people need to update a database
at the same time across a network.

SIR/XS Database 5

Overview

There can be any number of different databases for different applications. A SIR/XS
session can have any number of databases connected at any one time and one of these is
the current or default database. Any database operations happen on the default database.
SQL, Forms, PQLForms and Visual PQL can access multiple databases.

A database is made up of one or more record types. Each record type contains variables.
Each record type may have one or more variables defined as keys. Keys are used to
identify each individual record.

A record may have secondary indexes allowing access by VisualPQL and PQLForms
through values in non-key variables.

The definition of the database consists of overall information about the database plus
definitions for each record type with definitions of each variable and any secondary
indexes. Thisis collectively known as the Schema.

Names

All of the various SIR/XS entities such as records and variables have names that must
conform to the same set of rules. A name can be a standard name that is up to 32
characters long, does not begin with a number and contains only letters, numbers and four
characters (dollar sign $, hash sign #, at sign @, underscore). Lettersin standard names
are trandated to uppercase. A non-standard name can be used that does not conform to
these rules, for example it might contain lower case characters or have embedded spaces.
Non-standard names can be up to 30 characters and must be enclosed in curly brackets
{...}. Non-standard names can contain any character (except curly brackets) and, where
entities are listed by name, non-standard names are in the appropriate sort sequence
position in the list.

Records and variables are retrieved by name and applications do not need to know
anything about the physical organisation of data. i.e. Applications are independent of the
physical structure of data.

Operating system files used by SIR/XS applications are assigned an internal name known
as an Attribute. Thisisused in place of the full filename. If specifying full operating
system filenames, it is best to enclose these in quotes.

Every application that accesses data from a database uses the schema, which means that
the information is always verified and conforms to the schema definition. An application
can access any record type within a database and can access multiple record types for
complex processing. The schema can be defined through interactive dialogs or by

SIR/XS Database 6

creating a set of commands and running them in asimilar way to arunning a program.
The resulting database is exactly the same regardless of the way that it is defined.

The database definition can be modified even after the data has been loaded without, in
many cases, having to UNLOAD and RELOAD data.

There is a second method to store data known as Tables. A table holds asingle record
type and is independent of any database. Tables are held on tabfiles. A tabfile can hold
many tables. An application can operate on many tables and many tabfiles.

CASE Structured Databases

SIR/XSisatruerelational database and databases can be created that are simply sets of
record types. However SIR/XS also allows databases that can take advantage of structure
in the data:

Some databases have a natural structure known as a Case structure. For example, a
medical database with information about patients could have a number of record types
such as patient demographics, visits, procedures, followups, etc., most with multiple
occurrences but al of the information about asingle individual makesup acase. i.e. A
case isaset of records that all refer to one single entity.

A case structure can be easier to use. Queries are simpler to write and less error prone
within acase. A case structure can be faster. Since all of the information for any given
case is available with aminimum of searching, accessis very fast.

A case structure can be found in many applications. The following guidelines may help
determine whether a particul ar set of data has a case structure.

If most of the information belongs to some given single entity. For example; isthe
information all about Employees, or Prisoners, or Drill Holes, or Patients, or
Samples...?

Isthe information entered from forms and stored in a number of record types that
all apply to asingle entity? For example, with questionnaire data, the
guestionnaire number may be a case identifier.

I's there some basic reporting unit in the application? If so, this unit might well be
the case. Areresults all about a given site or a particular experiment?

Do most or al of the records have a hierarchical structure branching down from a
single record.

Isthere akey variable in common across al record types that would qualify asa
case identifier?

The Common | nformation Record

In a case structured database some information is maintained about each case. Thisis
held in the Common Information Record or CIR. The CIR isasummary of data about

SIR/XS Database 7

the case. It holds the case identifier, counts of records belonging to the case and other
specified common variables. It typically holds values that only occur once in the case
although it can hold a copy of the last value entered for variables that occur multiple
timesin the case.

CASEL ESS Databases

Records in a casel ess database have no single common element that relates them. If a
single database has various records types that are each independent from the other (e.g.
Parts, Customers, Employees), then it might be a caseless database or perhaps the various
entities might be held in individual case structured databases.

SIR/XS Database 8

Keys

Each record in a SIR/X S database is unique and that uniquenessis defined in terms of
the values of keys. A record may have one or more variables that make up the key. No
two records in the database can have the same combination of record type and key values.

The main index that SIR/XS maintains to locate the records is built from the key and the
key determines how the record is physically stored in the database.

Because the keys go into the index, they are relatively more "expensive" to maintain than
non-key variables. Do not declare more keyfields than needed to make records unique or
to define relationships. Whenever choosing variables to use for akey, use variables that
are short and well defined. Use numeric codes wherever possible, particularly in place of
long alphabetic strings. Using strings as keys leads to misspellings and possible
confusions as well as being inefficient. Avoid floating point numbers as key fields.

Secondary indexes can be used to retrieve data in other sequences.
Order of Variablesin Keys

In keys made up of multiple variables, the order in which the variables are specified in
the key isimportant.

Specifying the complete key in aretrieval isthe most efficient way to retrieve asingle
record. This can use the main index and directly retrieve the record.

A retrieval can locate records using just part of the key providing that it specifies the
higher level key variables. Make higher level keys the ones more likely to be used to
retrieve by.

Joining Recordswith Keyfields

Data from two record types can be joined by using a keyfield that is common to both
record types. If keyfieldsin different record types have the same name and arein the
same order, these record types are implicitly joined. A record type with one extra keyfield
defines a hierarchy. For example, one record type may have CUSTNO as the key, a second
record type CUSTNO and ORDERNO, a third record type CUSTNO, ORDERNO, LI NENO, €tc.
These can go down through many levels of record typesif needed, and the implicit joins
make retrievals simpler and more efficient.

SIR/XS Database 9

Defining Variables

Every variable in a database has a name and a structured definition. Whenever avariable
is entered into the database, it is checked to ensure that it conforms to the definition.
Variables are always referred to by their name. Descriptive names are usually best. For
example, avariable called 'PHONE' is easier to remember than one called 'VAR112'.

Within arecord type, variable names must be unique. Variables in different record types
may have the same name. Beware of using the same name for different things in different
record types in the same database. For example, it would be a mistake to use the name
'DATE' for variables when they are different dates, such as Birth Date, Visit Date, etc.

Variable Data Types

Every variable is one of three basic data types:

I NTEGER

Integers are the set of natural numbers both positive and negative including zero.
FLOATI NG POl NT

Floating point or real numbers, are numbers that may have decimal characters.

They may be either single or double precision.
STRI NG

String or character variables are variables whose values are alphanumeric.
Variable Extended Data Types

Although every variable is stored as one of the three basic types, there are severd
extended data types that trand ate information as they are entered or retrieved. These are:

CATEGORI CAL
Categorical variables offer an efficient way to store predefined strings.

A categorical variable is a character string that has alimited number of values
specified as an ordered list. When the variable isinput as a string, it is compared
to the list and the number that corresponds to the matching position in thelist is
stored instead of the value. This has the advantage that only valid entries are held
and considerable space is saved. In programs and reports, the full string is
displayed and retrieved.

For example, a categorical variable might be alist of the names of American
states. If 'Alabama were thefirst entry in the list, a variable entered as 'Alabama
resultsin '1' being stored.

SIR/XS Database 10

Thelist isheld in the datadictionary and is searched sequentialy. It isavery
simple and easy to use facility for short lists that are not updated very often. If
there are hundreds or thousands of entries, or there is more information about
each entry than just the name, or users need to modify the entries, use tables or
record types with indexes to store this type of reference data.

DATE
A date variable istypically entered as a character string which is converted to an
integer that is the number of days since the start of the Gregorian calendar. Day 1
is October 15, 1582. A date has aformat such as' MM DY YYYY' that isused to
interpret the input and to format the output. Within PQL programs, dates can be
used as numbers for calculations or as character strings for display or input
purposes. As dates are stored as the number of days since a predetermined point
in the past, it is very simple to perform date based calculations and there are no
potential problems at the end of centuries or millennia. Thereis currently an upper
limit of Feb 28 3000 (day 517686) on the conversion of numeric days to/from the
calendar.

The date format is a string, up to 32 characters, in quotes and describes both an
input and an output format. The input format is used when datais read during
batch data entry, or when astring value is assigned to the variable. The format is
used to interpret the input data (see below). The output format is used as a default
when the variable is written and the output date corresponds exactly to the format
specified (this can be overridden by other date specifications at that point).

The date format consists of a combination of |etters with special meanings and
other characters used as separators. The letters M(month), D(day), Y (year),
W(day of week/week number) and | (default separator) are specia characters
(upper/lower case can be used); al other characters in the format are treated as
separators. The'l' separator results in ablank separator on output. Like characters
must be kept together, e.g. aformat such as' MyyYyM isinvalid.

Date formats can be partial formats, without a day, month or year component. If
the year isomitted, it is taken to be the current year. If the decade is omitted, it is
taken to be the current decade. If the day or the month is omitted, they are taken
to be 1. If there are more than two month characters, then English month names
are used to the length specified. Names on output are in upper/lower case to
match the case of the format. There are two special formats which do not have a
month component. A date can be ayear/day format (in either sequence) which
must allow at |east three characters for days (1-365). A date can be ayear /week
format (in either sequence) which should allow at least two characters for week
numbers (1-53). (Week numbers follow the SO standard; a week always begins
on aMonday, and ends on a Sunday. The first week of ayear is that week which
contains the first Thursday of the year, or, equivalently, contains Jan-4.) The 'W'
character, if not in aweek number format, represents the English name for days of
the week to the length specified. Names on output are in upper/lower case to
match the case of the format. If month names or days of the week names are

SIR/XS

Database 11

specified, on output all dates have the same length name. If the specific nameis
shorter than the format it is padded with blanks.

Oninput, if adate format has no separators and the input value has no separators,
the input must correspond exactly to the format. e.g. format ' DDMWYYY' input
must have leading zeroes when necessary such as '05062006'. If the input has
separators, each component is taken to be variable length up to the separator or to
the end of the input field regardless as to the specification of separatorsin the
format. e.g. for format ' DOy MM YYYY' or format ' DDMWYYY' input could be
'5/6/6'. Separators do not have to match specific characters. e.g. A '/' can be
specified in the format and the input could contain a blank.

Months can be input as names (or partial names) or as month numbers regardiess
asto the format. Days of the week have no relevance on input and any text is
skipped.

If the full four digits of the year are not entered, the input is tested against the
century split parameter CENY. Thisis 1930 by default and can be set by the
application. Aninput year greater than the century split is set to the specified
century; years less than this are set to the next century. e.g. 99 becomes 1999; 7
becomes 2007. This calculation is not dependent on the current date in the system
and therefore does not alter at any particular point in time.

For example, various date maps allow a sample of possible inputs and how the
date is displayed as follows:

For mat Possi bl e I nputs Di spl ayed
Dat e

" mddyyyy' 05312006 05312006

" mmddyyyy' 5 31 2006 05312006

" MM DDI YY' 5/31/6 or 5 31 2006 05 31 06

" MM DD YYYY' 5-31-6 or 5 31 06 05/ 31/ 2006

' DD- MM YY' 31/5/ 2006 or 31 May 6 31- 05- 06
"YYYY' 2006 or 6 2006

'MW DD, YY As per other MDY formats MAY 31, 06
"WAY DD MW YYYY' 31/05/06 or xxx 31/5/2006 FRI, 31 MAY
2006

" Mmt DD/ YYYY' As per other MDY formats May/ 31/ 2006
"Wwy, Mmm dddd’ xxxx 05/ 31 Fri, My
31st

"yyyy/ ww 6/ 13 2006/ 13
(week nunber)

' ddd/ yy' 85/ 2006 085/ 06

(day nunber)

If adatemap starts with the letter "E" then thisis an exact date map and the value
input into the date variable must match the map exactly. The E flag is not a part of
the map but indicates that the following format is mandatory: digits must be

SIR/XS

TI ME

Database 12

entered for each M,D and Y in the map and their positions map exactly to the
column positions in the datemap. Leading zeros must be entered. Numbers cannot
be entered in columns that are not mappedto M, D or Y.

For mat I nput Val ue
" Ermddyyyy’ 05312006 accept ed
5312006 rej ected (needs | eading
zero)
05 31 2006 rejected (msaligned
col ums)
" EMM DDI YY' 05/ 31/ 06 accept ed
05031/ 06 rejected (nunber out of
pl ace)
' EMW DDI YYYY' MAR 31 2006 rej ected (nunbers required)
05 31 2006 rejected (need all |eading
zeros)
005 31 2006 accept ed

A timevariable istypically entered as a character string and stored as an integer
that is the number of seconds since midnight. A time has atime format such as
" HHWBS' that is used to interpret the input and format the output.

The time format is a string, up to 32 characters, in quotes and describes both an
input and an output format. The input format is used when datais read during
batch data entry, or when a string value is assigned to the variable. The format is
used to interpret the input data (see below). The output format is used as a default
when the variable is written and the output time corresponds exactly to the format
specified (this can be overridden by other time specifications at that point).

The time format consists of a combination of letters with special meanings and
other characters used as separators. The letters H(hour), M(minute), S(second),

| (default separator) and P or A (AM/PM) (upper/lower case can be used); all other
charactersin the format are treated as separators. The'l' separator resultsin a
colon : separator on output. Like characters must be kept together, e.g. aformat
suchas' HMWH isinvalid.

A timeisnormally taken to be a 24 hour time format. Specify 'PP ('A'isa
synonym for 'P) for a 12 hour format. On output 'AM' or 'PM" are written as
appropriate. On input, a'P' in the data indicates a 12 hour time after midday (a 24
hour timeis till valid on input).

Oninput, if atime format has no separators and the input has no separators, the
input must correspond exactly to the format. e.g. format ' HHWM input must have
leading zeroes when necessary such as'0805'. If the input has separators, each
component is taken to be variable length up to the separator or to the end of the
input field. e.g. for format ' HH: MM or ' HHWM input could be '8:5'. Separators do
not have to match specific characters. e.g. A : can be specified in the format and
the input could contain a blank.

SIR/XS Database 13

For example, various time maps allow a sample of possible inputs and how the
timeis displayed asfollows:

For mat Possi bl e I nputs Di spl ayed

Ti me

" hhnm 2330 23-30 2330

" hhl mm 23 30 23-30 23: 30

" HH: MM SS' 23 30 23:30: 00

"HH MM PP 23 30 11:30 P 11 30 PM
SCALED

A scaled integer represent numbers multiplied by a power of ten (the power isthe
scale factor). These can include a decimal component (a negative scale factor) or
can be anumber with a set number of trailing zeros (a positive scale factor). This
is efficient for data that has this characteristic of afixed scale. For example,
Money in dollars and cents would be scaled at -2.

The software handles any scaling issues involved. For example, if ascaled integer
has a scaling factor of 2 (hundreds), and it is computed equal to 50 x 4, the
database stores a 2. If the variable is printed, 200 is output. If used in another
calculation, it would be 200. For all practical purposesit has the value 200, except
it saves storage space.

The mgor limitation on scaled integers is that the maximum integer valueis
2,147,483,643. If scaled to a negative power, this may not be large enough. For
example, scaling to -2 for money, gives a maximum value of 21,474,836.43. (For
larger money values, use whole cents in a double precision floating point
variable:R*8)

SIR/XS Database 14

Variable Formats

Variables can be defined in terms of an external format. These formats are;

Aw
A string w long. Strings are stored up to this length with trailing blanks
compressed so very long fields (up to 4094) can be defined with little overhead. If
using strings as key fields or as fields used in secondary indexes, make them as
short as possible. If the variable is a categorical variable, the variable is stored as
anumber that variesin interna size depending on how many entries arein the list
of alowed values.

An integer w long. For integers, the number of external digits (or the maximum
sizeif specified as arange) determines the internal size. For example two digits
holds up to 99, but this can be stored in one byte internally. Numbers with one or
two external positions are stored in one byte, numbers with three or four external
positions are stored in two bytes and numbers with five and over external
positions are stored in 4 bytes.

Scaled integers with decimal places (negatively scaled) have external formats

identical to floating point, athough the internal storage is as an integer.
Date 'format'’
A date. The external format is astring and the internal format is a4 byte integer.
See date formats for a complete description of external date formats.
Time 'format’
A time. The external format is a string and the internal format is a4 byte integer.

See time formats for a complete description of external time formats.
Fw. n

A single precision floating point number w long with an assumed n decimal
places. Floating point numbers can be defined as single precision regardless of
their external format. For example a floating point number might take 15 columns
and be single-precision and it would be stored in 4 bytes at single precision
accuracy.

A double precision floating point number w long with an assumed n decimal
places.

When defining the external format of floating point numbers, specify the number
of digits after the decimal point. This sets the format for printing and the default
for input. If aphysical decimal point is present in the input, this overrides the
format i.e. the default isonly used if there is no explicit decimal point.

Floating point numbers can be input in scientific notation, that is +n.nnNE+nnn
where n.nnn is the number, E indicates exponentiation and +nnn is the power. For
example, if the variable has four decimal places specify D(12) to hold the 12
columns of input required (+1.3456E+009).

SIR/XS Database 15

Variable Size
The size of avariableis defined by either the external format or internal storage type:

A variable can be defined in terms of the external characters or format it isinput
in or displayed as. For example, a date variable with a date format of
‘dd/mm/yyyy' takes ten external characters.

A variable can be defined in terms of the internal storage it takes. A date variable,
regardless of date format, is stored as afour byte integer.

For most data definition purposes, specify how the variable looks externally and the
appropriate internal format is created automatically. However it is as well to understand
these transformations.

Variable Internal Formats

Variables are stored as:

I* 1] 2| 4
Integers of 1, 2 or 4 bytes.
I*1 have arange of -128 to +123;
I*2 have arange of -32,768 to +32,763;
I*4 have arange of -2,147,483,648 to 2,147,483,643.
R 4| 8
Floating Point of 4 bytes for single-precision; 8 bytes for double-precision.

To input a negative number (whether integer or floating point), smply precede
the number with aminus sign (-).

STRI NG'n
Character Strings of up to 4094 bytes.

SIR/XS Database 16

Variable Quality Control

Whenever variables are entered, they are checked to make sure that the input conforms
to the defined data type, size and format. Severa checks may be specified:

Val id Val ues
Vaid Vauesarealist of values that are allowable for agiven variable. Input that

does not match the valid value list for avariable is rejected.
Vari abl e Ranges

Variable Ranges are ranges of values that are allowable for avariable. Input that

is outside the ranges is rejected.
M ssi ng Val ues
Missing values define values that are held in the database but excluded in any

calculations. Up to 3 missing values can be specified per variable.

For example, a variable might have two valid values such as'Y', and 'N' meaning
'Yes and 'No'. A further three missing values might be defined such as'X' for 'Not
relevant’, 'R’ for 'Refused to Answer' and 'Z' for 'Invalid Answer'. When producing
statistics on that variable, only the Y and N answers are included as the others are
defined as missing values.

Blanks may be declared as amissing value. If anumeric field is blank on input
and blank has been defined as amissing value, the variable is stored as missing. If
blanks are not declared as a missing value for the variable, zero is stored when a
numeric field is blank on input.

Bat ch Data | nput
Certain checks may be specified that are applied by the Batch Data Input utilities.
Consistency checks between variablesin arecord type can be specified. The
values of dataitems can be computed before being stored in the database.

SIR/XS Database 17

Variable L abel

Variables on screen displays and printed output can be displayed with the variable
name or with an optional, 78 character |abel.

Variable Documentation

The schema can hold documentation about a variable. There can be as many lines of
documentation about a variable as necessary. Thisis simply stored with the rest of the
definition of the variable and is listed as required.

Value Labels

Labels can be defined for specific values of variables. For instance, for a variable Gender,
the value 1 may have the label 'Male' and the value 2 may have the label 'Femal€'. These
labels may be used in reports, etc. but generaly, internally within programs, the numeric
values are used.

Decimal Points

When reading numbers from external files or specifying numbersin definitions or
programs, an actual decimal point "." can be present in the number. In definitions and
programs, if the decimal point is omitted, it is assumed at the right of the number. For

example:
COWPUTE A = 1.2
COVPUTE B = 100

Some existing computer files may not have explicit decimal points but may have an
implied decimal point at a given position. For example, aformat of F4.1 or ascale of (-1)
means that the number in these four positions has one decimal placeif an explicit
decimal point is not quoted. If thisfield contained "0012", it isread as"1.2", however if
it contained 1.234, then 1.234 is the value that would be stored.

The decimal positions describe an implicit input format and an implicit output format.
They do not describe the maximum number of decimal positions that can be storedin a
field. If anumber isdefined as D10.0, it can still be computed equal to "0.12345" and
12345 is stored.

On some schema definition commands (VALUE LABELS, VAR RANGES, M SSI NG
VALUES etc.), numbers can be specified. If the number has a decimal component, specify
an explicit decimal point and the actual value regardless of any input definition of

implied decimals. For example:
M SSI NG VALUES RESULT (99. 99)

SIR/XS Database 18

Schema Commands

There are commands to create a new database or to connect an existing database.
Passwords can be supplied with the PASSWORD command. Attaching a database and
supplying passwords is normally done through menus or with the Execution Parameters.

There are numerous commands to define the specific features of a database. A set of
commands that corresponds to the definition of the attached database can be written to a
fileusing WRI TE SCHEMA and edited. The schema definition can then be executed as any
other SIR/XS procedure.

A report on the definition of the attached database can be produced with the SCHEMA
LI ST command.

The complete database can be deleted. Individual record definitions can be deleted
provided that there is no data for that record.

The format of schema commands is the same as other SIR/XS commands, that is new
commands must begin at the start of a line and continuation lines for a command must
have blanks at the start of the line. Individual clauses within acommand may be
separated by slashes for readability.

All changes to a database, including schema changes, are recorded on the journal file
provided that journaling is on. Initial schema definition before any datais added to a
database is not journaled. Once there is data in the database, each schema modification
run increments the update level of the database.

Overall database commands precede record definition commands. There may be many
sets of record definition commands (one set for each record type) and, within arecord
definition, there is an order for the various types of commands.

Secondary index definitions may follow arecord definition. A secondary index is defined
with asingle CREATE DBI NDEX command. These can be done before or after any initia
dataloading. Defining an index builds the index automatically if thereis existing datain
the record.

Overall Commands

The overall database commands specify whether there is a case structure, size estimates,
security, and any documentary text. The commands are:

[NO| CASE ID

SIR/XS Database 19

Defines whether this database has a case structure or is a caseless database. This

isthe only required command to define a database.
DATA FI LES

Specifies adatafile that is non-standard. This may have adifferent name, bein a

different directory or may be split across multiple files.
DATABASE LABEL

Specifies a descriptive label of up to 78 characters for the database.
DOCUNENT

Stores text about the database in the data dictionary.
ENCRYPT [ON| OFF}

Defines whether data in this database is encrypted or not.
MAX | NPUT COLS

Specifies the longest batch input record length.
MAX KEY Sl ZE

Specifies the maximum key size.
MAX REC COUNT

Specifies maximum number of records of one type.
MAX REC TYPES

Specifies maximum number of record types.
N OF CASES

Specifies maximum number of cases for case structured databases.
N OF RECORDS

Specifies maximum number of records for caseless databases.
READ SECURI TY

Sets security passwords for read access levels.
RECS PER CASE

Specifies the average number of records per case.
RECTYPE COLS

Specifies the columns that contain the record type for Batch Data I nput.
SYSTEM SECURI TY

Sets security passwords for specific DBA utilities.
SYSTEM SECURI TY LEVEL

Sets the security level for specific DBA utilities.
TEMP VARS

Specifies temporary variables used during Batch Data I npui.
VRl TE SECURI TY

Sets security passwords for write access levels.
Record Definition

The record definition commands specify the name and number of the record, the key
fields and any documentary text together with the name, type, and size of each variable.
A further set of information may be specified that relates to the Batch Data Input utilities.
This specifies how datais loaded from serial files, including any computations and
logical accept/reject clauses.

Sometimes the same data with the same coding scheme appears on multiple record types.
For example standard drug codes or states in a country. Rather than repeating definitions
in multiple record types, a standard schema can be defined that contains all of the

SIR/XS Database 20

descriptions and codes for the variable and it can then simply be included as a standard
var in records as necessary.

In a case structured database, a set of variables can be held at the case level in the CIR.
Specify variables that are in the CIR with aRECORD SCHEMA 0 CI Rrecord definition.

Within arecord definition, there is an order for commands. The example record
definition shows some of the most commonly used record definition commands.

The following commands are used to specify records.

ACCEPT REC I F

Specifies acceptance tests for batch data input.
CAT VARS

Specifies variables are categorical.
CHARACTER* n

Defines new character variables and their length. n may be from 1 to 4094.
COVPUTE

Specifies computations in batch data input.
CONTROL VARS

Specifies that numeric variables are control variables not observation variables.
By default, numeric variables defined with a set of VALI D VALUES or VALUE
LABELS are control variables. To specify other numeric variables as control

variables, define aVAR RANGE for them.
DATA LI ST

Defines the complete set of variablesin the record with any appropriate external

formats and positions for batch data input.
DATE VARS

Specifies variables are date variables and defines the external date format.
DOCUMVENT

Stores text about the record in the data dictionary.
END SCHEMA

Specifies the end of this record definition.
| F

Computes values conditionally in batch data input.
| NPUT FORMAT

Specifies the external format of variables defined by the VARI ABLE LI ST.
| NTEGER* n

Defines new integer variables with an internal length of 1, 2 or 4.
KEY FI ELDS

Specifies the variables that are keys for arecord.
MAX REC COUNT

Specifies the number of records of this type that can be held.
M SSI NG VALUES

Specifies missing values for variables.
OBSERVATI ON VARS

Specifies that numeric variables which have valid values or value labels are

observation variables instead of control variables.
REAL* n

SIR/XS Database 21

Defines new floating point variables with an internal length of 4 or 8.
REC SECURI TY

Sets default security levelsfor variablesin this record.
RECODE

Specifies recodes performed by batch data input.
RECORD SCHEMA

Begins the record definition and names the record. It can include arecord label.
REJECT REC I F

Specifies acceptance criteriafor batch data input.
SCALED VARS

Specifiesinteger variables are scaled and defines the scaling factor.
TI ME VARS

Specifies variables are time variables and defines their external format.
VALI D VALUES

Defines valid values for variables.
VALUE LABELS

Defines value labels for variables.
VARI ABLE LI ST

Defines variables. Used with | NPUT FORMAT as alternative to DATA LI ST.
VAR DOC

Defines documentation for variables.
VAR LABEL

Defines alabel for variables.
VAR RANGES

Definesranges of valid values for variables.
VAR SECURI TY

Defines read and write security levels for individual variables.

SIR/XS Database 22

M odifying Database Definitions

The database definition can be modified through the menus. If using commands to
modify the schema, you use the normal RECORD SCHEMA command to make specific
changes. If adefinition exists for arecord and you do not submit anew DATA LI ST
command, then you are modifying the schema. If you do submit anew DATA LI ST then
you must re-submit the entire schema.

The ADD VARS, MODI FY VARS and DELETE VARS are equivaent to a DATA LI ST when
modifying a schema and have the same syntax.

If the STANDARD SCHEMA is modified, then all record types that have any STANDARD VARS
are updated to reflect the changes. If a standard variable definition has been deleted, then
standard variables that referenced that deleted variable are no longer standard variables.

There are anumber of commands that are only applicable when modifying an existing
record definition. Except as documented below, commands completely replace any
existing definition.

ADD VARS
Adds new variables to the variable list.
CLEAR BOOLEANS

Clears all ACCEPT/ REJECT conditions.
CLEAR COMPUTES varnanel,... | ALL

Clears all computes for the specified variable(s).
CLEAR RECODES varnanel,... | ALL

Clears al recodes of the specified variable(s).
CLEAR VALUE LABELS varnanel,... | ALL
Clears all value labels for the specified variables.
CLEAR VAR DOC varnanel,... | ALL
Clears al the lines of documentation for the specified variables.
CLEAR VAR LABEL varnanel,... | ALL
Clearsthe label for the specified variables.
COVPUTE
Defines new compute definitions. These are added to the old definitions. Use the
CLEAR COVPUTES command to delete old COVPUTE definitions.
DELETE VARS

Deletes variables from the variable list.
EDI T LABELS

Edits the value label list for the specified variables. This command has the same
format asthe VALUE LABELS command. Any new values are added to the list, any
existing values that are referenced are updated. Existing value labels that are not

referenced are not altered.
MODI EY VARS

SIR/XS Database 23

Modifies the type, external format or batch datainput position of existing

variables.
RENAME VARS existing_variable_list {AS new variable_ |list | PREFIX
"text' | SUFFI X "text'}

Renames one or more variables while keeping al existing definitions of the
renamed variable(s). The variables to be renamed are specified asalist and this
can use the ALL or TOkeywords. The new names can be specified individually as a
list (which can also use the TO keyword), in which case there must be the same
number of variable namesin both lists. Alternatively the new names can be
constructed by appending a prefix or suffix. If aprefix or suffix is specified,
enclose the text in quotes. Note that thistext is used exactly as specified so ensure
that the correct case is used. Appending a prefix or suffix can result in non-
standard names. The resulting names must fit within the 32 character limit on
names.

Examples:

RECORD SCHEMA 1

EDI T LABELS JOBCODE (21) Sal esperson
(22) Senior Sal esperson
(23) Sal es Manager/

VAR RANGES JOBCODE (1 23)

The following example adds two variables to the Employee record type.

RECORD SCHEMA 1, EMPLOYEE
ADD VARS ETYPE 70 (I)/
PHONE 71 - 80 (A)
VAR RANGES ETYPE (1 3)
VAR LABEL ETYPE ' Enpl oyee Type'/
PHONE ' Hone Phone Nunber'/
END SCHEMA

The following example modifies the variable label for Position and the variable
label for value 5 of Rating in the Review record type.

RECORD SCHEMA 3, REVI EW

VAR LABEL POSITION 'Job Code’
EDI T LABELS RATING (5) 'Excellent’
END SCHENA

SIR/XS

Database 24

Format of Commands

Start new schema commands in column 1. Continue commands by leaving
column 1 blank. Comments and general listing control statements can appear
between any commands but not between the clauses of a single command.

When the same command applies to several variables, you can specify multiple
variables and definitions on a single command. Y ou can optionally delimit the
specifications for each variable with a slash for readability. For example,

VALI D VALUES CODE1 (1 2 3)
CODE2 (1 2)
VALUE LABELS CODE1 (1) 'Tested'
(2) 'Prelimnary’
(3) 'Passed’
CODE2 (1) ' Donestic'
(2) ' Overseas'

TO Lists

When defining variables, you can define a set of variables by using apair of
identical variable names with a numeric suffix in ascending sequence separated
by the keyword word TO. For example, to define ten variables named VARO1,
VAR02, ... VARILO:

VARI ABLE LI ST VARO1 TO VAR10

Once variables have been defined, they can be referenced as alist in other
commands by using apair of variable names separated by the word TO, regardless
of the format of the variable names. The sequence of the variables included in the
list is determined by the sequence in which the variables were defined. The TOlist
isinclusive and backwards references are not allowed. For example, suppose the
following variables were defined on avariable list:

VARI ABLE LI ST | D EMPNO NAME STATUS1 TO STATUS3 GENDER

A reference on another command (such as M SSI NG VALUES) might be1 D TO
GENDER to include all the variables, or NAVE TO STATUS3 to include NAMVE and the
three STATUS fields. For example:

M SSI NG VALUES EMPNO TO GENDER (BLANK) The keyword ALL can be used to
reference all of the variablesin arecord type.

SIR/XS Database 25

Order of Commands

Record definition commands follow database definition commands. The record
definition commands of each record occur together. Y ou do not have to define
records in any particular order however define any standard schema as part of the
database definition, immediately followed by RECORD SCHEMA 0 CI Rfor the
common vars on a case structured database.

TheKEY FI ELDS command and the DATA LI ST or | NPUT FORVAT / VARI ABLE
LI ST can only occur once per record. Other commands may occur multiple times.

Within each record, there is a general order that must be followed. The commands
to do with the overall record structure come first, then the definition of the
variables and then additional specifications referring back to the defined
variables. It isnormal for the definition of all variables to precede the optional
specifications for all variables, but thisis not required. It isrequired that the
definition of aparticular variable precedes the specification for that variable.

Group Commands
1 RECORD SCHEMA *
DOCUMENT

KEYFIELDS'SORT IDS
MAX REC COUNT
REC SECURITY

2 DATA LIST or
VARIABLE LIST/
INPUT FORMAT*
INTEGER VARS
REAL VARS
CHARACTER VARS

3 CAT VARS
CONTROL VARS
DATE VARS
MISSING VALUES
OBSERVATION VARS
TIME VARS
SCALED VARS
STANDARD VARS
VALID VALUES
VALUE LABELS
VAR DOC
VAR LABEL

SIR/XS Database 26

VAR RANGES
VAR SECURITY

4 ACCEPT REC IF
COMPUTE
IF
RECODE
REJECT REC IF

5 END SCHEMA

The* commands (RECORD SCHEMA and either DATA LI ST or VARI ABLE

LI ST/ I NPUT FORMAT) are mandatory and must be supplied. All other commands
are optional.

Group 1 commands are concerned with the overall record.

Group 2 are data definition commands and create new variable namesin
the database.

Group 3 further specify the variables created in group 2.

Group 4 is concerned only with batch data input processing. Note that new
variables can be created with COVPUTE, | F and RECODE commands or
these commands can use previously defined variables. If the batch data
input utilities are not relevant, this group of commands can be ignored.
Group 5 issimply the end of the command set.

SIR/XS Database 27

Example Record Specification
The typical definition of arecord with no batch data input processing consists of :

RECORD SCHEMA

KEY FIELDS

DATA LIST or VARIABLE LIST/INPUT FORMAT
DATEVARS & TIME VARS

MISSING VALUES

VALID VALUES

VALUE LABELS

VAR LABEL

END SCHEMA.

For example:

RECORD SCHENA 1, PATI ENT
KEY FI ELDS I D
VARI ABLE LI ST | D, LNAVE, FNAME, DOB, SEX, STATUS
I NPUT FORMAT (|4, A40, A40, DATE' WM DD YYYY' ,11,11)
M SSI NG VALUES LNAME to STATUS (BLANK)
VALI D VALUES SEX (1,2)
STATUS (1, 2, 3)
VALUE LABELS SEX (1) ' Male
(2) 'Fenual e’
STATUS (1) 'Inpatient'
(2) 'Qutpatient’
(3) 'No Longer Attending'

VAR LABEL 1D Patient |d'
LNAME "Last Name'
FNAVE "First Nane'
DOB '"Date of Birth'
STATUS "Current Status'
END SCHEMA

In the above example the following commands were used:

RECORD SCHEMA

Specifies the record number and name, and begins the specification of arecord
type.

KEY FI ELDS

Specifiesthe key field variables for the record type in order from major to minor

key. Thisimmediately follows the RECORD SCHEMA command.
VARI ABLE LI ST
| NPUT FORMAT

The VARI ABLE LI ST names the variables; the | NPUT FORMAT defines the data
type, size and format. The variable names are ssimply listed in the order they are to

SIR/XS Database 28

appear in the database, separated by blanks or commas. Variables are held in the
order they are defined. The format specification is enclosed in parentheses and
commas are used as separators. 1" specifiesintegers, "A" specifies alphanumeric.
Date formats consist of the word DATE followed by a date format. See date
formats for a complete description. Time formats consist of the word TI ME

followed by atime format. See time formats for a complete description.
M SSI NG VALUES

Up to three missing values may be specified for any variable. The keyword BLANK
specifies that blank input is treated as missing. When the same valueisto be
assigned to a set of variables the variable list format can be used. This consists of

the two variable names that define the start and end of the list and the word "to".
VALI D VALUES

Valid values or ranges of valid values may be specified for variables. Vaues that
do not match these and are not a valid missing value can never appear in the data.

Attempts to store an invalid value result in the system missing value (undefined).
VAR LABEL

A variable label may be up to 78 characters and can be used instead of the name

of the variable on screens, column headings on reports, etc.
VALUE LABELS

Value labels associate a label with a given value. The label can be displayed in
place of the value. Value labels are up to 78 characters long. The specification for

each variable may be separated by a slash for readability.
END SCHEMA

Ends a record schema definition set of commands.

SIR/XS Database 29

CREATE DATABASE

CREATE DATABASE dat abase_ nane
[JOURNAL = {ON | OFF}]
[PASSWORD = dat abase_passwor d]
[PREFI X = dat abase_directory]

Creates anew database. (NEW FI LE isa synonym.) A database name must be a
valid SIR/XS aname. To connect to an existing database, use the CONNECT
DATABASE command.

JOURNAL
Controls whether journaling is performed for the new database. The default is ON.

Journaling can be turned on or off with the JOURNAL command
PASSWORD

Defines the database password for the new database. The password must be a
valid SIR/XS name. Specifying this keyword lists the password in the output
listing. The database password can be supplied with the PASSWORD command that
does not list the password in the output listing. If a password is not defined for a
database, the password is set to blank. If a database has no password, future
connections to the database need not specify a password. The UNLOAD FI LE utility

can change the database name and password.
PREFI X

Specifies the database directory. If not specified, the database is created in the
current directory.

SIR/XS Database 30

CONNECT DATABASE

CONNECT DATABASE dat abase_nane
[JOURNAL = {ON | OFF}]
[PASSWORD = db_passwor d]
[PREFI X dat abase_di rectory]
[SECURITY = {read_pw | *} [{wite_pw | *}]]
[CREATE]

Connects the specified existing database. (OLD FI LE isasynonym.) A database
must be connected before it can be used. The last connected database is the
default database. Al processes and utilities run on the default database.

A pre-compiled Visua PQL program can connect a database when it runs, but, if
you need to compile a VisualPQL program that references a database, the
database must be connected first.

JOURNAL
Turnsjournaling on or off. Journaling is a database characteristic and remains as

it was last set and need not be re-specified.
PASSWORD

Specifies the password that is required to access to the database. Thisis not
required if the database has no password. This option shows the password in the
output listing.

The database password can be supplied with the PASSWORD command that does
not list the password in the output listing.

PREFI X
Specifies the database directory. Thisis not required if the databaseisin the

current directory.
SECURI TY

Specifies the read and write security passwords.

It isonly necessary to specify the write security password when updating the
database. To specify awrite password when the read password is null, specify the
read password as an asterisk (*).

If the read password matches the highest (30) level of security, then the user has
Data Base Administrator (DBA) level access to the database and can run all
utilities. If the database does not have any read passwords assigned, then any
connected user has DBA access. See READ SECURI TY

SIR/XS

CREATE

Database

Creates a new database when used with the CONNECT DATABASE command.
CREATE makes CONNECT DATABASE act identically to the CREATE DATABASE
command.

31

SIR/XS Database

DISCONNECT DATABASE

DI SCONNECT DATABASE dat abase_nane

Disconnects a database. If thisisthe default database, the procedurefileis set to
SYSPRCC.

32

SIR/XS Database 33

SET DATABASE

SET DATABASE dat abase nane

Sets a previously connected database as the default.

SHOW DATABASE
SHOW DATABASE

Writes aviewable list of connected databases.

L1ST DATABASE

LI ST DATABASE

Sends alist of connected databases to the OutputHandler callback routine in SirAPI when
running in that mode.

SIR/XS Database 34

JOURNAL ON|OFF
JOURNAL ON| OFF

Turnsjournaling on or off. Journaling is a database characteristic and it is recommended
that journaling isleft on under normal circumstances.

SIR/XS Database 35

PASSWORD

PASSWORD dat abase_password

Supplies the database password.

If this command immediately follows either the CREATE DATABASE (NEW FI LE. ..) or
CONNECT DATABASE (OLD FI LE. . .) command. This meansthat theif the PASSWORD is
to be specified then it MUST be on the next physical command line.
When used with CREATE DATABASE, this command defines the new database password.
When used with CONNECT DATABASE, this command supplies the password needed to
connect the database. If the database has no password, this command need not be

specified. If an incorrect password is specified, access to the database is denied.

If the PASSWORD command is used at any other time when a database is connected
then it will change the database password.

This command does not print the password in the output listing.

SIR/XS Database

SECURITY

SECURI TY read_pw , wite_pw

SECURI TY supplies the read and write passwords. If an incorrect password is specified,
level O (zero) security is assigned.

This command does not print the passwords in the output listing.

36

SIR/XS Database 37

PURGE SIR FILE

Deletes the database. Use this utility to delete the current database before restoring it for
recovery or restructuring. The database files are completely deleted from the disk.

PURGE SIR FI LE

[JOURNAL = KEEP | PURGE]
[PROC = KEEP | PURGE]
JOURNAL

KEEP specifies that the journal fileis not deleted and is the default. PURGE
specifies that the journal file is deleted when the database is del eted.

PURCE SIR FI LE JOURNAL = PURGE

PROC
KEEP specifies that the procedures are not deleted. When a new database is created
or adatabase is reloaded, the old procedure file can be used as part of that
database. This keeps the procedures from a corrupt database when arestore
cannot be accomplished. PURGE specifies that the Procedure Fileisdeleted and is
the default.

PURGE SI R FI LE PROC = KEEP

SIR/XS Database 38

DELETE SCHEMA

Deletes the schema of arecord that has no data. Select the appropriate record.

DELETE SCHEMA recname | recnum

Deletes the record schema name or number from the database definition. DELETE SCHEMA
only operatesif there are no records for this record type. Thisisa DBA security level
command.

When defining and redefining arecord type, it is sometimes simpler to DELETE SCHEMA
and redefine it through a complete new RECORD SCHEMA than to modify it over and over

again.

When defining and testing a new database and wish to delete all of the test data for record
type n prior to delete schema the following simple Visual PQL program does this (omit
the case commandsiif it is a caseless database):

RETRI EVAL UPDATE
PROCESS CASE
PROCESS REC n
DELETE REC

END PROCESS REC
END PROCESS CASE
END RETRI EVAL

DELETE STANDARD SCHEMA

Deletes the entire standard schema. This modifies any records referencing the standard
schema so that they no longer reference the standard. It is strongly advised that the
database is rebuilt using export/import or unload/reload as soon as possible if thisis done
and multiple record definitions are affected.

SIR/XS Database 39

CASE ID

CASE ID varnane [(A)]| (D] |
[NO CASE ID

CASE | D var nane establishes the database with a case structure and specifies the name
of the variable used on every record as the case identifier.

NO CASE | D establishes the database without a case structure.
Either CASE | Dor NO CASE | Disrequired to set up the database and this command must
be used prior to any other definition. Once the case specification and case id have been

defined, these cannot be modified.

The case variable may be any data type. Avoid REAL for keys due to the difficulty of
specifying exact numbersin floating point.

D specifies descending sort order for cases. If order is not specified, ascending is
assumed. When all cases are processed sequentially, they are retrieved in this sequence.

SIR/XS Database 40

COMMON SECURITY

COVMON SECURITY rl evel, w evel
Specifies the default minimum security levels for all common variables.

Rlevel (read level) and wlevel (write level) are integers between 0 (zero) the lowest, and
30, the highest. If no security levels are defined, level 0, the lowest, is assigned. Further
security restrictions for individual common variables can be specified at the record level
using the VAR SECURI TY command. See READ SECURI TY for an explanation of security
levels.

Common security levels can be changed. Note, this affects only the security levelsfor
new common variables that are defined or redefined. It does not affect the security levels
of currently defined common variables.

SIR/XS Database 41

COMMON VARS
RECORD SCHEMA 0 CIR

Specifies variables in the Common Information Record or CIR. A CIR existsfor every
case in a case structured database and holds counts plus the case identifier. It can hold
Common variables that are typically those that are used repeatedly in retrieving data from
the database. These variables can be referenced at any time regardless of the record type
being processed. CIR entries can be updated directly when processing a case, or can take
the value of the last entry in a given record type.

Note that common vars, except for the case id on a case structured database, cannot be
used as key variablesin a secondary index in arecord as they are not stored as part of a
record.

Specify the format here and then, when this variable is referenced on a subsequent record
definition, there is no need to respecify formats except input-output columns and any
batch data specifications (e.g. RECODE) for that record.

The specification of the CIR isidentical to any other record except that the batch data
input specification clauses (ACCEPT REC,REJECT REC,COMPUTE,l F and RECODE) are
meaningless. Follow the RECORD SCHEMA 0 Cl Rwith aDATA LI ST to completely
respecify the common vars or use ADD VARS or DELETE VARS to update the common vars.

Use any of the normal record variable definition commands such as VALUE LABELS as
required.

The RECORD SCHEMA 0 ClI R set of commands follows any STANDARD SCHEMA set of
commands and precedes normal record definitions.

(Note: The older format of COMMON VARS is still supported for compatibility with earlier
versions of SIR.)

SIR/XS Database 42

DATA FILES

DATA FILES 'fil enane’
[FROM (key,...) 'filenane']
[FROM (key,...) 'filenane']

Specifiesthat the datafile for this database is not a standard datafile. It may have a
different name, be in a different directory or may be split across multiple datafiles.

Specify the command at the end of the schema definition - it cannot be processed before
the type of the Case variable has been specified for a case structured database. If arecord
type is specified as a FROMKkey, then that record type must have been defined. When
SIR/XS writes a schema, this command follows any secondary indexes.

If the command does not have any FROMclause, it specifies the name and location of the
datafile. This can bein adifferent directory from the other database files and named
something other than the database name with a.. sr 3 extension.

The first specification names the original datafile that holds al records up to the value
specified on the first FROVikey. The last specification names the final datafile that holds
all records from to the value specified on the last FROvikey.

On a case structured database, the first key specified isthe caseid. If any further
specification isrequired, the next key specified is arecord number. On a caseless
database, the first key specified is arecord number. Subsequent keys can be specified up
to the maximum number of keys on the record type.

The filenames must either be fully qualified filenames or simple filenames without any
directory specification. If the files are not fully qualified then the datafileis placed in the
same directory as the other database files.

For example:

DATA FI LES ' conpany.s31'
FROM (500) ' conpany.s32'
FROM (1000) ' conpany. s33'

SIR/XS Database

A DATA FI LES command with no other specifications removes any previous datafile
definition and sets the database to have a standard datafile.

43

SIR/XS Database 44

DATABASE LABEL

DATABASE LABEL 'text'’

Specifies alabel for the database. This text can be up to 78 characters and is enclosed in
guotes. The label can be retrieved in Visual PQL using the RECDOC(0, 0) function.

SIR/XS Database 45

DOCUMENT

DOCUMENT t ext

Specifies that the text following the command is commentary. Thistext is stored in the
dictionary describing the overall database.

The text cannot be partially modified. To alter the text, run the DOCUMENT command with
new text. The new document text completely replaces the old.

SIR/XS Database 46

ENCRYPT
ENCRYPT [ON | OFF]

ENCRYPT turns on data encryption for this database. This meansthat all datarecordsin the
database are encrypted on disk and are thus protected against scrutiny from software
other than SIR/XS. The encryption method used is aversion of the publicly available
Blowfish algorithm using a 256 bit key.

All datarecords are encrypted, however keysin index blocks are held in unencrypted
format. Do not use names or other recognisable strings as keys if this datais sensitive and
requires protection. Unloads and journals for encrypted databases are themselves
encrypted. Text files are all unencrypted. Schemas and procedures are unencrypted.

ENCRYPT OFF turns encryption off for a database. Encryption can be turned on and off
without ill effect. Records are written according to the current setting; records are read
and recognized as to whether they require decryption.

Passwords and security levels are encrypted on all databases. There are
encryption/decryption functionsin Visual PQL if users need to encrypt data for
themselves but these use a user specified key - the SIR/XS system key is used for
database encryption.

SIR/XS Database 47

MAX INPUT COLS

MAX | NPUT COLS n

Specifies the length of the largest input line for any record type in the database. N is
rounded up to a number evenly divisible by eight. This command is necessary when there
isany record type with a batch input format longer than 80. The MAX | NPUT COLS can be
increased at any time, but cannot be decreased once any record types have been defined.

SIR/XS Database 48

MAX KEY SIZE

MAX KEY SI ZE n

Specifies the maximum key size required for any record type in the database. The default
isthe size of the largest key currently defined for any record type in adatabase and is
calculated automatically.

Only specify an explicit key size if you expect to define a new record type with alarger
key than the current largest key after loading data into the database. If MAX KEY SI ZEis
set to the largest expected key, it avoids having to UNLOAD and REL OAD the database.

The keysfor arecord are: the Case Id, the record number and the key fields. The current
MAX KEY Sl ZE can be obtained from the database statistics.

The absolute maximum key size possible, whether defined through this command or
calculated from the keys specified, is 320 characters.

SIR/XS Database 49

MAX REC COUNT

MAX REC COUNT n

For case structured databases, this specifies the default MAX REC COUNT for individual
record definitions. The overall MAX REC COUNT sets the default maximum of arecord
type for any one case in the database. The number specified for an individual record type
may be larger than specified here. The default value is 100.

For caseless databases, use the command N OF RECORDS to specify the maximum number
of records that the database can hold.

SIR/XS Database 50

MAX REC TYPES

MAX REC TYPES n

Specifies the maximum number of different record types that can be defined in the
database. The default value is 30.

No record type number can exceed the value specified on the MAX REC TYPES command.
For example, if MAX REC TYPES is 10, arecord type 11 is not allowed, even if there are
fewer than ten record types defined.

This number affects the size of the CIR. Space isreserved in the CIR for counts for as
many record types as defined in MAX REC TYPES. The case level MAX REC COUNT
determines how much space is held for the count of any record type as yet unspecified.
For example, if thereisaMAX REC TYPES of 30 and amMaX REC COUNT of 100, 30 bytes
arereserved for record counts in each CIR. With amMaX REC TYPES of 100 and a MAX
REC COUNT of 1,000,000, 400 bytes are reserved.

Changing this number requires a database UNLOAD / RELOAD once data has been |oaded.

SIR/XS Database 51

N OF CASES
N OF CASES n

Specifies the maximum number of cases, n, that can be entered in the database. The
maximum number of casesisan integrity constraint that limits the number of cases that
can be held in the database

TheN OF CASES is an absolute value; it cannot be increased without doing an UNLOAD /
RELOAD and so specify the value carefully to alow for the maximum number of cases
ever wanted in the database.

N OF CASESismultiplied by the RECS PER CASE to establish the total number of records
the database can handle. This limit cannot be exceeded and can only be changed with an
UNLOAD / RELOAD.

Thereis no overhead with specifying alarge value, the only constraint is that total
number of recordsisanumber that can be stored in one integer. This number is
2,147,483,648.

Thedefault N OF CASES is 1000.

Not valid for casel ess databases.

SIR/XS Database 52

N OF RECORDS

N OF RECORDS n
Specifies the maximum number of records, n, that can be entered in a casel ess database.
TheN OF RECORDS is an absolute value; it cannot be exceeded and so specify the value
carefully to allow for the maximum number of records ever wanted in the database. This
[imit can only be changed with an UNLOAD / RELQAD.
There is no overhead with specifying alarge value, the only constraint is that total
number of recordsisanumber that can be stored in one integer. This number is
2,147,483,648.
The default N OF RECORDS is 1,023,000.

Not valid for case structured databases.

SIR/XS Database 53

READ SECURITY

READ SECURI TY (I evel n) password

Establishes the read security levels and associated passwords. There are 31 levels of
security, from O (zero), the lowest, to 30, the highest. Repeat the complete specification
for each password. Database passwords are a SIR/XS name and must conform to the
name format. That is, names are no longer than 8 characters, begin with an aphabetic
character and can contain alphanumeric characters and the four characters#3$ @ _. For

example
READ SECURI TY (1) CLERK (2) SUPER (3) MANAGER

When a user logs in to the database, they specify a Read Security Password. If this
matches a password in thislist, then they are assigned that security level. If they do not
login with avalid read security password, they are assigned level zero.

If security passwords are not defined, anyone who logs on to the database is assigned
level 30 (database administrator) read permission.

Onelevel is associated with one password. That is, there may be a password for level 1, a
password for level 2, and so on. There cannot be two passwords for the same level. Read
access at a particular level grants read access for al lesser levels.

A security level and associated password must be defined before that security level can
be specified on arecord type or variable.

SIR/XS Database 54

RECSPER CASE
RECS PER CASE n
Specifies an average number of records per case. The default is 1023.
Thisis used to calculate the total number of records in the database. The product of N OF
CASES multiplied by RECS PER CASE forms an upper bound on the total number of

records (not including CIRS) that can be stored in the database.

The default N OF CASES is 1000 that means that 1,023,000 is the default total number of
records for a database.

This can be updated once records have been entered without an UNLOAD / RELQAD.

This command has no meaning for casel ess databases.

SIR/XS Database 55

RECTYPE COLS
RECTYPE COLS n[, nj

When using Batch Data Input utilities, the input file can contain records of different types
and an input record type is identified by its record type number. The record type number
isan integer and must appear in the same position on al input records regardless of
record type.

RECTYPE COLS specifies the columns that contain the record type number. 'n' specifies the
start column 'm' specifies the last column. If the record typeisin one column, i.e. MAX
REC TYPES islessthan 10, just specify the start column.

The columns specified must be within the range specified on the MAX | NPUT COLS
command. The record type number must be on the first line of any multi-line input
records. (If recordson input files are all of one type, the RECTYPE= clause can be used for
the batch data input run and the record type number omitted.)

Make the number of columns large enough to hold the value of the maximum record
number. For example, if up to 99 record types are allowed, specify two columns.

The default is columns 79 and 80.

SIR/XS Database 56

SYSTEM SECURITY

SYSTEM SECURI TY readpw, witepw
Specifies the passwords associated with the SYSTEM SECURI TY LEVEL, if specified. Log
on to the database with these passwords to access the system utilities. Currently, only
UNLQAD FI LE isrestricted by the SYSTEM SECURI TY LEVEL and therefore this command
isnot usually specified.

Logging on with a password that is associated with the system security level gives access
to al functions.

SYSTEM SECURITY LEVEL

SYSTEM SECURI TY LEVEL n

N specifies the security level at which a user can perform a set of DBA-only commands.
Log on to the database with the write password associated with this level to access the
system utilities. The default system security level is 30.

Currently, only UNLOAD FI LE isrestricted by the SYSTEM SECURI TY LEVEL and therefore
this command is not usually specified.

SIR/XS Database 57

TEMP VARS

TEMP VARS varli st

Names temporary variables for use in computations during entry of data with the Batch
Data Input utilities. Computations include COVPUTE, RECODE, | F, ACCEPT REC and REJECT

REC commands.

Temporary variables are not stored in the database.

SIR/XS Database 58

WRITE SECURITY

WRI TE SECURI TY (| evel n) password

Establishes the write security levels and associated passwords. There are 31 levels of
security, from O (zero), the lowest, to 30, the highest. Repeat the compl ete specification
for each password. Database passwords are a SIR/XS name and must conform to the
name format. That is. names are no longer than 8 characters, begin with an aphabetic
character and can contain alphanumeric characters and the four characters#$ @ _. For
example:

WRI TE SECURI TY (1) CLERK (2) SUPER (3) MANAGER

When a user logs in to the database, they specify a Write Security Password. If this
matches a password in this list, then they are assigned that security level. If they do not
login with avalid write security password, they are assigned level zero.

If security passwords are not defined, anyone who logs on to the database is assigned
level 30 (database administrator) write permission.

Onelevel is associated with one password. That is, there may be a password for level 1, a
password for level 2, and so on. There cannot be two passwords for the same level. Write
access at a particular level grants write access for all lesser levels.

SIR/XS Database 59

ACCEPT REC IF

ACCEPT REC I F (I ogi cal expression)
Only appliesto batch data input

Specifies the criteria for accepting records using the Batch Data Input utilities. When the
logical expression is TRUE, the record is entered into the database. Multiple ACCEPT REC
| F commands can be defined to specify multiple acceptance criteria. If arecord passes
any onetest, it is accepted. If ACCEPT REC | F is specified, all records that do not pass a
test are rejected.

ACCEPT REC | F (AGE GE 16 AND LE 65)

Note: ACCEPT RECORD | F cannot be specified in a CIR definition. If an ACCEPT RECORD
| F refersto acommon variable then it must appear in the record schema where that
common variable is referenced rather than at the CIR level.

SIR/XS Database 60

CAT VARS

CAT VARS varnane ('value') varnane ('value')

Specifies string variables that are held as categorical integers and defines the set of string
values that can be input for the variable.

Thevaluesin the value list are each enclosed in single quote marks () and the list for a
variable is enclosed in parentheses. Specifications for multiple variables may be
separated with a slash (/) for readability.

Within the database, categorical variables are held as integers that are the position of the
string in the value list. For example:

CAT VARS SEX (' MALE' 'FEMALE')
STATE (' AL" "AK"W")

Specifies that the variable SEX is categorical. On input 'MALE' is convertedto a1,
'FEMALE toaZ2.
The variable STATE definition illustrates alist of abbreviations of American states. On

input ‘AL isconvertedto al, 'AK'to a2, etc.

When entering datainto aCAT VARS, the string value is input, not the code. Note the
difference to value labels, where a code is input and a string is associated with the code.

SIR/XS Database

CHARACTER

CHARACTER*n varnane
Specifies variables as character. n may be from 1 to 4094.
Example:

CHARACTER* 40 NAME

61

SIR/XS Database 62

COMPUTE

COVMPUTE vari abl e = expression
Only appliesto batch data input

COVPUTE performs arithmetic or string transformations on common, record or temporary
variables in Batch Data Input as each record is read. If the computed variable has not
been defined, a new database variable is created at the end of the record. Itis
recommended that computed variables are defined with the appropriate command.

Note: covPUTE cannot be specified in a CIR definition. If a COVPUTE refers to a common
variable then it must appear in the record schema where that common variable is
referenced rather than at the CIR level.

Case and Key variables cannot be computed.

SIR/XS Database 63

CONTROL VARS

CONTROL VARS variable

Declaresalist of variables that are Control variables for the TABULATE procedure. These
variables must be numeric and must have either val i d Val ues or Vari abl e Ranges
defined. By default, variables that have Valid Vaues or Value Labels are Control
Variables. All other numeric variables are Observation Variables, that is variables with
continuous values.

SIR/XS Database 64

DATA LIST

DATA LI ST [(num1ines)]
[1ine-no] varname fromcolum [- to-colum] [(type)]
[1ine-no] varlist fromcolum [- to-colum] [(type)]....

Defines the variables and input format for arecord. Y ou can either use the DATA LI ST or
the VARI ABLE LI ST/ NPUT FORMAT to define the record.

The definition consists of the name, batch data input column locations and data type for
each variable. The sequence of the variables determines the order in TOlists and the
sequence of the variables wherever they are referenced, regardiess of the physical order
on the batch data input record.

If the batch data input record requires more than one physical record or line, then the
num-lines defines the number of lines which make up the complete record and the line-no
defines which line each variable is on. When the input record is only one line, omit the
number of lines and line number. The line-no can be omitted for any subsequent variables
on the same physical input record.

The from-column determines the start position of the variable.

The to-column specifies the ending position for variables that are longer than one
column.

Define the data type of each variable asfollows:

A
String.

|
Integer.

Fn
Single precision floating point. On batch data input, n columns at the right of the
input field comprise the decimal component of the number. An explicit decimal
point on input overrides the format specification.

Dn

Double precision floating point. On batch data input, n columns at the right of the
input field comprise the decimal component of the number. An explicit decimal

point on input overrides the format specification.
DATE

SIR/XS

Database 65

Date variable in the given date format. The specification consists of the word
DATE and the date format, all enclosed in parentheses. See date formats for a

compl ete description.

TI ME

Time variable in the given format. The specification consists of the word TI ME
and the time format, all enclosed in parentheses. See time formats for a complete

description.

If the type is omitted, the default is floating point with zero decimal portion.

Example:

DATA LIST (2)

1 1D 1-
POSITION 6 -
STARTDAT 8 -
STARTSAL
DIVISION 21

2 NAME 6 -
GENDER 31
MARSTAT 32
SSN

17 -

33 -

4 (1)
7 (1)
15 (DATE,' MM DDI YY')
20 (F2)
(1)
30 (A
(h)
(1)
43 (A

If avarlist is specified, (that iseither alist of variable namesor alist in the form varname
to varname), multiple variables, all of the same size and type, can be defined. The
columns specified to contain these variables must be evenly divisible by the number of

variablesin thelist.

SIR/XS Database 66

DATE VARS

DATE VARS varnanme ('date_format') varnane ('date_format')

Specifies that previously defined character variables are date integers with a given date
format.

Date formats may be specified directly on the DATA LI ST or | NPUT FORMAT commands.
If using DATE VARS, the variableis specified as a character string on the DATA LI ST or
| NPUT FORMAT commands.

Multiple variablesin the same format can be defined with one format specification;
additional specifications may be separated by slashes for readability.

See date formats for a complete description of date formats.

SIR/XS Database 67

DOCUMENT

DOCUMENT t ext

Specifies that the text following the command is commentary. Thistext is stored within
the database and can be printed using the utility LI ST SCHEMA.

When DOCUMENT is placed within record definition commands, it becomes part of the
definition for that record type.

DOCUNMENT text cannot be partially modified. To update the text, run the command with
new text. The new document text completely replaces the old.

SIR/XS Database

END SCHEMA

END SCHEMA

Specifies the end of the commands for arecord set. If it isnot specified, the end of the
commands, START TASK or END TASK or the start of a new RECORD SCHEMA terminates
definition of the record type. Any other commands are treated as record definition
commands.

68

SIR/XS Database 69

| F

I F (logical-condition) varname = expression;
Only appliesto batch data input

Assigns the result of an expression to avariableif the logical condition istrue. Multiple
variables can be assigned values on a single condition. Variables referenced must be
within this record or must be common vars. If the computed variable has not been
previously defined, it is added to the defined database variables. For example:

| F (JOBCODE = 1) REVDATE = TODAY(0) + 365

Note: | F cannot be specified in a CIR definition. If an | F refers to acommon variable
then it must appear in the record schema where that common variable is referenced rather
than at the CIR level.

SIR/XS Database 70

INPUT FORMAT

I NPUT FORMAT (format specifications)

| NPUT FORMAT is associated with, and immediately follows, the VARI ABLE LI ST
command.

Specify adatatype, size and format for each variable on the VARI ABLE LI ST.

An input file may have multiple lines of data for each database record. Linesin an input
record may be any length up to the length specified on MAX | NPUT COLS. Specify adlash
(/) to indicate the start of the second and subsequent lines of data. The slash can be used
to skip one or more lines of an input record.

Separate each format specification by acomma or a space. If the format specifications
require more than one line, continue the specification on the next line leaving column one
blank.

Specify asingle format and a repetition factor for multiple variables with the same format
or groups of variables with the same format. To repeat aformat, specify the number of
timesto repeat it, followed by either asingle format or a group of formats enclosed in
parentheses. For example:

VARI ABLE LI ST VAROL TO VAR50
| NPUT FORMAT (1012, 20(11,14))

The VARI ABLE LI ST with the TO format defines 50 integer variables named VARO1,
VARO2, ... VAR50.

Thefirst repeating format (1012) defines the first 10 variables that resultsin VAR01 to
VARL10 as two digit integers.

The repeating group of formats, 20(11,14), defines 20 sets of two alternate variables. This
resultsin VARL1, VARL13 and subsequent odd numbered variables as one digit integers
(171) and VAR12, VAR14 and subsequent even numbered variables as four digit integers

(14).

Enclose the whole format specification in parentheses. The individual format
specifications are as follows:

Fw.d or Dw.d
A floating point variable. "F" is single precision, "D" is double precision. On
batch datainput the variable occupies "w" positions on the input file with the
rightmost "d" positions as the decimal component. A decimal component must be
specified; zero isvalid. If Batch Data Input is not used the decimal component has

SIR/XS

Aw

nX

Tn

DATE '

Database 71

no effect. Specifying a physical decimal point on input overrides any
specification. For example:

VARI ABLE LI ST TEMP SALARY

| NPUT FORMAT (F5.3, D8.2)

An integer variable occupying "w" positions on batch data input. For example:

VARI ABLE LI ST STATUS, ACE
NPUT FORVAT (11, 12)

A character (alphanumeric) variable occupying "w" positions. For example:

VARI ABLE LI ST NAME ADDRESS
I NPUT FORVAT (A25 , A40)

A positioning operator for Batch Data Input utilities. It skips"n" columns of an
input data record. For example:

VARI ABLE LI ST NAME ADDRESS
| NPUT FORVAT (A25 , 4X , A40)

This defines two al phanumeric variables. NAME occupies positions 1 through 25 of
the input record. 4X skips the next 4 columns (after NAVE). ADDRESS is 40
characters long beginning in position 30.

A positioning operator for Batch Data Input utilities. It tabs to a specific column
"n". The next variable beginsin column "n". The"T" specification can be used to
move forward or backward over the current input line and can be used to reread a
particular field. For example

VARI ABLE LI ST NAME ADDRESS PHONE AREACODE
| NPUT FORVAT (T3, A20, T25, A40, T72, A12, T72, A3)

This defines four string variables using the T operator to locate the beginning of
each variable. Note that the variables PHONE and AREACODE both begin in column

72.
date format'

Describes an input character variable as a date according to the specified date
format. See date formats for a compl ete description of date formats.

TIME time format'

Describes an input character variable as a time according to the specified time
format. See time formats for a complete description of time formats. For example:

VARI ABLE LI ST NAME BI RTHDAY BI RTHTI M
FORVAT (A25, DATE 'WM DD/ YYYY', TIME 'HH MM)

This example defines three variables for arecord type. NAMVE isin the first 25
positions; BI RTHDAY isin the next ten positions and is a date variable; BI RTTI Mis
atime variable. Thefirst two characters are Hours (24 hour clock), the third
character is a separator and the last two are minutes.

SIR/XS Database 72

INTEGER

| NTEGCER*n varname

Specifies variables as integer that can hold positive or negative numbers. n may be 1, 2 or
4 and refersto the internal storage size in bytes. 1 byte holds numbers up to 123; 2 bytes
holds numbers up to 32,763; 4 bytes holds numbers up to 2,147,438,643.

If thisis subsequently defined as a SCALED VAR, the internal integer must be able to store
the significant digits needed for the number. For exampleif Scale (-2) is specified, the
largest number that can be held in 1*4 is 21,474,386.43

Example:
| NTEGER*4 SALES VARL to VAR5

SIR/XS Database 73

KEY FIELDS

KEY FIELD] S] varnane [(A| D/ 1)]

Defines the keys for the record. Any record type that has more than one single physical
record per case on a case structured database and every record type with more than one
single physical record in a casel ess database must have a key.

TheKEY FI ELD command must be before the DATA LI ST or VARI ABLE LI ST.

The key fields must appear in the DATA LI ST or VARI ABLE LI ST

Key field variables cannot be created or modified by COVPUTE, | F or RECODE commands.
The sort specification applies to each variable individually.

(A) specifies ascending sort order - thisis the default.

(D) specifies descending sort order.

(1) specifiesthisisan Auto Increment key. When records with an auto increment
key are created, the value of the specified key istested. If the creation process sets
this key value to zero, then the system automatically finds the last occurrence of
the record type in the case and takes the value from that record, increments this by
1 and uses this value as the key. If arecord of this type does not exist, the value 1
isused asthe key. Auto increment keys must be integer variables. If akey isan
auto increment key, it must be the final key in arecord type.

Example:

CASE I D I D

RECORD SCHEMA 3 REVI EW

KEY FI ELDS POSI TI ON REVDATE (D)

VARI ABLE LI ST | D PCSITI ON REVDATE RATI NG NEWSAL | DSUPER

I NPUT FORVAT (14 12 DATE(' VWM DDI YY') 12 F8. 2 | 4)

SIR/XS Database 74

MAX REC COUNT

MAX REC COUNT n

For a case structured database this command specifies the maximum occurrences of a
record type for any one case in the database. If avalueis not specified for arecord type,
the MAX REC COUNT from the database specification is used. The number specified for a
record type may be larger or smaller than specified at the database level. The default
valueis 100.

Counts are kept for each record typein acasein the CIR for that case. They are stored as
1, 2, or 4 byte integers depending on the count specified. A count of less than 124 takes 1
byte, less than 32,763 takes 2, and larger numbers take 4. If MAX REC COUNT is modified
after data for that record type has been loaded, and the new number takes the same size
integer, restructuring is unnecessary. If alarger size integer is needed, the database must
be restructured.

For caseless databases, MAX REC COUNT specifies the maximum number of records of
this type that the database can hold. The default value is 1,023,000. This limit cannot be
exceeded but can be changed without a database restructure. There is no overhead with
specifying alarge value, the only constraint is that total number of recordsis a number
that can be stored in one integer. The total number of records allowed is 2,147,483,648.

SIR/XS Database 75

MISSING VALUES

M SSI NG VALUES var nanme (valuel [value2 [,value3]])
varlist (valuel [,value2 [,value3]])

Specifies up to three values that are missing values for the variable(s). Missing values are
excluded from statistical procedures and functions. When the variable is input or
modified, and one of the specified valuesisinput, the appropriate missing value is set.

The value can be a numeric constant, a string constant, or the keyword BLANK. |If BLANK
is specified as amissing value for a numeric variable, then a blank field on input results
in amissing value, otherwise a blank numeric field is trandlated to zero.

Any variable can be missing and has a system missing value. When arecord is written to
the database, avariable is assigned the system missing value when it cannot be assigned a
legal value or a specified missing value. This happens when:

no value has been assigned to a given variable;

it is set equal to another variable containing missing values;

an assigned value does not meet the schema specification (not avalid value,
outside var ranges, too large to store in an integer).

Specify any missing values for string, categorical, date and time variables as strings. If
the variable is longer than the missing value, then the variableis set to missing values if
the leftmost characters match the specified missing value.

If astring isread into adate or time, that string isfirst checked to seeif it isamissing
value string for the target variable. If it isthen amissing value is stored. Any string can
be defined as missing - it need not be avalid date. If the missing valueisavalid date
string then assigning that string to the variable naturally resultsin a missing being stored.
However assigning the numeric date value corresponding to the missing string stores a
valid date.

Specify any missing values for scaled variables as the unscaled value with the decimal
point specified where necessary.

Example:

M SSI NG VALUES | D PGSl TI ON DI VI SI ON (BLANK)

SIR/XS

Database

STARTDAT (' 01/01/01")

76

SIR/XS Database 77

OBSERVATION VARS

OBSERVATI ON VARS varnane

Specifies variables that the TABULATE procedure uses as observation variables. An
observation variable is one that is aggregated rather than treated as a control. By defaullt,
variables that have VALI D VALUES or VALUE LABELS are Control Vari abl es.
OBSERVATI ON VARS makes these observation variables.

SIR/XS Database

REAL

REAL*4 varnane
REAL*8 varnane

Specifies variablesasreal. n may be 4 or 8.

Example:
REAL*8 SALARY

78

SIR/XS Database 79

REC SECURITY

REC SECURI TY rlevel , w evel

Defines the default minimum security levels required for reading (rlevel), or writing
(wlevel), any variable in the record. The read and write levels are integers between 0
(zero), the lowest and 30, the highest.

This command sets the minimum VAR SECURI TY for each variable in the record type.
Individual variables within arecord type can be assigned higher security levels using the
VAR SECURI TY command.

The default is O level security.

Example:
REC SECURI TY 10, 30

The variablesin this record type can be read by anyone logged in with aread security
password that has level 10 security or higher. Write accessis restricted to personnel
logged in with awrite security password that has level 30 security.

SIR/XS Database 80

RECODE

RECODE vari abl e specification (recode specification)
Only appliesto batch data input

RECODE changes the values of a string or numeric variable into new values. A variable can
be recoded into itself or the content of the original variable can be left unchanged and a
value assigned to another variable.

The RECODE has two parts the Variable specification and the Recode specification.

Variable Specification
The variable specification takes four forms:

variable (recode specification) - recodes avariable into itself.
varlist (recode specification) - recodes alist of variables into themselves.

Old values not specified in the recode specification are not affected when
recoding variables into themselves.

newvariable = oldvariable (recode specification) - recodes a variable into a new
variable.

newvarlist = oldvarlist (recode specification) - recodes alist of variablesinto new
variables.

Old numeric variables can be recoded into new string variables, or vice versa.
When recoding into new variables, if the data types of an old variable and new
variable are the same, unrecoded old values are stored unchanged in the new
variable after data editing checks are performed. If the data types of the old and
new variable are different, unrecoded old values are stored as missing valuesin
the new variable.

Recode Specification

A recode specification follows the variable specification and consists of a number of
clauses, one per new value to assign. Enclose each clause in parentheses. These can take
anumber of forms:

(oldvalue = newvalue) - recodes asingle value to anew value.

(oldvaludlist = newvalue) - recodes several valuesto a single new value.
(oldvaluel THRU oldvalue2 = newvalue) - recodes arange of valuesto asingle
new value. The keyword LO can be used as oldvaluel. This selects the lowest

SIR/XS Database 81

possible value as the start of the range. The keyword H can be used as oldvalue2.
This selects the highest possible value as the end of the range.

(M SSI NG = newvalue) - Specifiesthat al missing values are recoded.
(MSSINGO | 1| 2| 3) =newvalue) - Specifiesthat the first, second or third
missing value is recoded. Zero (0) recodes undefined values.

(UNDEFI NED = newvalue) - Specifiesthat undefined is recoded. Thisisthe same
asM SSING (0).

(BLANK = newvalue) - Specifiesthat BLANK values are recoded. This can only be
specified for numeric variables that have missing values specified as blank.

(ELSE = newvalue) - Specifies avalue used to recode if the variable is not
recoded in any other category.

Note the sequence of the variables in the variable specification and the sequence of
values in the recode specification:

The variable specification to recode into a new variable, has the new variable on
the left of the equal (=) sign and the old variable on the right.

The recode specification has the old value on the left of the equal sign (=) and the
new value on the right. viz:

Newvari able = A dvariable (O dval ue = Newal ue)
Recode Examples:
RECODE A (1,3,5,7,9=1)(2, 4, 6, 8=2)
ThissetsAto 1ifitisodd, 2 if it iseven, and leaves zero and missing values asis.
RECODE B = A (1,3,5,7,9=1)(2, 4, 6, 8=2)
ThissetsBto1if Aisodd, 2if A iseven and zero if A iszero. If A ismissing, B is set to
the value of A (whether thisisamissing value for B or not). A is unchanged.
RECODE B = A (1,3,5,7,9=0)(2,4,6,8="E)
Thissets B (astring variable) to 'O’ for odd values of A, 'E' for even values of A and to

thevalue of A if A ismissing or has any other values.

RECCDE STATUS = AGE (LO THRU 18
(22 THRU 65

1) (19 THRU 21 = 2)
3) (66 THRU H =4)

This sets STATUS depending on the AGE of the subject. STATUS is 1 for ages 18 or under, 2
for ages 19 thru 21, 3 for 22 to 65 and 4 for over 65.

SIR/XS Database 82

RECODE STATUS1 to STATUS10 = TEST1 to TEST10(1 THRU 49=1)
(50 thru 99=2)

This sets up ten status fields depending on the result of 10 tests.
Note: RECODE cannot be specified in a CIR definition. If a RECODE refers to acommon

variable then it must appear in the record schema where that common variableis
referenced rather than at the CIR level.

SIR/XS Database 83

RECORD SCHEMA

RECORD SCHEMA rectype [, nane] '|abel’

[LOCK]
[NOOLD]

[NONEW
ThisisaDBA only command.

Begins the set of commands to define a database record. This defines the name and
number of the record and is a required command to define arecord type. Nameis
optional for existing record types; if specified and different to the existing name, the
record name is changed. The label is optional. Specify up to 78 characters enclosed in
quotes. e.g.

RECORD SCHEMA 3 OCCUP ' Position Details’
LOCK

Specifies that the record type can be locked if the record redefinition requiresit.
Schema modifications are not done if the LOCK keyword is omitted and a lock
condition occurs. If the record type islocked, an UNLOAD / RELOAD is required.
Lock conditions occur when:

thelist of key fields is changed

any of the key variables are modified

arecord is defined that is larger than the current data block
aset of keysisdefined that islarger than the current key size

If the LOCK parameter is omitted and changes are specified that would cause a
locked record type, awarning is issued and the schema changes do not take place.
This means that a restructure is only done when expected.

It isgood practice not to specify lock on the record schema statements except
when the change is expected to lock the record and you are prepared to do a
restructure.

NOOLD

Specifies that existing variables cannot be modified.
NONEW

Specifies that no new variables can be created.
LOCK

SIR/XS Database 84

Specifies that the record type may be locked if the changes to the record definition
would need a database restructure. Most changes to a record definition do not
require arestructure.

A restructure may be required when modifying the key structure definition of a
record type that already has data loaded into it. |

SIR/XS Database 85

REJECT REC IF

REJECT REC I F (Il ogical condition)

Only appliesto batch data input

Defines criteriafor rejection of records during Batch Data Input. When the condition is
true, the record is rejected and not entered into the database. Multiple REJECT REC | F
commands can be specified.

The alternative method of specifying consistency criteriais with ACCEPT REC | F.

The record must pass all specified tests before being added to the database.

Note: REJECT RECORD | F cannot be specified in a CIR definition. If aREJECT RECORD

| F refersto acommon variable then it must appear in the record schema where that
common variable is referenced rather than at the CIR level.

SIR/XS Database 86

SCALED VARS

SCALED VARS var nane (power)
Specifies that the previoudly defined integer variables are scaled. SCALED VARS are stored

in the database as integers. This saves space and can be more accurate for fixed format
numbers since it avoids the inherent inaccuracies of floating point representation.

PONER is a positive or negative number representing the power of ten used to scale the
values.

The full, unscaled number, including the decimal point where necessary, is specified
whenever the number isinput by the user.

The scaled number is expected on batch data input.

Examples:
DATA LI ST VARL 1-3 (1)
VAR2 4-11 (1)
SCALED VARS VARL (6)
VAR2 (-2)

This declares two variables as scaled variables. When used in a program:

COVPUTE VAR2 = 345. 67 | (34567 is stored)
COVPUTE VARL = 1000000 |(1 is stored)
COWUTE VAR3 = VARL * 3

WRI TE VAR3 | (3000000 is printed)

If abatch datainput record has 123 in positions 1 to 3 and 00001234 in positions 4 to 11,
then VARL equates to 123,000,000 and VAR2 to 12.34.

SIR/XS Database 87

STANDARD SCHEMA

The schema command STANDARD SCHEMA iS Similar to aRECORD SCHEMA command in
that it signifiesthe start of a set of variable definitions. The set is ended with an END
SCHEMA command. Variables are defined using aDATA LI ST command together with any
of the normal variable definition commands such asM SSI NG VALUES, VALUE LABELS or
VAR RANGES. e.g.

STANDARD SCHEMA

DATA LI ST
PCSI TI ON * (11)
SALARY * (12)
SALDATE *
(DATE' MM DDI YY')
VAR RANGES PCSI TI ON (1 18)
SALARY (600 9000)
VAR SECURI TY SALARY (30, 30)
M SSI NG VALUES POSI Tl ON TO
SALDATE (BLANK)
VALUE LABELS PCSI TI ON (1)'derk'
(2)' Secretary’
VAR LABEL PCSI TI ON "Position'
SALARY ' Sal ary'
SALDATE "Date Sal ary Set'
END SCHENVA

Once avariable has been defined in the standard schema it can be referenced in any
normal record definition with the STANDARD VARS command. The benefit of thisis that
coding does not have to be repeated for the variable when it occurs in multiple records.
Further, if the standard definition details are updated (such as value labels), the change is
reflected in all records referencing the standard.

Note that the extended batch data input processing definitions of ACCEPT REC,REJECT
REC,COMPUTE,| F and RECODE are not specific to a variable and thus cannot be specified as
standard and copied in.

SIR/XS Database 88

STANDARD VARS

STANDARD VARS var name [AS stdvarname] The STANDARD VARS command names a
variable or list of variables that have previously been defined as part of this record (on the
DATA LI ST). Thisincludes all the standard definitions for the variable as part of this
record without the need to respecify these definitions. If these definitions are changed for
the standard variable, all derived record definitions are updated.

Certain definitions can be supplied locally. The VAR SECURI TY, VAR LABEL and VAR DOC
can be specific to the variable in this record type and override any specified as standard.
All other definitions such asM SSI NG VALUES, VALUE LABELS etc, are taken from the
standard definition.

Optionally the record variable can have one name and can refer to a standard variable
with the As keyword. e.g.

RECORD SCHEMA 1 EMPLOYEE

DATA LI ST
ID 1 - 4 (12)
NANVE 6 - 30 (A25)
GENDER 31 (11)
MARSTAT 32 (11)
SSN 33 - 43 (Al1l)
Bl RTHDAY 44 - 51

(DATE' MM DDI YY')
EDUC 52 (11)
NDEPENDS 53 - 54 (11)
CURRPCS 55 - 56 (11)

STANDARD VARS CURRPCS AS PCSI TI ON

If an existing variable is modified to be a standard variable, any local definitions are
overwritten. Submitting local definitions for components of the schemathat are derived
from the standard is treated as an error. To change avariable from a standard definition to
be anormally defined variable is not possible; delete the standard variable and add a new
variable (with the same name if necessary).

SIR/XS Database
TIME VARS
TIME VARS varnane (tinme format) varnanme (tinme format)

Declares string variables as times. See time formats for a compl ete description of time
formats.

Example:

TIME VARS ELAPSED (' HH: MM)
MNL to MNLO (' MM SS')

89

SIR/XS Database 90

VALID VALUES

VALI D VALUES varnane (val ue,)
varlist (value,)

Defines the set of valid values for avariable. Valid values can only be specified for
numeric variables. (Use the CAT VARS command to create alist of valid values for string
variables.)

The specified valid values are checked whenever avariable isinput or modified.

If avalueisassigned to the variable that isnot in the VALI D VALUES list or in the
M SSI NG VALUES list, the value is not stored and the variable is set to undefined.

The varlist may be a specific list of variables or may be in the format VARA t o VARX that
specifies all the numeric variables between the named variables (listed in sequential
order) in the record schema.

Example:

VALI D VALUES JOBCODE (1,3, 4,5)
TESTL1 to TEST9 (1,2, 3,4, 5,9)
TYPE KI ND REASON (1, 2,3, 9)

SIR/XS Database 91

VALUE LABELS

VALUE LABELS varnanel (valuel) 'l abel 1’
(val ue2) 'Iabel 2'
varli st (val uel) 'l abel 1

Specifies labels for particular values of avariable.

Enclose each value for a variable in parentheses. The value may be numeric or character
depending on the variable type. Enclose character strings in quotes. The keywords
UNDEFI NED and BLANK can be used as a value to assign labels to the system missing value
(undefined) or blank missing values.

Thelabel isup to 78 characters long. It is good practice to enclose the label in quotes as
thisisacharacter string. If the label contains slashes or brackets then the label must be
enclosed in quotes.

The varlist may be a specific list of variables or may be in the format VARA t o VARX that
specifies all the numeric variables between the named variables (listed in sequential
order) in the record schema.

Example:
VALUE LABELS GENDER (1) 'Male'
(2) 'Femal e
MARRI ED ("Y') 'Married

("N) "Not Married
TEST1 to TEST9 (1) 'Passed
(2) 'Failed

SIR/XS Database 92

VARIABLE LIST

VARI ABLE LI ST varnanel varnane2

Names the variables on the input record for a given record type. Together with the | NPUT
FORMAT, this describes the input record. There is a one-to-one correspondence between
the variables on the VARI ABLE LI ST and the format specifications on the | NPUT FORNVAT.

The sequence of the variables on the VARI ABLE LI ST determines the order in TOlists and
the sequence of the variables wherever they are referenced, regardless of the physical
order on the batch data input record.

Separate variable names by spaces or commas. To continue the list on multiple lines,
leave column one blank on each subsequent line.

Example:

VARI ABLE LI ST | D JOBCODE REVDATE SALARY

SIR/XS Database 93

VAR DOC

VAR DOC var name text
text line 2
text line

Specifies documentation for asingle variable.

The documentation can extend over multiple lines, each up to 254 characters. There are
no restrictions on characters and the format of lines is maintained. Each continuation line
must |eave the first column blank. Note that because documentation can contain any
characters, the command must be specified separately for each variable - it cannot be
continued for multiple variables.

Example:

VAR DCC ID This is the main identification for participants in the
st udy.

The code is in two parts separated by slash '/' - the first part
identifies the institution, the second the individual.

VAR DOC DOB ..ottt e

SIR/XS

VAR LABEL

VAR LABEL

var nanel ' abel’
varnane2 '| abel’

Database 94

Specifiesalabel for variables. The label isastring up to 78 characters. It is good practice
to enclose the string in quotes. Thisis used by SIR/XS instead of the variable name
wherever it is appropriate, for example, on report headings, screen layouts, etc.

Example:

VAR LABEL ID
PCSI TI ON
STARTDAT
STARTSAL
DI VI SI ON

"ldentification Nunber'
'Position Level'
"Starting date'
"Starting salary'

"Di vi si on'

In this example, "Starting date” is printed or displayed instead of "STARTDAT" and
"Starting salary" instead of "STARTSAL".

SIR/XS Database 95

VAR RANGES

VAR RANGES varnanme (mn, max)

Specifies the range of values for avariable. The ranges defined for a variable are checked
whenever that variable isinput or modified. Input values outside the specified range are
set to undefined.

Example:

VAR RANGES POCSITION (1 18)
STARTSAL (10000 90000)
DIVISION (1 3)
STARTDAT (' 01/01/00', '01/01/06'

If both VAR RANGES and VALI D VALUES are specified, both specifications apply. Only
values consistent with both specifications are allowed into the database. Normally,
specify only one of these.

SIR/XS Database 96

VAR SECURITY

VAR SECURI TY varnane (rlevel, wWevel)
Defines security level values for reading and writing individual variables.

Rlevel and wlevel are integers between 0 (zero) the lowest, to 30 the highest. The VAR
SECURI TY assigned to an individual variable must be higher than the security level
assigned to the record through REC SECURI TY. (Assigning a lower level is possible but
has no effect.)

Example:

RECORD SCHEMA
REC SECURITY 0 5

VAi? SECURI TY SALARY (6 10)

In this example, anyone can read the data in this record type, but only userslogged in
with passwords at level 5 or above for write security can write data. The variable SALARY
IS made more secure, since it requires that read accessis at level 6 or above and write
security at least at level 10.

SIR/XS Database 97

CREATE DBINDEX

CREATE [UNI QUE] DBI NDEX i ndex_name
ON [dat abase.] recnane
(var_name [ASC| DESC] [UPPER] [, ...])

CREATE DBI NDEX creates the index structure. If the command is part of a schema
definition, it must follow the complete definition for the record type referenced. There
may be multiple indexes for a given record type.

If the record type already contains data, the index is automatically built from the values
of any existing records. As records are added, deleted or modified through any of the
SIR/XS modules including Visual PQL, batch datainput, Forms and SQL, the index is
automatically maintained. Visual PQL and PQL Forms are the only modules that process
database records using secondary indexes.

Indexes are maintained across cases in a case-structured database and, if arecord is
retrieved using a secondary index, the appropriate case is automatically found. Index
variables can be any record variable plus the case id. Common vars cannot be used in an
index.

Indexes are rebuilt whenever the database is recovered i.e. from an Import or a Reload.
The backups contain only the index definition not the index data.

UNI QUE
Specifies the index can only contain unique values. If data already exists and a
non-unique value is found, the index cannot be built. If an attempt is made to add
or modify a data record such that a non-unique value would result, the update is
rejected.

i ndex_nane
The index name must follow the rules for SIR/XS names and must be unique

within the database.
ON recname

Specify the record name or number, qualified by a database name if thisis not the

default database. The database must be connected.
var _nane

Specify the name(s) of the variable(s) used for thisindex. These must be variables
in the named record (not common vars except for the caseid).

SIR/XS Database 98

Specify the keyword DESC to maintain the index in descending sequence of the
variable.

Specify the keyword UPPER to use an uppercase representation of a character
variable in the index.

DROP DBINDEX

DROP DBI NDEX i ndex_name ON [dat abase.]recnane | ALL

DROP DBI NDEX deletes either a specific index or al indexes for a database.

SIR/XS Database 99

SIR SCHEMA LIST

SIR SCHEMA LI ST
[FILENAME= 'fileid']
[DETAI LED| LABELS| REGULAR]
[LONG SHORT]
[STRUCTURED]
[CR
[RECTYPES={recnane|recnun} [(variable list)]...]

Produces alisting of the current data definitions. The FI LENAVE specifies the output
file. If thisis omitted, the output is displayed in the scrolled output window.

By default, all record types in the database are listed. By default, all variablesin the
record type are listed. Each variable has alabel that describes the variable and its position
within the record. Positions are shown as Cnnn, Rnnn, or Tnnn where C stands for
common variable, R for record variable and T for temporary variable. The nnn denotes
the position of the variable within the record.

The exact format of the report depends on the options specified:

DETAI LED lists all the information in the REGULAR listing, plus the value labels for
each variable.

LABELS listsjust the variables and the variable label. Thisis the shortest form of
the report.

REGULAR lists the following information for each variable:

variable name and |abel

variable type and size

read and write security levels

position and format on the input record
range

valid values

missing value designators

O O 0O o0 o o o

Thisisthe default.

SHORT specifies that just the variable label (up to 78 characters) is printed and no
headings or document text.

SIR/XS Database 100

LONG specifieslabels and all document text. Thisisthe default.

STRUCTURED listsjust case id, key fields and document text for each record type.
CI R listsal variablein the CIR. If CIR is specified, only the CIR islisted.
Specify individual RECTYPES if these are required.

RECTYPES specifies the name or number of individual record typesto list and
individual variablesto list for each record type.

Examples: To list the name and labels of all the variablesin record type 1 and the
specified variablesin record 3.

SIR SCHEMA LI ST LABELS
RECTYPES = 1 , 3 (POCSI TI ON REVDATE RATI NG

To list al the variablesin all record types without value labels.

SIR SCHEMA LI ST

Example Output:

1.1 LI ST SCHEMA LONG 07/09/05 10:05: 57
*** RECORD 1 (EMPLOYEE) DEFI NI TION ***
Record Type 1 contains denographic information.
There is one record per enployee. The record contains
current position level and salary and the date
on which the salary was | ast changed.

MAXI MUM NUMBER OF RECORDS/ CASE 1

NUMBER CF THIS TYPE IN FI LE 20

LI NES I N EACH | NPUT RECORD 1

ENTRY USE COUNT 1

CASE | DENTI FI ER: I D (A

*** | NPUT VARI ABLE DEFI NI TI ONS ***
C1. I D, Identification Nunber
INPUT ON LINE: 1
COUWS: 1 - 4
FORVAT: 14
DATA TYPE: | *2
M SSI NG VALUE: (BLANK)

RL. NAVE, Nare
INPUT ON LINE 1
COLUWNS: 6 - 30
FORMAT: A25
DATA TYPE: A*27
M SSI NG VALUE: (BLANK)

R2. GENDER, CGender
INPUT ON LINE: 1

SIR/XS

COLUWN:
FORVAT:

DATA TYPE:
RANGE:

M SSI NG VALUE:
VALUE LABELS:

Database

31

11

I*1

1/2

(BLANK)

(1) Male
(2) Femal e

101

SIR/XS Database 102

WRITE SCHEMA

WRI TE SCHENVA
[FI LENAMVE= fil eid]
[RECTYPES= rectype list]
[CR
[COvmvON]
[FORMS]
[BOOLEANS]
[COWPUTES]
[MASKPW
[NOVAXKEY]
[NOTO
[NOTXS]
[PASSVORD)
[PQLFORM
[NOUPDATE]
[SUBROUTI NE]
[SECURI TY]
[VARLI ST]
[VARSEQ

Writes atext file containing the schema definition. This might be used to recreate the
database without data or procedures or, if it is the schemafor a single record type, as the
starting point to update that record definition. If mass changes are required to a database
definition, it is sometimes easier to create a schema file and use a text editor to do global
changes rather than modifying individual records through menus.

With the PQLFORMS parameter, this utility creates a default PQLForm.
With the FORVS parameter, this utility creates a default old Form.

If no record types are specified, the database definition and all record definitions are
written excluding passwords.

FI LENAME
Specifies the output file. If thisis omitted, the output is displayed in the scrolled

output window.
RECTYPES

Specifies the record types selected to generate arecord or form definition.

SIR/XS Database 103

CIR
Specifiesthat arecord definition iswritten for the CIR. Thisis done anyway
when all record types are selected, so thisis only needed when selecting record
types. If just C Ris specified, then just the CIR iswritten.

The record definition for the CIR includes definitions for all the common
variables and so these do not need to be repeated on subsequent record types that
include a common variable. Specify cowoN if commands are to be produced for

each common variable on every record where it occurs.
FORMS

Creates adefault old style form. Unless otherwise specified, the CIR (Common
Information Record) is not included in the form definition. Specify the keyword
BOOLEANS to use any ACCEPT REC | F or REJECT REC | F specificationsto
generate appropriate commands in the output form. Specify the keyword
COMPUTES to use any COVMPUTE and | F commands to generate appropriate

commands in the output form.
MASKPW

Specifies that an asterisk (*) iswritten instead of passwords.
NOVAXKEY

Suppresses the writing of a specific MAX KEY command to the output file.
Specify this option whenever schema modifications are being made to allow the
system to recal cul ate the maximum key size unless a larger key isrequired for

future expansion.
NOTO

Where contiguous record variables share the same specification, a shorthand
specification is written using the keyword TO. e.g.

M SSI NG VALUES NAME
TO NDEPENDS (BLANK)

Specify the NOTO keyword to suppress this shorthand and to list all variables
individually.

NOTXS
Specifies that the schema is as compatible as possible for use by earlier versions
of SIR. New features such as STANDARD VARS and RECORD SCHEMA 0 are not

written and slashes are generated as separators.
PASSWORD

Specifies that the database password is written to the file.

PQLFor ns
Creates a default PQLForm. Unless otherwise specified, the CIR (Common
Information Record) is not included in the PQL Form definition. Specify the
keyword NOUPDATE for aread-only PQL Form. Specify the keyword SUBROUTI NE

for a PQLForm that compiles and saves as a sub-routine.
SECURI TY

Specifies that the database security level passwords are written to thefile.
VARLI ST

The standard style of schema output isto write variable names and input
definitions asaDATA LI ST. VARLI ST specifies that variable names are written as a
VARI ABLE LI ST command followed by input definitions asan | NPUT FORVAT
command. e.g.

SIR/XS Database 104

VARI ABLE LI ST | D NAME GENDER MARSTAT . ..
| NPUT FORMAT (14,76, A25,11,11, ...
VARSEQ

The standard style of schema output isto write each definition command once and
to list variables within the command. The VARSEQ keyword specifies that the
output isin variable sequence and that all commands that apply to asingle
variable are grouped together. e.g.

VAR LABEL NAVE " Name'

M SSI NG VALUES NAME (BLANK)

VAR LABEL GENDER ' Gender’

VAR RANGES GENDER (1 2)

M SSI NG VALUES GENDER (BLANK)

VALUE LABELS GENDER (1) Mal e
(2)' Fenal €'

VAR LABEL MARSTAT "Marital status'

VAR RANGES MARSTAT (12

M SSI NG VALUES MARSTAT (BLANK)

VALUE LABELS MARSTAT (1)" Married'

(2)' Not married
Resubmitting Whole Schema

If you specify aDATA LI ST for arecord schemathat is already defined, then all
existing definitions are ignored and the record is defined according to the new
schema. Otherwise, RECORD SCHEMA modifies the definition. Modifications
include labels and codes. Y ou can add new variables and delete existing variables.
Y ou can modify avariable's datatype, external format or position for batch data
input.

When modifying data types for variables that already have data stored in the
database, the data must be reformatted. Be careful if modifying a variable's data
type. The following table indicates the result of changing data types.

T - Transfer value To

C - Convert to new type

X - Convert to numeric Cat

if stringisavalid String Date Time Integer |Redl

number Var

U - Convert to undefined

From String T c Cc C X X
Catvar C T U U [T C
Date C u T U T C

C u u [T T C

Time

SIR/XS Database 105

Integer C T T T T C
Redl C c Cc C [C T

When transferring values, ranges, missing values, valid values and all schema
definitions are checked and appropriately handled. Strings are truncated if they
cannot fit in the new definition. Floating point numbers are truncated if they are
converted to unscaled integers.

SIR/XS

Database 106

Dynamic Restructuring

Some changes to the schema affect the way existing data is treated. These
changes include changes to the size or type of variables, additions or deletions of
variables. This necessitates a restructure of existing data records that is done
dynamically wherever possible. All changes except changes to the keyfields are
dynamically restructured. Other changes such as changes in variable labels, value
labels and security do not affect data storage at all.

Only changes that affect the index require the restructuring of the entire database.
Dynamic restructuring means that the restructuring takes place as the datais used.
Once the schema modification is made, the datais always seen as it is currently
defined. Data that was stored under the old format is transformed into the new
format every timethat it isread. The record is physically restructured only when a
write operation is performed. Thereis asmall overhead involved in restructuring
records dynamically each time they are read. If a series of changes had been made
asimple VisualPQL program that reads and writes every record of that type,
forces a physical restructure. For example:

RETRI EVAL UPDATE
PROCESS RECCRD enpl oyee
COVPUTE nane = nane

. END PROCESS REC

END RETRI EVAL

When arecord schemais changed, internal tables are saved, indicating what
changes have occurred and at what update levels. When a data record is accessed
for arecord type that has been changed, transformations are applied to bring it up
to the current schemalevel. If the record is rewritten to the database, the
restructured version is made permanent.

SIR/XS

Database 107

Database Restructure

Changes that affect the index require the restructuring of the entire database. This
occursif keys are redefined, a new record is defined with akey length greater
than MAX KEY SI ZE or the overall database constraints are respecified. Such a
change does not take effect unless the LOCK parameter is specified on the record
schema. Thisis because once a change has been made, the record is locked and
the database must be restructured. The absence of the LOCK parameter prevents
this happening unexpectedly.

A database restructure is done in steps;

make the schema modification;

run the UNLOAD utility to copy the database to an unload file;
delete the database using the PURGE SI R FI LE utility;
reload the database with the RELQAD utility.

The database restructuring that takes place in an unload/reload restructures the
datadictionary, the index and al of the data.

SIR/XS Database 108

DELETE SCHEMA

DELETE SCHEMA n

Deletes the Record Schema'n’ from the database definition. DELETE SCHEMA only
operates if there are no records for this record type. Thisisa DBA security level
command.

When defining and redefining a record type, it is sometimes simpler to DELETE
SCHEMA and redefine it through a complete new RECORD SCHEMA than to modify it
over and over again.

When defining and testing a new database, delete all of the test data for arecord
type prior to deleting the schema. The following simple Visua PQL program does
this.

RETRI EVAL UPDATE
PROCESS REC n
DELETE REC

END PROCESS REC
END RETRI EVAL

SIR/XS

Database 109

Batch Data I nput Utilities

There are five batch data input utilities that provide a quick and efficient way to
add or update data in the database from external text files.

The normal way to run these interactively is from the Data - File Input menu.
These can also be run as commands. The batch datainput utilities are :

ADD REC that adds new recordsif they do not exist;

EVI CT REC that deletes existing records;

REPLACE REC that replaces existing records;

UPDATE REC that replaces selected variables on existing records,
| NPUT DATA that adds or replaces records.

The batch data input utilities use any COVPUTE,l F,RECODE,ACCEPT Or REJECT
RECORD | F clauses defined in the schema for a given record type. While you can
use the utilities to input data directly into the CIR (record type zero), these clauses
can only be specified at the normal record level even if they refer to common
variables.

The FI LE DUWP utility writes data from a database to atext filein aformat that
can be used by the data input utilities.

TheFI LE LI ST utility writes areport showing the data from a database. Naturally
this can be fairly voluminous.

Y ou can aso display and edit data through the SIR/XS SPREADSHEET uitility that
selects a set of data, displaysit in afamiliar spreadsheet style manner and allows
you to update the data if necessary.

SIR/XS

Database 110

Batch Data I nput Specifications

The utilities all have avery similar specification.

ADD REC, READ | NPUT DATA and REPLACE REC have identical specifications.
EVI CT REC has fewer options plus one particular keyword.

UPDATE REC has all the standard options plus four additional parameters.

They all have the same possible five files:

Input data

Contains the input data. The format of the datafile is specified in the description
of the record schema. A file in thisformat can be produced from an existing
database by the SI R FI LE DUMP utility or by the VisualPQL procedure WRI TE
RECORDS.

If variables on the record schema do not have input/output columns specified,
these utilities automatically assign default columns at the end of any manually
specified columns. If theinput fileis produced by SI R FI LE DUMP, this allows
database maintenance without having to assign columns manually. If you are
processing a specific input file and want only to process variables with assigned
input/output columns, the NOAUTO keyword suppresses this automatic assignment.
If the cSv keyword is specified, then the input file isin Comma Separated
Variable (CSV) format. Theinput fileisatext file with values for each record in a
valid CSV format. The fields must be in the correct sequence that matches the
sequence of fields on the database record. A file may either contain records for a
single record type, in which case the record type is specified on the utility
command or may contain multiple record types, in which case the first field on
each input record is the record type.

A fileinthisformat can be produced from an existing database by the SI R FI LE
DUMP utility with the csv keyword or by the VisualPQL procedure CSV SAVE

FI LE.

Error Listing

A report of any errors.

Error Records

A copy of any data records with errorsin the same format as the input file. (This
could be reinput with an ACCEPT or other option.)

Summary

Update summary report.

Log

A fixed format that describes any errors. Each record contains the following:

caL DESCRI PTI ON

-4 record nunber

6 message numnber

1 record nunber error

SIR/XS

7-18

19- 26
27-30
31-34
35-42
43- 46
47-50
51-54

Database 111

vari able format error

vari abl e/ conput e error

vari abl e/ recode error

ACCEPT REC failed

REJECT REC fail ed

record accepted with errors
record rejected

date of run

time of run

ordinal of record on this file
DBMS error nunber

vari able nanme, if variable error
ACCEPT/ REJECT REC num |ine num
field starting col um

field ending col um

coO~NO O WN

SIR/XS Database 112

ADD REC

ADD REC adds new records to the database. The keys of incoming records are
matched against those already in the database. If an input record matches an
existing record, the incoming record is rejected with an error message.

ADD REC | NPUT
[LI STFI LE
[ERRFI LE
[LOGFI LE
[SUMFI LE
[ACCEPT]
[ALL]
[BLANKUND]
[CSV]
[LOGALL]
[NoAUTq
[NONEW
[NOSEQY
[ALIM T
[BLIP
[LOADI NG
[RECTYPE
[RLIMT n]
[SKI P n]
[STOP = n
There are three groups of parameters. The first group specifiesfiles, the next
group specifies keywords and the last group specifies limits or other conditions.

Optionally separate multiple parameters on a command with aslash /",

fil enanme
fil enane]
filenane]
filenane]
filenane]

nj
nj
nj
rectype]

FILES

I NPUT

Specifies the input data file and must be specified.
LI STFI LE

Specifies the file where error messages are written. If not specified, the current

output file is used for error messages.
ERRFI LE

Specifies the file where data records with errors are written. If not specified, no

error fileis produced, however errors messages are produced on the LI STFI LE.
LOGFI LE

Specifiesthe log file. A record iswritten to the log file in fixed format that

describes each error.
SUVFI LE

Specifies the file where the update summary report iswritten. If thisis not
specified the current output file is used. SUMFI LE and LI STFI LE can be the same
filein which case the summary report iswritten after any error listing.

SIR/XS Database 113

Keywords - Use these to specify the particular processing option(s) required:

ACCEPT
Specifies that records with erroneous values are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous

values are rejected.
ALL

Specifies that input records with errors are written to the ERRFI LE regardless of

whether or not they are accepted into the database.
BLANKUND

Specifies that blank numeric fields on the input file result in UNDEFI NED on the
record. If thisoption is not specified, then blanks on input for a numeric field
either result in amissing value, if aBLANK missing value is defined in the schema,

or in azero vaue.
Ccsv

Specifiesthat the input fileisin CSV format.
LOGALL

Specifies that input records with errors are written with the log record to the

LOGFI LE.
NCAUTO

Specifies that only variables with specified input/output columns are processed.
NONEW

Specifies that no new cases are created.

Limitsand Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

ALIMT = n
Sets alimit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing

errors.
BLIP = n

Specifies that an indication of progressis required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this

number. Statistics of records added are displayed.
LOADING = . n

Specifies how data blocks are split as they become full. "N" is a number between
0.01 and 0.99. When datais reloaded or imported, blocks are filled. The normal
value is 0.5, that meansthat afull data block is split in half. A value of .99 splitsa
data block with n records into one data block containing n-1 records and one data
block containing 1 record. Thisis useful if records are added in keyfield order to

keep the database file as compact as possible.
RECTYPE = n | nane

Specifiesthat all the recordsin thisrun are of the given type. Rectype may be a
record name or number. Thisis used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the

SIR/XS Database 114

record number in the columns specified in the schema (or by the first field on a
CsV file).
RLIMT = n

Specifies that the run stops if "n" number of records are rejected due to errors.
SKIP = n

Specifies that the first "n" lines on the data input file are skipped before starting to
process the data. Processing begins at line"n" + 1.

STOP = n

Stops the run after processing "n" lines from the datainput file. If the dataisin
multi-line records, the entire record is always processed.

Example:

ADD REC | NPUT = ' | NPUT. DAT'
ERRFI LE = ' ERR DAT'
LOGFILE = 'LOG LST'
LI STFILE = ' OUT. LST'
SUWFILE = 'SUM LST
ACCEPT

RECTYPE

1
'_\

SIR/XS Database 115

EVICT REC

EVI CT REC | NPUT
[LI STFI LE
[ERRFI LE
[LOGFI LE
[SUVFI LE
[CSV]
[EVI CTCI R]
[LOGALL]
[NOAUTO)
[BLI P
[RECTYPE
[RLIMT
[SKI P n]
[STOP n]

Deletes records. The keys of input records are matched against those already in
the database. If an input record matches an existing record, the existing record is
deleted. If an input record does not match an existing record, an error message is
written.

fil enanme
filenane]
fil enane]
fil enane]
fil enane]

nj
rectype]
nj

There are three groups of parameters. The first group specifiesfiles, the next
group specifies keywords and the last group set limits or other conditions.
Optionally separate multiple parameters on a command with aslash "/".

FILES

I NPUT

Specifies the input data file. Must be specified.
LI STFI LE

Specifies the file where error messages are written. If not specified, the current

output fileis used for error messages.
ERRFI LE

Specifies the file where data records with errors are written. If not specified, no

error fileis produced, however errors messages are produced on the LISTFILE.
LOGFI LE

Specifiesthelog file. A record iswritten to the log file in fixed format that

describes each error.
SUNVFI LE

Specifies the file where the update summary report is written. If thisis not
specified the current output file is used. SUMFI LE and LI STFI LE can be the same
filein which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

csv

SIR/XS Database 116

Specifies that theinput fileisin CSV format.
EVI CTCI R

Specifiesthat cases are deleted if all records in the case are deleted. This only

appliesto case structured databases.
LOGALL

Specifies that input records with errors are written with the log record to the

LOGFI LE.
NOAUTO

Specifies that only variables with specified input/output columns are processed.

Limitsand Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

BLIP
Specifies that an indication of progressis required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this

number. Statistics of records added are displayed.
RECTYPE

Specifiesthat all the recordsin thisrun are of the given type. Rectype may be a
record name or number. Thisis used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= can be specified. If omitted, data records are identified by the record
number in the columns specified in the schema (or by the first field on a CSV
file).

RLI)M T

Specifies that the run stops if "n" number of records are rejected due to errors.
SKI P

Specifiesthat the first "n" lines on the data input file are skipped before starting to

process the data. Processing begins at line"n" + 1.
STOP

Stops the run after processing "n" lines from the datainput file. If the dataisin
multi-line records, the entire record is aways processed.

Example:

EVICT REC | NPUT = ' | NPUT. DAT'
ERRFILE = ' ERR DAT'
LOGFILE = 'LOG LST
LI STFILE = 'OUT.LST
SUMFILE = 'SUM LST

RECTYPE

SIR/XS

Database 117

READ INPUT DATA

filenane
filenane]
fil enane]
filenane]
filenane]

READ | NPUT DATA | NPUT

[LI STFI LE

[ERRFI LE

[LOGFI LE

[SUMVFI LE

[ACCEPT]

[ALL]

[CSV]

[LOGALL]

[NoAUTq

[NONEWY

[NOSEQY

[ALIMT

[BLIP

[LOADI NG

[RECTYPE

[RLIMT

[SKIP n]

[STOP n]
Adds new records and replaces existing records. The keys of incoming records are
matched against those already in the database. If an input record matches an
existing record, the existing record is replaced; if the keys do not match, a new

record is added.

n]
n]
n]
rectype]
n]

There are three groups of parameters. The first group specifiesfiles, the second
group specifies keywords and the last group set limits or other conditions.
Optionally separate multiple parameters on a command with aslash "/".

FILES

I NPUT

Specifies the input data file. Must be specified.
LI STFI LE

Specifies the file where error messages are written. If not specified, the current

output fileis used for error messages.
ERRFI LE

Specifies the file where data records with errors are written. If not specified, no

error fileis produced, however error messages are produced on the LI STFI LE.
LOGFI LE

Specifiesthe log file. A record iswritten to the log file in fixed format that

describes each error.
SUMFI LE

SIR/XS

Database 118

Specifies the file where the update summary report iswritten. If thisis not
specified the current output file is used. SUMFI LE and LI STFI LE can be the same
filein which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

ACCEPT
Specifies that records with erroneous values are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous

values are regjected.
ALL

Specifies that input records with errors are written to the ERRFI LE regardless of

whether or not they are accepted into the database.
csv

Specifies that theinput fileisin CSV format.
BLANKUND

Specifies that blank numeric fields on the input file result in UNDEFI NED on the
record. If thisoption is not specified, then blanks on input for a numeric field
either result in amissing value if a BLANK missing value is defined in the schema

or inazero vaue.
LOGALL

Specifies that input records with errors are written with the log record to the

LOGFI LE.
NOAUTO

Specifies that only variables with specified input/output columns are processed.
NONEW

Specifies that no new cases are created.

Limitsand Settings - Specify the keyword followed by an equassign, "=" ,
followed by the value for these limits and settings.

ALIMT
Sets alimit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing

errors.
BLI P

Specifies that an indication of progressis required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this

number. Statistics of records added are displayed.
LOADI NG

Specifies when data blocks are split as they become full.

"N" isanumber between 0.01 and 0.99. When datais reloaded or imported,
blocks are filled. On subsequent update runs, the normal value is 0.5, that means
that afull datablock is split in half. A value of .99 splits a data block with n
records into one data block containing n-1 records and one data block containing
1 record. Thisisuseful if records are added in keyfield order to keep the database
file as compact as possible.

SIR/XS Database 119

RECTYPE

Specifies that all the recordsin this run are of the given type. Rectype may be a
record name or number. Thisis used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the
record number in the columns specified in the schema (or by thefirst field on a

CsV file).
RLIMT

Specifies that the run stopsif "n" number of records are rejected due to errors.
SKI P

Specifies that the first "n" lines on the data input file are skipped before starting to

process the data. Processing begins at line"n" + 1.
STOP

Stops the run after processing "n" lines from the data input file. If the dataisin
multi-line records, the entire record is always processed.

Example:

READ | NPUT DATA I NPUT = ' I NPUT. DAT'
ERRFI LE = ' ERR DAT'
LOGFI LE = ' LOG LST'

LI STFILE = ' QUT. LST'
SUMFILE = 'SUM LST'
ACCEPT

RECTYPE = 1

SIR/XS

Database 120
REPLACE REC
REPLACE REC I NPUT = fil enane
[LI STFI LE = filenane]
[ERRFI LE = filenane]
[LOGFI LE = filenane]
[SUMFI LE = fil enane]
[ACCEPT]
[ALL]
[CSV]
[LOGALL]
[NGAUTO
[NONEW
[NOSEQ
[ALIMT = n]
[BLIP = n
[LOADI NG = n]
[RECTYPE = rectype]
[RLIMT = n]
[SKI P = n
[STOP = n]

Replaces existing records. The keys of input records are matched against those
aready in the database. If an input record does not match an existing record, it is
rejected with an error message. If amatch is found, the existing record is replaced
by the input record.

There are three groups of parameters. The first group specifiesfiles, the next
group specifies keywords and the last group sets limits or other conditions.
Optionally separate multiple parameters on a command with aslash "/".

FILES

I NPUT

Specifies the input data file. Must be specified.
LI STFI LE

Specifies the file where error messages are written. If not specified, the current

output fileis used for error messages.
ERRFI LE

Specifies the file where data records with errors are written. If not specified, no

error fileis produced, however errors messages are produced on the LI STFI LE.
LOGFI LE

Specifiesthelog file. A record iswritten to the log file in fixed format that

describes each error.
SUNVFI LE

SIR/XS

Database 121

Specifies the file where the update summary report iswritten. If thisis not
specified the current output file is used. SUVFI LE and LI STFI LE can be the same
filein which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

ACCEPT
Specifies that records with erroneous val ues are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous

values are regjected.
ALL

Specifies that input records with errors are written to the ERRFI LE regardless of

whether or not they are accepted into the database.
csv

Specifies that theinput fileisin CSV format.
BLANKUND

Specifies that blank numeric fields on the input file result in UNDEFI NED on the
record. If thisoption is not specified, then blanks on input for a numeric field
either result in amissing value if a BLANK missing valueis defined in the schema

or inazero vaue.
LOGALL

Specifies that input records with errors are written with the log record to the

LOGFI LE.
NOAUTO

Specifies that only variables with specified input/output columns are processed.
NONEW

Specifies that no new cases are created.

Limitsand Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

ALIMT
Sets alimit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing

errors.
BLI P

Specifies that an indication of progressis required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this

number. Statistics of records added are displayed.
LOADI NG

Specifies how data blocks are split as they become full. "N" is a number between
0.01 and 0.99. When datais reloaded or imported, blocks are filled. The normal
valueis 0.5, that meansthat afull data block is split in half. A value of .99 splitsa
data block with n records into one data block containing n-1 records and one data
block containing 1 record. Thisis useful if records are added in keyfield order to

keep the data as compact as possible.
RECTYPE

SIR/XS Database 122

Specifiesthat all the recordsin thisrun are of the given type. Rectype may be a
record name or number. Thisis used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the
record number in the columns specified in the schema (or by thefirst field on a

CsV file).
RLIMT

Specifies that the run stops if "n" number of records are rejected due to errors.
SKI P

Specifies that the first "n" lines on the data input file are skipped before starting to

process the data. Processing begins at line"n" + 1.
STOP

Stops the run after processing "n" lines from the datainput file. If the dataisin
multi-line records, the entire record is always processed.

Example:

REPLACE REC | NPUT = ' | NPUT. DAT'
ERRFI LE = ' ERR DAT'
LOGFI LE = 'LOG LST'
LI STFILE = ' QUT. LST'
SUMFI LE = ' SUM LST'
ACCEPT

RECTYPE = 1

SIR/XS

Database

UPDATE REC

UPDATE REC | NPUT
[LI STFI LE
[ERRFI LE
[LOGFI LE
[SUMFI LE
[ACCEPT]
[ADD]
[ALL]
[COVPUTE]
[CSV]
[LOGALL]
[NOAUTO
[NOBOOL]
[NONEW
[NOSEQ
[ALIM T
[BLIP
[LOADI NG
[M SSCHAR
[RECTYPE

filenane
fil enane]
filenane]
fil enane]
filenane]

n]
n]
n]
a]
rectype]

123

[RLIMT
[SKI P
[STOP

n]
nj
nj

Replaces individual variablesin existing records. The keys of input records are
matched against those already in the database. If amatch isfound, the variablesin
the existing record are replaced by non-blank fieldsin the input. If amatch is not
found, the input record is rejected with an error message, or, if the ADD keyword
is specified, a new record is created.

There are four additional parameters for UPDATE RECORD:

ADD
Specify to add new records. By default, input records must match existing records

in the database.
COVPUTE

Specify to re-execute schema COVPUTE statements. By default, COVPUTE

statements from the Schema are not re-executed.
NOBOOL

Specify to stop the re-execution of consistency checks from the Schema. By
default, consistency checks (ACCEPT REC | F and REJECT REC | F) are performed.
Any temporary variables referenced in the consistency check must be respecified

on the input record to assure that the intent of the check is satisfied.
M SSCHAR

SIR/XS Database 124

Specify asingle character to indicate that an existing variableis set to undefined.

In order to set an existing value to UNDEFI NED, include this character on the input
record in the leftmost column of the variable. A blank does not indicate amissing
value and may not be used as the character. There is no defaullt.

There are three groups of parameters. The first group specifiesfiles, the next
group comprises keywords and the last group sets limits or other conditions.
Optionally separate multiple parameters with aslash /.

FILES

I NPUT

Specifies the input data file. Must be specified.
LI STFI LE

Specifies the file where error messages are written. If not specified, the current

output fileis used for error messages.
ERRFI LE

Specifies the file where data records with errors are written. If not specified, no

error fileis produced, however errors messages are produced on the LI STFI LE.
LOGFI LE

Specifiesthelog file. A record iswritten to the log file in fixed format that

describes each error.
SUMFI LE

Specifies the file where the update summary report iswritten. If thisis not
specified the current output file is used. SUMFI LE and LI STFI LE can be the same
file in which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

ACCEPT
Specifies that records with erroneous values are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous

values are regjected.
ADD

Specifies that input records that do not match existing records are added to the
database. Schema defined consistency checks and compute specifications are
applied to the added records.

ALL

Specifies that input records with errors are written to the ERRFI LE regardless of

whether or not they are accepted into the database.

COVPUTE

Specifies that any COVPUTE specifications in the schema are re-executed.
csv

Specifiesthat the input fileisin CSV format.
LOGALL

Specifies that input records with errors are written with the log record to the

LOGFI LE.
NOAUTO

SIR/XS Database 125

Specifies that only variables with specified input/output columns are processed.
NOBOOL

Specifiesthat any ACCEPT REC | F or REJECT REC | F specificationsin the

schema are bypassed.
NONEW

Specifies that no new cases are created.

Limitsand Settings - Specify the keyword followed by an equals sign, "=",
followed by the value for these limits and settings.

ALIMT
Sets alimit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing

errors.
BLI P

Specifies that an indication of progressis required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this

number. Statistics of records added are displayed.
LOADI NG

Specifies how data blocks are split as they become full. "N" is a number between
0.01 and 0.99. When datais reloaded or imported, blocks are filled. The normal
valueis 0.5, that meansthat afull data block is split in half. A value of .99 splitsa
data block with n records into one data block containing n-1 records and one data
block containing 1 record. Thisisuseful if records are added in keyfield order to

keep the database file as compact as possible.
M SSCHAR

Specifies a character to indicate that the field is set to UNDEFI NED. When this
character isin the leftmost position of avariable on input, the variable on the
database is set to undefined. Specify asingle character, do not encloseit in

quotes.
RECTYPE

Specifiesthat all the recordsin thisrun are of the given type. Rectype may be a
record name or number. Thisis used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the
record number in the columns specified in the schema (or by thefirst field on a
CsV file).

RLIMT

Specifies that the run stopsif "n" number of records are rejected due to errors.
SKI P

Specifies that the first "n" lines on the data input file are skipped before starting to

process the data. Processing begins at line"n" + 1.
STOP

Stops the run after processing "n" lines from the datainput file. If the dataisin
multi-line records, the entire record is always processed.

Example:

SIR/XS Database 126

UPDATE REC | NPUT = ' | NPUT. DAT'
ERRFI LE = ' ERR DAT
LOGFI LE = 'LOG LST
LI STFILE = 'OUT.LST
SUMFILE = 'SUM LST'
ACCEPT
RECTYPE =1

M SSCHAR = *

SIR/XS Database 127

SIR FILE DUMP

SIR FILE DUMP [FILENAME = fileid]
RECTYPES = {ALL | rectype (log_expr),...}

[BOOLEAN = (| og_expr)]

[CR

[COUNT = total [,increnent[,start]]]
[CSV]

[DPO NT]

[LIST = case id list]

[NGAUTO

[SAMPLE = fraction [, seed]]

[UNDEFI NED = char]

Creates atext filein aform suitable for processing by the batch data input
utilities. DBA read security clearance is needed to use this utility.

Optionally separate multiple parameters on the command with slashes.

FI LENAME

Specifies the name of the output file. If this clause is not specified, the output is
written to the default output file (normally the scrolled output buffer in interactive
sessions).

RECTYPES

Specifies the record types to dump. This clause is required. The keyword ALL
specifies all record types are dumped. A logical expression can be specified to
restrict the data records selected. The expression can reference common variables

or variables from the listed record type and can include PQL functions.
BOOLEAN

Definesalogical condition applied to common variables. This clause only applies
to case structured databases. If the logical condition istrue, records for that case

are dumped. BOOLEAN is applied after any SAMPLE, COUNT or LI ST.
CR

Specify CI Rto output common variables as a separate record (record type 0).
COUNT

Outputs data from a specified number of cases from the database. This clause only
appliesto case structured databases and cannot be used with SAMPLE or LI ST.
Total specifies the number of casesto retrieve. Increment specifies the " skipping
factor" for retrieving cases. Start specifies the first case to select. For example, a
start value of 3 begins the processing at the third case.

SIR FI LE DUWP FI LENAME
RECTYPES

" QUTPUT. DAT
ALL COUNT = 10

csv

Specifies that the fileiswritten in CSV format.
DPOI NT

SIR/XS Database 128

Specifies that, when writing a fixed format file, any numeric fields that have a
decimal component, have the decimal point included. Thisis automatically done

when in CSV format.
LI ST

Retrieves the specified cases for case structured databases. Enclose case
identifiers that are character stringsin quotes. LI ST cannot be used with SAMPLE
or COUNT. For example:

SIR FI LE DUWP FI LENAME " QUTPUT. DAT'

RECTYPES ALL LIST =1,3,5 thru 10
NOAUTO
Specifies that only variables with specified input/output columns are processed.
SAVPLE

Outputs data from arandom sample of cases from the database. This clause only
appliesto case structured databases. Fraction specifies the sample size for
selection. Seed specifies the starting seed for the random number generator. If

seed is not specified, the default is used.
UNDEFI NED

Specifies the character used to fill fields on output that are undefined on the
database. Blanks are the default. For example:

SIR FILE DUWP FI LENAME = ' QUTPUT. DAT'
RECTYPES = 1 (SALARY GT 2000)
UNDEFI NED = *

SIR/XS Database 129

SIRFILE LIST

SIR FI LE LI ST FI LENAME=fi | enane
[BOOLEAN= (1 og-expr)]

[LI ST= caseid list]

[RECTYPES= rectype [(log-expr)] ...| ALL]
[ORDER= ALPHA | VARNUM

[SAMPLE= fraction [, seed]]

[COUNT= total [,incr[,start]]]

[AR= varlist | NOCIR]

[VARI ABLES = rectype (var-1list)]
Writes al or part of the datato afile for subsequent printing. Use the filename
CONSQL to write to the screen or STDOUT to write to the default output file.

DBA read security isrequired to use this utility.

BOOLEAN

Specifies casesto include in the list. If the test fails, no records for that case are
listed. The test may only use common variables. If LI ST, COUNT or SAMPLE iS
used, the BOOLEAN clause is applied after that selection process. For example:

BOOLEAN = (1D GT 5)
LI ST

Specifies cases to select. Separate entries with blanks or commas. Use the "TO"
format to specify arange. Enclose case ids that are stringsin quotes. LI ST cannot
be used with SAMPLE or COUNT. For example:

LIST= 1,3,5,7 to 10

RECTYPES

Specifies the record typesto select. RECTYPES= ALL specifies all record types. If
RECTYPES is omitted from the command, only the common variables are listed. A
logical expression may be defined to select particular data records within arecord
type. If thetest is TRUE, the record is listed. The expression may use common or

record variables from the record type. For example:
RECTYPES= 1 (GENDER=2)
ORDER

Specifies the sequence of the listing of variables. This can be alphabetic order
(ALPHA) of the variable name or the order the variables are defined in the record

(VARNUM). VARNUM s the default. For example:
SIR FILE LI ST FILENAMVE=' DATA. LIS ORDER= ALPHA
SAVPLE

Retrieves arandom sample of cases from case-structured databases. Fraction
specifies the sample size for selection. Seed specifies the starting seed for the
random number generator. If seed is not specified, oneis assigned by default.

SAMPLE cannot be used with COUNT or LI ST. For example:
SIR FILE LI ST FILENAVE=' DATA. LIS SAMPLE= .5
COUNT

SIR/XS

Database 130

Retrieves a subset of cases from the database. Total specifies the number of cases
to retrieve. Incr isthe increment to apply to locate the next case to process. The
default is 1 and processes every case. An increment of 2 processes every other
case, 3 every third case, etc. Start specifies the ordinal of the first case to process.
For example, a start value of 3 and an Incr of 3 starts the processing with the third
case, skips cases 4 and 5 and processes 6. COUNT cannot be used with SAMPLE or
LI ST. For example:

SIR FILE LI ST FI LENAVE=' DATA. LIS COUNT= 50, 3, 3

CR

Specifies the common variablesto list. If the CI R clause is omitted, all common
variables are listed. For example:

SIR FILE LI ST FILENAVE=' DATA LIS CIR=ID

NOCI R

Suppresses output of CIR variables. For example:

SIR FILE LI ST FI LENAVE=' DATA. LI S NOCI R

VARl ABLES

Specifies the variablesto list for arecord type. All variables are listed for
selected record types as the default. For example:

SIR FILE LI ST FI LENAME=' DATA. LI S RECTYPE = 3
VARl ABLES = 3 (position,revdate)

Sample Output:

SIR' XS FILE LI ST Jan 05, 2006
10: 53: 36 Page 1

***CASE ID 1

REVI EW POSI TI ON
4

REVDATE 04 05 03

POSI TI ON 4

REVI EW PCSI TI ON
4

REVDATE 06 05 03

PCS| TI ON 4

REVI EW POSI TI ON
5

REVDATE 12 09 04

PCSI TI ON 5

REVI EW PCOSI TI ON
5

REVDATE 02 04 05

PCSI TI ON 5

***CASE ID 2

REVI EW PCOSI TI ON
6

REVDATE 03 16 03

PCSI TI ON 6

SIR/XS Database 131

REVI EW PCOSI TI ON
6

REVDATE 04 27 03

PCSI TI ON 6

SIR/XS Database 132

SIR SPREADSHEET

SI R SPREADSHEET

{RECTYPE = recnane [BOOLEAN = (1 og-expr)] |
TABLE=t abfil e. tabl e}

[I NDEXED BY i ndexnane]

[VARI ABLES = (varl,var2,... | ALL)]

[LABELS| UPDATE]

Selects data from a single database record type or from atabfile table and displays
itinagraphical form similar to a spreadsheet display. The user can insert, delete
or update if allowed, and can print or export the datain a CSV format for input to
other packages.

RECTYPE =
Specifies the record name or number to display. Specify BOOLEAN to select
records. The specified test can use common variables and record variables.

TABLE =
Specifies the tabfile name and table name to display.

| NDEXED BY (USI NGis asynonym)
Specifies the record or table is accessed viathe named index. When using an
index with arecord, al the variables used in the index must be included in the

displayed variables.
VARI ABLES

Specifiesthe variablesto list. ALL isthe default.
LABELS (VALLAB is a synonym)
Specifies that value labels are displayed where these exist as opposed to actual

values. This precludes UPDATE
UPDATE

Specifies that updates to the database or table are allowed. This allows the user to
add, delete or modify the data in the record or table. For update, the selected
variables must included all key fields.

For example:

SI R SPREADSHEET RECTYPE=EMPLOYEE UPDATE
The record datais displayed as a spreadsheet that |ooks something like:

SIR/XS

Database 133
B EMPLOYEE I - O] x|
D | raME GENDER MARSTAT | S5H BIRTHD &Y EDUC sz |
Johin D Jones 1 1772214321 | 15011938 1 e |
2 | James & Arblaster 1 1 (12372893 | TM2M942 4
Clone Record
3 | Mary Black 2 2 | 382.97-5461 | 10M08A953 3 —I
4 | Jack Brown 1 1 | 372457242 | 7H3N94E & DeleteRecard |
5 | Fredw Green 1 1 | 528-91-0821 | 18054951 1 Nty |
& | Carol F Safer 2 1 | 2468-87-8101 | 13m1M857 5
Finct
7 | wiendy K west 2 2 [178-20.0143 | 17m8M953 3 -—I
& | Fredrick Moore 1 1 | 236-57-3142 | 21M0M1949 4 e |
9 | Bonnie Rosen 2 1 | 468-32-8542 | 300841941 4 B |
10 | Leslie Kushner 2 2 | 832456032 | 14M12/1943 2
11 | Chris M Hiller 1 1 | 562-83-4291 fI011932 3 B

SIR/XS Database 134

Backup and Recovery

SIR/XS provides utilities to write all or part of the database to external filesin
either machine dependent or machine independent formats and to re-input these
files back to a SIR/XS database. These utilities can be used for restructuring the
database, backing up the database, porting all or part of the database to another
database on the same operating system or creating a machine independent version
of the database to move to a different operating system.

Note: If transferring export or other text (machine independent) files between
machines using ftp, you must use ftp in ACSI1 mode (not BINARY)

There are various procedures and the utilities to assist in protecting a database and
recovering it in the case of problems.

The key to a successful recovery operation is being prepared. Do not assume that
the computer, disk drives or power supply are always 100% trouble free. Be
prepared for unexpected problems by taking regular backups, saving journals and,
in general, take reasonable precautions against |osing much time or work.

The procedure for restructuring a database is the same as for backing up and
recovery.

There are utilities that are designed to work in pairs with one providing input in a
suitable format for the other.

Some utilities create or use binary files that are specific to an operating system.
Thesefiles are created in "append" mode; that isthey are added to the end of any
existing unload or subset file with the same name. However, if you run these
through the menu system, you are given the choice of deleting the old filefirst.

Other utilities create text files that are machine independent and can be viewed
and updated by any text editor. These are produced independently and overwrite
existing files.

- EXPORT creates afile containing atext copy of the database, including the data
dictionary, procedures and data. This can be used by | MPORT to create a new
database on a different machine.

- WRI TE SCHEMA writes just the database definition in asimilar format to export.

SIR/XS Database 135

- SUBSET writes a subset of the database to an unload binary file. Thisincludes
the schema and data for selected record types. This can be used by MERGE to
combine with an existing database or RELOAD to create a new database that is a
subset of the original.

- UNLOAD writes a copy of the database to an unload binary file including the
schema and the procedures.

- UPLOAD creates atext copy from the journal of all updates that have been done.
This can be used by DOWNLOAD to apply those changes to a second copy of the
database. An example of this might be a central database with subsets on various
PCsin remote |locations. Updates might be done on the PCs and UPLOADed to the
center, or updates might be done in the center and UPLOAD to the PCsto avoid re-
transmitting the whole of the database.

There are two utilities that check on the contents of the system.

VERI FY checks on the contents of the structure of the database and gives
details of any problems discovered. This utility has a PATCH option that
recovers from many types of corruptions. If some type of problem has
occurred, a SIR/XS process may warn that a corruption has occurred. If
this happens, use the VERI FY FI LE utility to find out more about the
problem, and attempt to correct it.

| TEM ZE reports on the contents of either the journal file or files produced
by UNLOAD Or SUBSET.

LI ST STATS reports on the current status of the database giving the number of
records, data size and update level.

Journaling

Journaling can be turned "ON" for a database. This means that, each time that the
database is updated (i.e. the update level increases), an entry iswritten to the
journal file. The entry contains details of al of the updates done to take the
database from one update level to the next. Each entry on the journal file consists
of images of al of the data records that were updated during the update run. The
images can be both before and after images of the records depending on the
update. For anew record, there is an after image; for an updated record thereisa
before and after image; for a deleted record, there is a before image.

The journal can be used to recover in the case of an unexpected interruption in an
update run and allows updates to be re-applied quickly and easily if a backup has
to be restored. The journa can be used in Visual PQL to produce reports on
updates or other audit trails.

SIR/XS Database 136

If updates were incomplete or unsuccessful in some way, they can be 'undone
with a JOURNAL ROLLBACK that takes a database back to a previous update level.
When a database is connected, its status is checked to seeif it was not closed
properly when being updated e.g. the system 'crashed’ while the database was
open for update. If thisisfound to be the case, you are asked if you wish to
automatically recover. If you choose to try to recover, ajourna rollback is done.
If adatabase has to be recovered from backups, restore the database from the
backup and then use JOURNAL RESTORE to bring that version of the database up to
the level of the journal file.

Binary Files

Binary files are machine dependant and are NOT suitable for transferring between
operating systems or different hardware. These are NOT suitable for long term
archival storage. Subsequent versions of SIR may have updated file formats that
are incompatible. The following utilities create binary files

A full databaseis created by UNLOAD FI LE and read by RELOAD FI LE

A partial database is created by SI R SUBSET and read by MERGE
Database changes are created by JOURNAL and read by JOURNAL RESTORE
A binary file can contain multiple sets of data. These are listed by

| TEM ZE.

Text Files

Text files are suitable for transferring between machines and can be viewed with a
normal editor. The following utilities create text files.

A full or partial database is created by EXPORT and read by | MPORT. Thisis
the recommended format for storing all long term SIR archives. It is
machine and operating system independent and subsequent versions of
SIR are always compatible with previous EXPORT formats.

Database definitions are written by WRI TE SCHEMA

Database changes are created by UPLOAD and read by DOWNLOAD

SIR/XS

Database 137

IMPORT

To import and recreate a complete database, simply tell SIR/XS to read the
export file generated by a previous EXPORT utility. Thisfile isatext copy of a
database consisting of commands to recreate the database and datato load into it.

This can be done in a number of ways:

From the Dat abase\ Recover\ | nport menu

By running the system in batch with the import file named asthe I N =
parameter

By "running" the import file from the Procedures - File menu

Thereisacommand "I MPORT" that indicates that data, in a suitable format for
importing, follows the command. eg:

| MPORT

0/ 1/1/2/4/1/ 12/ John D Jones1/1/11/772-21-

1321129754/ 1/ ML/ 5/ 2150/ 145851/ 2/ 4/

145120/ 1500/ 1/ 2/ 5/ 145733/ 2000/ 1/ 3/ 4/ 145241/ 5/ 1650/ 2/ 3/ 4/ 145180/ 4/
1600/ 2/ 3/ 5/

145851/ 5/ 2150/ 2/ 3/ 5/ 145794/ 4/ 2100/ 2/ 0/ 2/ 1/ 1/ 3/ 1/ 25/ Janes A

Ar bl ast er 1/ 1/

SIR/XS Database 138

EXPORT

EXPORT FILENAME = fileid

[BOOLEAN = (Il ogi cal _expr)]

[COUNT = total [,increnent [,start]]]
[LIST = caseid, ...]

[RECTYPES = ALL | rectype(logical _expr) ...]
[SAMPLE = fraction [, seed]]

[DATABASE = new dat abase nane]

[PASSWORD = new dat abase passwor d]

[cCovwN]|

[NODATA]

[NO NDEX]

[NOVAXKEY]

[NOPASSWORDS]

[NOPROCS]

[NOTO

[NOTXS]

[VARLI ST]

[VARSEQ

Creates afile of text records containing the data dictionary, procedures and data
from the database. Exports all non-compiled procedures, i.e memberswith a:T,
:M or :P suffix (text, menu and picture (template) members). Compiled
procedures (:E, :O and :V) are not machine independent and cannot be exported.
Compiled procedures must be re-compiled after an | MPORT.

Database administrator security is required to use EXPORT. If the export does not
run because record types in the database are |ocked (due to schema modifications)
then restructure the database before rerunning the export.

Optionally separate multiple parameters on the command with slashes.

FI LENAME

Specifies the name of the file to contain the exported database. Thisis required.
BOOLEAN

Specifies tests applied to cases before the case is written to the export file. A case
isonly written if the expression is TRUE. Only use common variablesin the
expression and only use for databases with a case structure. The test is applied

SIR/XS Database 139

after any SAMPLE, COUNT or LI ST. If the caseid is a categorical, date or time
variable, specify either a string or numeric test and the equivaent variable value is

used. Visua PQL functions can be used. For example:
BOOLEAN = (1D GT 5)
LI ST

Exports only the specified cases. Specify the keyword THRU to select arange. For

example:
LIST = 12 THRU 29, 33, 37
RECTYPES

Selects the data records written to the export file. Schema definitions are written
for all record types, regardless of which rectypes are selected on the RECTYPES
clause. If this clause is omitted, data for all record typesin the database are
exported.

Specify alogical expression to select records. Records that meet the criteria of the
logical expression are selected. For example:

RECTYPES = EMPLOYEE (SALARY GI 2000)
SAVPLE

Exports a random sample of cases from the database. Fraction specifiesthe
sample size (adecimal number) for selection. Seed specifies the starting seed for
the random number generator. If seed is not specified, a default seed is used. For
example, SAMPLE = . 25 exports 25% of the cases from the database using a

default seed.
COUNT

Exports a subset of cases from the database. Total is the number of casesto
retrieve. Increment is a number that specifies the "skipping factor” for retrieving
cases. For example, an increment of 3 produces every third case. Start specifies

the first case processed. For example, a start of 3 starts with the third case.
DATABASE

Specifies a new name for the database on the export file. If this clause is omitted,

the current database name is used.
PASSWORD

Changes the database password on the export file. If this clause is omitted, the

current password is used.
COWION

The record definition for the CIR includes definitions for all the common
variables and so these do not need to be repeated on subsequent record types that
include acommon variable. Specify cowoN if commands are to be produced for

each common variable on every record where it occurs.
NCDATA

Specifies that no data records are written to the export file.
NO| NDEX

Specifies that no specifications for secondary indexes are written to the export file
if transferring from SIR/XS or later to earlier versions that did not support

indexes.
NOVAXKEY

SIR/XS Database 140

Suppresses the writing of a specific MAX KEY command to the output file.
Specify this option whenever schema modifications are being made to allow the
system to recal culate the maximum key size unless alarger key isrequired for

future expansion.
NOPASSWORDS

Specifies that the database password, security passwords and member passwords
are not written to the export file. This has the effect of removing all password
protection from the new database. New passwords can be assigned once the new

database has been imported to its new |location and recreated.
NOPROCS

Specifies that the procedures are not written to the export file.
NOTO

Where contiguous record variables share the same specification, a shorthand
specification is written using the keyword TO. e.g.

M SSI NG VALUES NAME
TO NDEPENDS (BLANK)

The NOTO keyword suppresses this shorthand and all variables are individually
listed within the specification.

NOTXS

Specifies that the export is as compatible as possible for use by earlier versions of
SIR (2002). New features such as STANDARD VARS and RECORD SCHEMA 0 are not

written and slashes are generated as separators.
VARLI ST

The standard style of schema output isto write variable names and input
definitions asaDATA LI ST. VARLI ST specifies that variable names are written as a
VARI ABLE LI ST command followed by input definitions as an | NPUT FORMAT
command. e.g.

VARI ABLE LI ST | D NAVE GENDER MARSTAT . ..
| NPUT FORMAT (14,76, A25,11,11, ...
VARSEQ

The standard style of schema output isto write each definition command once and
to list variables within the command. The VARSEQ keyword specifies that the
output isin variable sequence and that all commands that apply to asingle
variable are grouped together. e.g.

VAR LABEL NAVE " Namre'

M SSI NG VALUES NAME (BLANK)

VAR LABEL GENDER ' Gender’

VAR RANGES GENDER (1 2)

M SSI NG VALUES GENDER (BLANK)

VALUE LABELS GENDER (1) Mal e
(2)' Fenal e’

VAR LABEL MARSTAT "Marital status'

VAR RANGES MARSTAT (12

M SSI NG VALUES MARSTAT (BLANK)

VALUE LABELS MARSTAT (1) Married'

(2)' Not married

SIR/XS Database 141
Examples:
To export the entire database:

EXPORT FI LENAME = ' COVPANY. EXP'

To export record types 5, 6, and 8 of the first 1000 cases:

EXPORT FI LENAME= ' SUBSET. EXP
RECTYPES= 5 6 8
COUNT= 1000

The export procedure writes out a number of messages. These note the beginning
and end of various stages of the export (Begin export of schema/Export of schema
complete, Begin export of procedures/etc.).

Export writes a summary of the data records exported. This lists the number of
cases, each record type exported and the number exported.

SIR/XS Database 142

SIR SUBSET

SI R SUBSET FI LENAME = fi |l ename

[BOOLEAN = (Il ogical expression)]

[LIST = caseid list]

[RECTYPES = rectype [(logical expression)] ...]
[SAMPLE = fraction [, seed]]

[COUNT = total [,increment [,start]]]

[DATABASE = newdbnane]

Creates a subset of adatabase. The subset fileisabinary filein identical format to
an unload. The schema and procedures are written in their entirety. Only the data
that meetsthe criteriais subset. Database administrator security is required to use
this utility.

FI LENAVE

Specifies the name of the output file. If thisfile already exists, the new subset is
appended to the end of the file provided that the file is avalid unload/subset file
for this database. If the file has multiple database copies, usethe | TEM ZE FI LE

utility to determine the copies that are there.
BOOLEAN

Specifies conditions based on the values of common variables. BOOLEAN is applied
after SAMPLE and COUNT. For example:

SI R SUBSET FI LENAME
BOCLEAN

' SUBSET. UNL'
(1D GT 5)

LI ST
Subsets the specified cases. Enclose case ids that are character strings in quotes.

Cannot be used with SAMPLE or COUNT. For example:
SI R SUBSET FI LENAME = ' SUBSET. UNL'

LIST= 1,3,5 thru 10
RECTYPES

Specifies the set of record typesto copy. Specify alogical expression to select on
datavalues. The expression may use common variables and variablesin the
rectype specified. For example:

SIR SUBSET FI LENAME = ' SUBSET. UNL'
RECTYPES = 1 (SALARY GTI 2000), 3
SAVPLE

Selects arandom sample of cases from the database. Fraction specifies the sample
size for selection. Seed specifies the starting seed for the random number

SIR/XS Database 143

generator. If seed is not specified, the default is used. Cannot be used with COUNT

or LI ST.
COUNT

Selects a specified number of cases from the database. Total specifies the number
of casesto retrieve. Increment specifies the "skipping factor” for retrieving cases.
For example, an increment of 3 produces every third case. Start specifiesthe
ordinal of the first case processed. For example, astart value of 3 beginsthe

processing at the third case. Cannot be used with SAMPLE or LI ST
DATABASE

Specifies the name of the new subset database. The subset database password is
the same as the password for the original database. For example:

SIR SUBSET FI LENAME = ' SUBSET. UNL'
DATABASE = TESTDBMS

SIR/XS

Database 144

UNLOAD FILE

UNLCAD FI LE FILENAMVE = fil ename

[JOURNAL = KEEP | PURGE]
[NEVDB = newnane]
[NEWPW = newpasswor d]

Creates a machine dependent copy of the database. UNLOAD is used for backup and
restructuring. Database administrator security isrequired to use this utility.

Usethe UNLOAD FI LE utility to back up the database. The old journal file can be
deleted once an unload file is produced. A database may be recovered from an
unload file plus any journals from the point the unload was done. Make sure that
thereis either ajournal file that covers the entire history of the database, or an
unload file and ajournal file that covers modifications made to the database since
the unload. The suggested procedure is:

Always have journaling ON for the database.

Backup the database with UNLOAD FI LE on aregular basis.

It isgood practice to run a complete VERI FY FI LE before doing an unload)
After a successful backup has been made, copy the backup file to secure
external media.

At this point, previous unload files and journal files can be renamed or deleted.

The options and keywords are:

FI LENAME

Specifies the name of the output file. If the output file already exists as an unload
filefor this database, the utility adds the latest output to the end of thefile. Use

| TEM ZE FI LE to seewhat ison the output file. If multiple copies of a database
are on one physical file, specify the file number or update level to restore the

correct copy of the database. For example:
UNLOAD FI LE FI LENAME = ' COVPANY. UNL'
JOURNAL

KEEP is the default and specifies that the current journal file is retained.
PURGE specifiesthat the current journal file is deleted when the unload runis

completed. Journaling then starts on anew file.
NEWDB

SIR/XS Database 145

Specifies a database name for the database copy. By default, the name of the

database is used.
NEWPW
Specifies a new database password for the database copy. By default, the current

password is used. For example

UNLOAD FI LE FI LENAME = ' COVPANY. UNL'
NEWDB TESTDBMS
NEWPW = TESTPASS

SIR/XS

Database 146

UPLOAD

UPLCAD FI LENAME= fi |l enane

[JOURNAL = fil enane]

[UPDATE = update |evel [THRU update_level]]

[RECTYPES = ALL | rectype (variable_list), ...]
[TITLE = 'upload_file_title']

Reads a journal file and outputs all the journaled changesto afile. Thisfileisa
text file so that it can be transferred to another machine. The DOANLQAD utility
reads the file produced by UPLOAD and applies the changes to the new database.
Database administrator security is required to use this utility.

FI LENAMVE

Specifies the name of the output file. Thisisrequired.
JOURNAL

Specifiesthe journal file. If the journal file has a different name, specify the name

used. The current journal file, (database file 5), is the default.
UPDATE

Specifies update levels or date/time stamps to upload from the journal file.
Specify a specific update level, update date, a range of update levels or arange of
update dates. The default is the most recent, single set of updates on the journal
file

If thisis specified, areport is produced showing each update level that iswritten
to the upload file. For example:

UPLOAD FILENAME = ' JOURNAL. UPL'
UPDATE= 10 THRU 30
RECTYPES

Selects rectypes to upload. A variable list specifiesindividua variables. If the
variable list isomitted, all variables are processed. The keyword Ci R selects the
common information record variables. ALL selects al record types, including CIR
and is the default. For example:

UPLOAD FILENAME = ' JOURNAL. UPL'
RECTYPES= 1, 3
TI TLE

SIR/XS Database 147

Specifies the title of the upload file. Thisiswritten asthe first line of the file and
isused to identify the file. DOANLOAD prints this title in the summary report. This
title may be up to 45 characters and is enclosed in quotes. For example:

UPLCAD FI LENAME = ' JOURNAL. UPL'
TI TLE= ' Departnment 3 Changes'

SIR/XS

Database 148

ITEMIZE FILE

| TEM ZE FILE [FILENAME= fil eid]

Reports on the contents of a unload and journal files. An unload file may contain
multiple unloads taken at different update levels. A journal file typically has
journals from multiple update levels. Thisinformation is necessary when
restoring a database or applying journals.

The options on the command are:

FI LENAME
Specifies the name of the binary file. The default isthe journal (fifth database
file).

The report produced is similar to the following:

Item ze File ' C: \sir2004\al pha\ CO/PANY.sr5 is a JOURNAL file for
dat abase COVPANY

Updat e | evel : 1 - 2 Dec 08, 2005/10:46:13 Journal data
to Dec 08, 2005/10:47:07
Updat e | evel : 2 - 3 Dec 08, 2005/10:48:07 Journal data

to Dec 08, 2005/ 10:49:03

Item ze File ' C: \sir2004\al pha\ COMPANY. unl' is an UNLOAD file for
dat abase COVPANY

Update | evel: 2 Dec 02, 2005/13:08:17 Unl oad schema
Record: 1

Update | evel: 2 Dec 02, 2005/13:08:17 Unl oad data
Recor d: 2

Update | evel: 3 Dec 08, 2005/10:49:03 Unl oad schenma
Record: 3

Update | evel: 3 Dec 08, 2005/10:49:03 Unl oad data
Record: 4

The information reported is the name of the file, the type of file and the database
that the file refers to. Thisisthen followed by alist of the records on thefile.
Each entry has the following information:

SIR/XS Database 149

UPDATE LEVEL

The update level is asequential number incremented each time the database is
updated. On ajournadl, it is the update level from - to where these are always one
different and the 'to’ is the update level that resulted after the update run. Journals
are expected to be contiguous and awarning is given if any update levels are
missing. On an Unload, it is the current update level at the time of the unload.
DATE & TIME

The date that the update was done followed by the time the update was done. On
an unload, thisis not when the unload was done but rather the date and time of the
last update that resulted in that update level on the database.

TYPE OF RECORD

The record may by ajournal of aschema or a data update or may be an unload for
schema or for data.

Record Number

Each record on the journal or unload is assigned a sequential number. When
specifying processing on the file, the unload/journal to be processed can be
selected with either the update level or the record number.

SIR/XS

Database

LIST STATS

LI ST STATS

Provides a status report about the database similar to the following:

Statistics for COVWANY

Dat abase nane

Creation Date/Tine
Last update Date/ Tinme
Updat e | evel

Aver age Records per Case
Max/ Current Nunmber of Cases
Max/ Current Nunmber of Records

Max/ Current Nunber of Record Types

Maxi mum | nput Col umms/ Li nes
Rect ype Col umm

Jour nal For Database

Case |d Variable

(A

Nunber of | ndex Levels

Max Entries Per |ndex Bl ock
| ndex/ Data Bl ock Size
Active/lnactive Data Bl ocks
Active/lnactive | ndex Bl ocks

Keysi ze In Bytes

M n/ Max Record Size

Nunmber of Tenporary Vari abl es
Maxi mum Nunmber of Data Vari abl es

Record Record

Total In Size In Entry Use
No. Name
Dat abase Wbrds Count
0 CIR
20 5 1
1 EMPLOYEE
20 8 1
2 occupP

30 1 1

COVPANY

Dec 06, 2005
Dec 08, 2005
3

1023
1000/ 20
1023000/ 114

30/ 3
80/1
5

ON

I D

2

509

1019/ 1019
2/0

2/0

8
1/8
0
10
Nunber of

Vari abl es

150

10: 46: 12
10: 49: 03

Maxi nmum

Per Case

100

SIR/XS Database 151

3 REVI EW 5 100
64 2 1

Secondary | ndexes
| ndex Nane Record
Vari abl es

NAVE EMPLOYEE
NAME ASC

Bl RTHDAY EMPLOYEE
Bl RTHDAY ASC

EDUC EMPLOYEE
EDUC ASC

GENDER ASC
EDUCI D EMPLOYEE
EDUC ASC

GENDER ASC

I D ASC

The information includes:
A) Overall Database Information

database name

current update level

date of creation, last update and last access
the current and maximum number of cases
the current and maximum number of records
the maximum key size

the minimum and maximum record size

the total number of common variables

size of the CIR

B) Information about each Record Type

number of variables

maximum records per case

total currently in the database

length of the record

number of times the record schema has been defined

C) Restructure Information (if any)

number of original variables
number of restructured variables

SIR/XS Database 152

update level for restructured records
D) Secondary index information (if any)
name of each index

record indexed
variables indexed and whether Ascending/Descending and if Upper case

SIR/XS Database 153

JOURNAL RESTORE

JOURNAL RESTORE [FILENAME = fileid]

[FROM = n]
[THRU = n] | [COUNT = n]
[NEXT]

Appliesjourna filesto a database to update it to a more current level. Any
schema changes are applied as well as updates to the data. The process expects
that the database has been recovered from a backup and, by default, looks for
journal records that correspond to updates starting at the current update level on
the database. It then applies all journals forward from that point to arrive at the
most up to date database possible from that journal.

Update level information may be obtained by LI ST STATS and | TEM ZE FI LE.
The update level listed for journalsisthe level the database was at after the
update was originally done. So, for example, if the restored database is at level 40,
thefirst journal to be applied would be update level 41.

JOURNAL RESTORE can restore partial journal records from abrupt interruptions of
journaled update sessions. If a premature End-of-Record condition is encountered,
the database is restored to a useable (non-corrupt) state, with as much data intact
as possible. However if alogical set of updates were being done and were
interrupted, data may be in an inconsistent state between records. It is
recommended that a VERI FY FI LE isdone after ajournal has been restored.

The options on the command are:

FI LENAMVE
Specifies the name of the file that contains the journal. The default journal fileis

database file .sr5. For example:
JOURNAL RESTORE FI LENAME = ' COVPANY. JNL'
FROM

Specifies that when journal entries are applied, instead of starting from the current
database level, they start from the specified level. This may be higher or lower
than the current database level. Specify the starting update level which isone less
than the first journal to be applied.

SIR/XS Database 154

NEXT
Specifies that one journal entry is applied to the database to take it to the next

update level.
THRU

Specifies that journal entries going up to and including the one at update level "n"
are applied to the database. UPDATE is a synonym. For example:

JOURNAL RESTORE FI LENAME = ' COVPANY. JNL'
THRU = 42
COUNT

Specifies that journal entries on the file from the start including the "nth"
specified on the count are applied to the database. Thisis an aternative to
specifying update level, which is the recommended approach. Do not specify both
options. For example:

JOURNAL RESTORE FI LENAME = ' COVPANY. JNL'
COUNT = 10

SIR/XS Database 155

JOURNAL ROLLBACK

JOURNAL ROLLBACK [FILENAME = fileid] [UPDATE = n] [COUNT =
n]

Appliesjournal files to a database to undo updates and roll it back to a previous
level. Only applies to data updates.

If adatabase update run is interrupted, this might be used to roll back to a known
update level before re-running the update process

JOURNAL ROLLBACK can restore partial journal records from abrupt interruptions
of journaled update sessions. It isrecommended that a VERI FY FI LE is done after
ajournal has been rolled back.

The options on the command are:

FI LENANVE
Specifies the name of the file that contains the journal. The default journal fileis

database file .sr5. For example:
JOURNAL ROLLBACK FI LENAME = ' COVPANY. JNL'
UPDATE

Specifies that the database is rolled back to this update level. If no update level is
specified, it is expected that the database update run was interrupted and that the
update level was not changed. This means that only journal records that were
created as part of the last, interrupted run are rolled back. The database remains at
its current update level and, after the rollback, should be in the same state as when
the aborted run started. Thiswould normally be what was wanted. Update level

information may be obtained by LI ST STATS and | TEM ZE FI LE.
COUNT

Specifies that all journal entries on the file, starting at the last and including the
"nth" specified on the count, are rolled back and so 'undon€’. Thisis an alternative
to specifying update level, which is the recommended approach. Do not specify
both options.

SIR/XS Database 156

VERIFY FILE

VERI FY FILE [ALL]
[Cl RKEY]
[Cl RDATA]

[CHECK]

[CCF]

[RECKEY]

[RECDATA]

[RCF]

[COUNT= total,increnent,start]
[PATCH]

VERI FY FI LE examines the database files for damage and corrects errors where
possible. DBA-level security clearance is needed if any keywords are specified,
since potentially secure data might be reveal ed.

The corruption flag is set when any errors are detected in the database. It is
cleared when the database is verified and found to contain no errors.

The keywords control the amount of checking and the amount of output generated
when verifying each data record. The error message number is followed by a
character that signals the type of error message: | for Informative, N for Non-
correctable, C for Correctable, F for Fatal. The loading factors are printed with 2
decimal digits. Errors are listed by type with informative messages as appropriate.

ALL

Selects all the options. Use this option carefully since the output generated is
voluminous. (Not an option on the menu system but equivalent to selecting all
options.)

Cl RKEY

Liststhe values of al fieldsin the CIR record key.
Cl RDATA

Lists the values of CIR variables.
CHECK

Checks the value of each variable against its schema specified criteria. Diagnostic

messages are generated when bad values are encountered.
CCF

Clears the corruption flag. Use this option carefully; clearing the flag may mean
that the problem resurfaces in the future after more work has been done and

recovery may be difficult.
RECKEY

SIR/XS

Database 157

Liststhe values of al fieldsin arecord key.
RECDATA

Lists the values of all record variables.
RCF

Lists the record count fields from the CIR. These counts are the number of data

records of each type that belong to each case.
COUNT

Retrieves a subset of cases from the database. There are three values:
Tot al

specifies the number of casesto retrieve.
I ncrement

specifies the "skipping factor" for retrieving cases. e.g. 3 checks every third case.
Start

specifies the ordinal of thefirst case to process. eg. 3 starts on the third case.
PATCH

Repairs all repairable problems. Run VERI FY FI LE again to verify the patched
database to clear the corruption flag if no errors are detected.

VERIFY FILE Error Codes

The following error messages show the types of problems detected. Most of these
errorsare "major", and if any of them occur, the datafile is probably unsaveable.
(For an explanation of the structure of the database, what is a PRU, etc., please
see Tuning and Efficiency.)

01 index pru out of range.

1index level

2 index pru that is out of range

3index pruin error

02 index entry count error. Printed if the header contains anillegal entry count.
1index level

2 index entry found

3index pruin error

03 index entry count mismatch. Printed if total records below count does not
match upper level index count.

1index level

2 index count calculated

3 index count in upper level

4 index pruin error

04 db pru out of range.

lillegal pru ordina

2dbpruinerror

05 db entry count mismatch. Printed if the entry count in the header does not
match the db.

1 db entry found

2 db entry in header

3dbpruinerror

SIR/XS

Database 158

06 db size (words used) mismatch. Printed if the number of words used in the
header does not match the db.

1 db used found

2 db used in header

3dbpruinerror

07 CIR record count mismatch. Printed on completion of case, if the correct
number of records for each record typeisin error.

1 case data file ord:case ord (last case)

2 rectype

3 mismatch (- if too many, + if not enough)

08 CIR record count limit error. Printed if arecord count field exceeds some limit.
1 case datafile ord:case ord (last case)

2 rectype

3 count field in error

4 |legal max record count for rectype

09 CIR record count exceeded. Printed for any record detected that exceeds the
CIR record count field.

1 case datafile ord:case ord (last case)

2 record ordinal

3 rectype

10 record locked. Informational only, not an error per se.

1 case datafile ord:case ord (last case)

2 record ordinal

3 rectype

11 wrong length CIR.

1 case data file ord:case ord (last case)

2 incirn detected

3incirn

4 db pruinerror

12 wrong length data record.

1 case data file ord:case ord (last case)

2 record ordinal

3 recdrn detected

4 recdrn

5db pruinerror

13 illegal rectype encountered.

1 case data file ord:case ord (last case)

2 record ordinal

3 rectype detected

4db pruinerror

14 rectype record total mismatch. Printed if at end of run the number of records
for agiven rectypeisin error

1 rectype

2 reccnt detected

3 reccnt

SIR/XS

Database 159

15 database record total mismatch. Printed if at end of run there is arecord total
mismatch

1 dinrec detected

2 dinrec

16 case total error. Printed if at end of run total number of cases found does not
equal count.

1 dincas detected

2 dincas

17 Record or Case limit exceeded.

1 record of case limit reached

2 master index overflow

3 datafileisfull

18, 19 used ind block error. Printed if number of ind or db blocksread isin error
1 number detected

2 number should be

20 data error: missing error

21 data error: range error

22 data error: catint error

23 data error: valid error

24 Master Index is Full. If this occurs, the capacity of the database has been
reached. Possible solutions are to increase PRU size or to decrease maximum key
size.

25 index key out of order. Current key in an index block is not greater than the
previous key

1 index block pru

2 index block level

3 case datafile ord:case ord (last case)

4 record ordinal

26 data key out of order. Current key in the data block is not greater than the
previous key

1 data block pru

2 case datafile ord:case ord (last case)

3 record ordinal

27 non-matching index block keys. First key in index block does not match key in
higher level block pointing to it

1 index block pru

2 index block level

3 case datafile ord:case ord (last case)

4 record ordinal

28 non-matching dataindex block keys. First key in data block does not match
key inindex block pointing to it

1 data block pru

2 case datafile ord:case ord (last case)

3 record ordinal

SIR/XS Database 160

29 overflow block has been used message. An overflow block is reserved when
the database is created. If the database requires more space and cannot obtain it it
uses the overflow block to attempt to maintain database integrity.

30 Missing CIR: caseid changed but no CIR record.

1 case data file ord:case ord (last case)

2 rec ordinal

3 rectype

Secondary Index verification messages

Any secondary indexes on the database are verified. If there is something wrong,
the following error messages may be produced. All of these are serious errors and
you need to drop and rebuild the index:

***ERROR - couldn't read index PRU - unable to read an index block from disk.
***ERROR - Zero index PRU - should have a block number but have zero.
***ERROR - couldn't read data PRU - unable to read a data block from disk.
***ERROR - Zero data PRU - should have a block number but have zero.
***ERROR - index key mismatch - as the various index levels were processed, a
mismatch on the key was found.

***ERROR - data key mismatch - at the bottom level the data block pointed to by
the index did not match on key

***ERROR - index count mismatch - as the various index levels were processed,
amismatch on the counts was found *** ERROR - data count mismatch - at the
bottom level the data block pointed to by the index did not match on counts

If one of these errors occurs, supplementary information is printed including:
LEVEL - Theindex level being processed

PRU - The block being referenced

ENTRIES - The number of entries

COUNT - The count of entries

CURRENT ENTRY - The entry being processed

SIR/XS

Database 161

DOWNLOAD

DOWNLOAD FI LENAME= fi | enane
[MESSAGES= ON | OFF]

Reads the text file produced by UPLOAD from a journal and applies these changes
to the database. Database administrator security isrequired to run this utility.

FI LENAME

Specifies the name of the input file.
DOWNLOAD FI LENAME = ' JOURNAL. UPL'
MESSAGES

Specifies whether messages are issued. Messages include whether arecord exists
in the database that is marked as a new record on the upload file. By default,
messages are off.

For example

DOMWNLOAD FI LENAME = ' JOURNAL. UPL' MESSAGES = ON

SIR/XS Database 162

SIR MERGE

SI R MERCGE FI LENAME = input_file
DATABASE = dat abase [PASSWORD = passwor d]
[SECURI TY = read password]
RECTYPES = ALL | source [:targetno, nane] [(expression)]
[BOOLEAN = (| og_expr)]
[NODATA]
[RENAME = [source](source_list = target_list)]
[UPDATE = ADD | REPLACE]

Merges record types from a copy of one database (source) into an existing
database (target) that is the database currently being used. The source is abinary
file. The FI LENAME, DATABASE, and PASSWORD, SECURI TY clausesif required on
this database, must appear before any other clauses. DBA write security for the
target database is required to use this command. This utility is not available
through the menu system.

If the record typeis aready defined in the target database schema, the source and
target record type definitions must match exactly. If a new record typeis being
merged, the schema for the new record type is created containing everything from
the source database schema definition except the | F, COVPUTE, RECODE,
ACCEPT REC | F and REJECT REC | F statements.

If the target database is caseless, the case id and CIR's on the source database are
ignored. A caseless source cannot be merged into a case structured target. (Use
SI R SAVE FI LE to create a case structured database from a casel ess database.)

The options on this command are:

FI LENAVE

Specifies the name of the source binary fileto merge.
DATABASE

Specifies the source database name.

PASSWORD

Specifies the source database password.

SECURI TY

SIR/XS Database 163

Specifies the read security password of the source database. The read password
must be the DBA level password.

SIR MERGE FILENAME = ' COVPANY. UNL'
DATABASE = COVPANY
PASSWORD = COVPANY
SECURITY = H GH

RECTYPES
Specifies the record types to merge. The CIR of the source database is merged if

the variables in the target CIR match exactly.
ALL

Merges al source record types.
source

Merges the specified record types. The record type may be a name or number.
:targetno,name

Merges the source record types with the specified target record types. Do not
leave any blanks between the colon : and the number. Specify both the number
and name of the target record.

(expression)

Specifies alogical expression to select records. This can reference both common
variables and record variables from the source record type(s).

If the RENAME clause is used, specify the new name of the variable in this clause.
BOOLEAN

Specifiesalogica expression referencing common variables to select cases. If the

expression is TRUE the case is merged.
NCODATA

Specifies that no datais merged. The schema for the specified (new) record
type(s) is added.

RENANVE

Specifies new names for variables merged from the source record types. Useif the
source and target records have different names for the same variable or to change
a variable name from the source name when a new record type is being created.
RENANME does not change variable names on existing target records. Specify the
RENAME= rectype (source variable list = target variable list) form when more than

one record type is being merged. The rectype is the source rectype:
SIR MERGE ... RENAME = 1 (EMPNAME = NAME)
UPDATE

Specifies the action to take when the record identifiers on the source record match

those of arecord in the target database.
ADD

Specifies that only new records are created. If a source record has a key that
matches an existing record on the target database, the source record is rejected

and amessage is issued.
REPLACE

Specifies that records are only replaced. If a source record has a key that does not
match arecord on the target database, the source record is rejected and a message
isissued.

SIR/XS Database 164

By default, both new records are added to the database and existing records are
replaced.

SIR/XS

Database 165

RELOAD FILE

RELOAD FI LE dbnane
FILENAME = fileid
[PASSWORD = passwor d]
[SECURI TY = rsec, wsec]
[UPDATE = n | FILE= n]
[LOADI NG = n]
[NOFCASES = n]
[AVGREC = n]
[RESTART]

Recreates a database. The input isabinary file that is a copy of a database.

The reload database name and password must be the name and password of the
database on the unload file. To change database names and passwords, specify the
new name and password on the UNLOAD.

Optionally separate multiple parameters on the command with slashes.

FI LENAVE

Specifies the name of the binary file that contains the input. If there is more than
one copy of adatabase on the file (which happens if the database is UNLOADed to
the same file more than once), specify UPDATE= n or FI LE= n to reload a copy
other than the first.

PASSWORD

Specifies the database password. Must match the password of the unloaded
database.

SECURI TY

Specifies the read and write security of the database. Specify an asterisk *' for a
null security password.

UPDATE

Specifies the update level to reload if there are multiple copies of the database on
the unload file. | TEM ZE FI LE reports the update levels of multiple database
copieson afile.

FI LE

Specifies the file number of the database to reload if there are multiple copies of
the database on the unload file.

LOADI NG

Specifies the fraction of each disk block to fill with data.

AVGREC

SIR/XS Database 166

Specifiesanew value for RECS PER CASE in the Case Schema definition for a
case-structured database. The specified value is the average number of records per
case.

NOFCASES

Specifiesanew valuefor N OF CASES in the Case Schema definition for a case-
structured database. The specified value is an upper limit on the number of cases

in the reloaded database.
RESTART

Resets the database update level to 1. Thisis done automatically when the update
level on the rel oaded database would be greater than 32268.

Example:

RELOAD FI LE MYDBMS
FI LENAMVE = ' COVPANY. UNL'
UPDATE = 52

SIR/XS

Database 167

Tabfilesand Tables

A TableisaRelational Table (or flat file) that is a number of occurrences (from 0
to n) of asingletype of record that has a number of variables (or columns). For
example, a CUSTOVER table might have all of the customers with customer
number, name, address and credit limit as variables. The individual variables that
make up atable are defined including the variables name, format, data type,
missing values and value |labels. Tables can be created, defined, populated,
modified and retrieved from.

Tables are physically held in Tabfiles. A Tabfileisaphysical file on disk that
containsrelational data tables, schema definitions for those tables, indexes to the
tables and system tables. A tabfile is independent of all other tabfilesand is
independent from any SIR/XS database. A tabfileisthe largest unit that exists for
security and access control. A tabfile can hold multiple tables. Before accessing a
table, the appropriate tabfile must be connected.

Tables from multiple tabfiles can be accessed and retrieved by SQL, VisualPQL
and FORMS.

A SIR/XS session may be connected to multiple tabfiles at the same time. A
default tabfile can be defined and this tabfile is used whenever atabfile nameis
not specified. Whenever tables are referenced, the tabfile can be specified
explicitly or the default can be used. Tabfiles can only be updated by one user at
one time.

AnIndex isaway of accessing atable using the values of a particular variable as
the key. Indexes can be defined on any variable or combination of variables. An
index can be defined as only allowing unique values (for example Customer
Number) or can have multiple entries for records al with the same value (for
example Last Name). Indexes can be used to process tables randomly or in index
sequence. If atableis processed without an index, it isretrieved sequentialy in
the order in which it was created. Once an index is defined, it is built from any
existing data and is automatically maintained as the table is updated.

Tabfiles, tables and indexes may be defined in a number of ways using SQL, the
VisualPQL procedure SAVE TABLE or the menus. In addition, there are specific
SIR/XS commands that deal with tabfiles and tables. These are:

CONNECT TABFI LE
CREATE TABFI LE
CREATE | NDEX

SIR/XS Database 168

VERI FY TABFI LE

SIR/XS

Database 169

CONNECT TABFILE

CONNECT TABFI LE tabfile [ON fil enane]

Connects the specified tabfile. A tabfile must be connected before it can be used.
A pre-compiled Visual PQL program can connect atabfile when it runs, but, if
you need to compile aVisualPQL program that references a tabfile, the tabfile
must be connected first.

The oN clause identifies the physical file where the name of the physical fileis not
the internal tabfile name plus. t bf .

SIR/XS Database 170

CREATE TABFILE

CREATE TABFILE tabfile-nane
[FI LENAME fil enane]

[1 DENT BY grpnamne [grppass] [.usernane[userpass]]]
[JOURNAL fil enane]
[BLOCKS n]

Creates atabfile. The tabfile name is the name used in al other commands. This
name is stored on the physical file and is the same name used to CONNECT to this
filein subsequent sessions. A tabfile is automatically connected when created.

FI LENAME

A filename for the tabfile. If thisis not specified, the filename is created from the
tabfile name plus a suffix of . t bf and this must be avalid filename on your
operating system.

JOURNAL fil enane

Specifies that journaling is turned on and names the operating system file to use.
If the journal file is not there when the tabfile is updated, a new journal is created.

If the journal isthere, new journal datais added to the end of thefile.
| DENT BY

Creates the initial security definitions for access to the tabfile.

Group name and password

Specify a group name who has DBA permission for the tabfile. If thisis not
specified, the tabfile is created with no security; this cannot be changed and no
security can be assigned to any individual table on that tabfile. Optionally specify
agroup password

User name and password

Further restricts DBA access to a second level of name and optional password.
BLOCKS n

Specifies the number of blocks to create a physical block. In general do not
specify this asthe default is adequate. The default of 1 gives an actual block size
of 2k bytes. A specification of 2 gives 4k bytes and so on. The number must be a
positive integer. A block must be able to hold the largest physical record.

SIR/XS Database 171

CREATE INDEX

CREATE [UNI QUE] | NDEX i ndex-name
ON [tabfile.]table (colum [ASCH DESC], ...)
[PCTFREE i nt eger _val ue]

Creates an index for atable. An index provides direct access to a subset of
records.

ON

Select the tabfile and table to create the index on.
i ndex nane

The name used to refer to the index. Must be unique on thistable.

UNI QUE

Specifies that two rows cannot have the same index value. Rows with avalue the
same as an existing row arerejected. If an index is created for atable, and existing
rows contain identical key values, then the index is not built and an error message
isissued.

Columns

Specifies the column(s) comprising the index in maor to minor sequence. For
example: if (Sex, Name) isthe index, thisretrieves all Maes by name, then all
females by name. If (Name, Sex) isthe index, everyone with the same name is
retrieved together.

ASC | DESC specifies Ascending or Descending sequence for a particular variable.

Ascending is the default.
PCTFREE

Specifies the percentage of free space to leave in the index blocks. Thisisused as
new index entries are made. If the table is updated on aregular basis, take the
50% default. If the table is very static and the index is not updated, or is updated
sequentialy, specify alow figure.

Examples:

CREATE UNI QUE | NDEX XI D ON MYFI LE. EMPLOYEE (| D)
CREATE | NDEX XNAME ON MYFI LE. EMPLOYEE (LASTNAME, FI RSTNAME)
CREATE | NDEX XREVI EW DATE ON MyFI LE. EMPLOYEE (REVDATE DESC)

SIR/XS Database 172

VERIFY TABFILE

VERI FY TABFI LE tabfile [ON fil enane]

Checks all of the tables on the specified tabfile. If atable or tables are corrupt,
VERI FY issues a notice of the affected tables and prompts on whether to purge the
corrupted tables.

If atabfileis corrupt, you may have difficulty CONNECTINg to it to verify it. If you
have DBA permissions, CONNECT to a corrupt table by specifying READ access
only.

The ON clause is used to identify athe physical file where the name of the physical
fileis not theinternal tabfile name plus. t bf .

SIR/XS Database 173

Tuning and Efficiency

The information in this topic covers the way SIR/XS manages datainternally.

Y ou do not need to know thisto use SIR/XS successfully or to implement SIR/XS
systems. It is here if required for database design on large or complex systems, or
tuning particular applications.

Efficiency in an application is difficult to achieve by tuning after the system is
developed. If efficiency is aconcern, the best time to consider these issuesis at
the design stage. The first thing to determine is whether efficiency isamajor
concern and to identify possible areas where these concerns may arise. For
example:

DataEntry.

Is dataentry interactive ?

How many people are going to require simultaneous access ?

What sort of turnaround is required ?

What response times are necessary ?

Regular Batch Processes.

Are there major processing tasks that must happen every day, week,
month ?

Are there reports that must be done very frequently ?

Are there reports where the results must be available immediately ?
On-line Queries.

How isthe data accessed ?

Areinquiries always on particular records or are sets of records retrieved
that match given conditions ?

How up to date does the data need to be ?

Disk Space.

Isthe amount of data to hold relatively trivial for this size machineor isit
going to have amajor impact on disk storage ?

Can disk storage be ignored for all practical purposes or do you have to
have to make the most efficient use possible ?

Recovery.

How is data going to be protected in case of problems ?

What concurrent updates are going to happen ?

What journaling strategy is appropriate ?

SIR/XS

Database 174

Disk Space

The amount of space that a database occupies on the disk can be a concern with
larger databases. There are often trade-offs between processing efficiency and
storage and there are several things that can be done to limit the size of databases.

Database Subsets

All of the data may not be needed on-line. There are utilities that create a subset
of adatabase. There are utilities that merge subsets into the master database. For
example, if an application normally only deals with data from the current year,
archive the datafor previous years and conserve disk space. If the old information
is needed for year end reports, reload it, use it and then archive it again.

CIR Size

The common information record or CIR on a case structured database occurs once
for each case and holds both record counts and common data.

Record Counts

The CIR holds space to count occurrences of each possible record type on the
case. Allowing for large numbers of record types means alarge CIR. In particular,
itisvery wasteful to allow alarge number of record types (MAX REC TYPES) with
the intention of using very few e.g. do not defineaMAX REC TYPES 1000 just to
use a few record typesin various ranges (100+, 200+, 300+) to mean something.
For maximum efficiency, start record types at 1 and assigned numbers
sequentialy.

The MaxX REC COUNT affects the size of each counter (1, 2 or 4 bytes). So a MAX
REC TYPES of 1,000 and amMaX REC TYPES of 1,000,000 would mean 4K of
record counts per CIR.

Common Vars

Defining a variable as a common var means that it is physically stored in the CIR,
not in arecord. Very often, there is only one occurrence of acommon var in a
case, so storage isidentical whether held as acommon or arecord variable. If a
common var isdefined in arecord that does occur multiple times, itis only
physically stored once, this value being the latest value written.

Common vars are retrieved very efficiently regardless of a particular record type
that is being processed. (Note that common vars cannot be used as keysin
secondary indexes as they are not physically part of the record.)

SIR/XS Database 175

The Loading Factor

Records are stored in "data blocks', the exact size of a data block varying from
database to database. Records are added to a data block, and when that gets filled
up, another block is created and so on. Records are maintained in sequence within
ablock and some empty space is left on each data block for the insertion of new
records. The amount of space on each data block is controlled by the loading
factor and is expressed as a decimal representing a percentage. The default
loading factor on updatesis .5 or 50 percent.

Using the default, when a data block fills up, it is split, with half of the records
staying in the original block and half going to the new block. Fifty percentisa
good figure for active databases. It means however, that as much as fifty percent
of the data file may be empty. This may be unacceptable on large databases and
on relatively static databases.

The amount of free spaceis controlled with the loading factor clause on database
updating and database creating commands and utilities.

When a database is reloaded or imported, the datais in sequence and the default
loading factor is set to .99 to make maximum use of disk space.

The Database | ndex

The index to the datarecords in a database is built from the key variables. The
key of thefirst record in each data block isin the index. This means that thereis
some redundancy between data in the records and data in the index.

The larger the size of the keys, the larger the index. The maximum size keysin
any record in a database affects the size of the index. If an application has one
record type with amuch longer key than all others, try to reduce thisif possible.
For example, do not have one record type indexed on a 60 character name, if all
other record types in the database have unique numbers.

The maximum possible size of the database key or any secondary index is 320
characters.

In aseries of record types that share higher level keyfields, each of these records
store much of the same key information. It is therefore sensible to minimise the
size of these keys.

For example, atext retrieval system might use words to index documents.
However aword can be very long and storing these as keys for documentsis
wasteful of space. Assign each word a number, such that the text of the word is
only stored once and all other key indexing is through the word number.

SIR/XS Database 176

Variable Sizes

It takes more space to store strings than integers. Whenever there is a choice,
storing a number is more space efficient. If astring has a defined set of values,
either define the variable as an integer and assign value labels or defineit asa
categorical variable.

SIR/X'S compresses string variables by stripping trailing blanks to hold only the
data. Specifying along maximum length for string variable incurs little overhead
provided it is not used in any keys or secondary indexes. Note that the maximum
record sizeislimited to 32k bytes and is tested assuming all strings are at
maximum defined length.

The size of integers depends on the maximum vaue. One byte holds integersin
the range of -127 through +123; two bytes holds integersin the range -127* 256
through +127* 256 (approximately 32,000), four bytes holds integersin the range
-127* 256* 256* 256 through +127* 256* 256* 256 (approximately 2,100,000,000).

SIR/XS stores an actual value in adatafield to indicate missing values. A variable
can have four possible missing values. SIR/XS uses the upper four values on
integers for the three missing values that can be specified and the system missing
value UNDEFI NED.

Real numbers are stored in 4 or 8 bytes.
Schema Specifications

SIR/XS assigns internal formats according to the external format of the data
defined in the schema. Disk space can be saved by a careful choice of schema
specifications.

For example, a variable with an input format of "13" requires 2 bytes of storage
because any value between -99 and 999 in the input field can be input. If thisfield
contains a 2-digit variable with aleading blank or plus sign (+), specify the format
as"1X,12". This saves one byte of storage space in each data record containing
this variable since 2-digit variables are stored in asingle byte.

VAR RANGES

Specify VAR RANGES if the variable has a narrower range of values than given by
the number of digits. The value is used to calcul ate the minimum number of bytes
needed to store the data on disk. For example, specifying a VAR RANGE of -99 to
+99 on avariable where 3 input columns are allowed saves space. Consider a
potential saving of disk space by defining a proper VAR RANGE.

CATEGORICAL

SIR/XS Database 177

Categorical variables offer an efficient way to store strings that are predefined. A
categorical variable is a character string that has a limited number of values
specified as an ordered list. When the datais input as a string, it is compared to
the list and the number that corresponds to the matching position in thelist is
stored instead of the value. This has the advantage that only valid entries are held
and considerable space is saved. In programs and reports, the full string is
displayed and retrieved.

For example, a categorical variable might be alist of the names of American
states. If 'Alabama were the first entry in the list, when ‘Alabama isinput, '1' is
stored.

Thelist isheld in the datadictionary and is searched sequentialy. It isavery
simple and easy to use facility for short lists that are not updated very often. A
categorical variable takes one byte (for up to 123 values) or two bytes for longer
lists.

Do not use categorical variablesif there are hundreds or thousands of entries, or
there is more information about each entry than just the name, or users have to
modify the entries, use tables with indexes to store this type of reference data.

SCALED VARS

SCALED VARS stores numbers as integers when they have a predefined number of
decimal places. Thisis more efficient than using floating point R*8 and can be
more accurate than R*4.

For example, suppose a variable XPCT that holds a percentage and can have a
range of O through 100 and a precision of one decimal point: Define XPCT as
integer with an "14" input format and specify SCALED VARS XPCT (-1).Oninput,
supply the data as a number that includes the physical decimal point, i.e. 10.3,
40.0. The XPCT scaled integer is only going to require two bytesto store (since the
maximum physical digits stored are 1000 i.e. 100.0).

If the precision for the percentage example were 2 digits after the decimal point,
specify an input format of 16 (nnn.nn) allowing for the decimal point and 5
numbers and specify VAR RANGES (0. 00, 100. 00) that tells SIR/XS that 2 bytes
are sufficient.

Even more storage may be saved with SCALED VARS, on numbers that are very
small but have only asmall number of significant digits. For example, the specific
gravity of fluidsin the human body (blood, urine, etc.), are often measured with a
3 digit precision. To maintain precision in floating point, specify an | NPUT
FORMAT of D4.3. SIR/XS would use 8 bytes of storage because of the precision. If
thisvariableisread as"12" integer and specify SCALED VARS (-3), 6 bytesis

SIR/XS Database 178

saved per value and accuracy is preserved. (The variable can hold values up to
32.763 that isample for an S.G. measurement.)

SIR/XS

Database 179

Processing Efficiency

Disk Input/Output (1/0) is the most time consuming operation on a computer and
retrieval's should be designed to minimise |/O.

Using Keys

The index is used to retrieve records whenever keys are specified in aretrieval
statement. In case structured databases, the index is ordered by case, record type
and by the key variables. In caseless databases, the index is ordered by record
type and then key variables.

Whenever possible use the keysto retrieve records. To retrieve a single record,
specify the whole key. To retrieve a set of records, specify the high level keys that
define the set. Whenever possible, specify the keys as part of the retrieval
statement, rather than retrieving all the records and testing values in the program.

Efficient On-Line Access
If the key values are known, then data can be retrieved efficiently. Without keys,
an alternative access route is needed. Doing a serial search for particular records

on-line, without knowing the high level keysis aslow process.

Define secondary indexes to provide access to subsets of records. Both databases
and tables provide automatic secondary indexes.

SIR/XS

Database 180

Efficient Batch Processing

Batch processing (the running of jobsin a non-interactive way), typically means
that a user is not at aterminal waiting for the job to finish. Processing speed tends
not to be of the same concern asit isfor on-line access. A process that takes 2
minutes as compared to 1 minute is unlikely to be of concern to anyone. However
there may be some concerns when processing thousands of transactions that run
for hours.

Consider sorting the input transactions to ensure that any serial processing
happens only once.

Consider adding additional indexes or keys to avoid an application having to do
serial searches of recordsto find those of interest,

One common design issue involves processing records after a certain amount of
time has elapsed. For example, sending a letter to all patients who have not
attended for six months. Consider a secondary index by date for planned future
attendances. Update this at the time the visit data is updated and then the system
can process by date rather than serially searching.

Efficiency in Batch Data I nput

Batch datainput is the loading of datafrom filesinto the database through the
batch data input utilities. This can be done interactively or in batch mode.

For the most efficient processing, sort the data for a batch data input run into the
same sequence as the data base key. Sort on :

the CASE ID
the record number
the key fields

Thisway, the batch data input can be accomplished by an almost sequential
processing of the data base.

It is efficient to process the records by record type. Each time a new record typeis
processed, the description of this record type must be loaded from the dictionary.
If different record types are processed together and there are multiple records for
each case, this saves accesses to the case block but requires multiple accessto the
dictionary. The most efficient processing depends on the exact mix of input.

SIR/XS Database 181

Database I nternal Structure

Therecordsin a SIR/XS database are stored in adirect access file with an
internal index sequential B-Tree index. The database contains two types of
blocks: data blocks and index blocks. Data blocks contain the data records, index
blocks contain the information needed to access any record in the data base.
Blocks can be in any sequence on the disk. Within one block, records are held in
sequence. Thefirst record in each block isindexed.

When arecord is added, it is stored on the correct block in sequence. This means
that ablock can get full. If this happens SIR/XS creates a second block to store
the additional data, and creates another entry in the index. New blocks are created
as necessary. A new block is either alocated from existing available blocks or
from new blocks at the end of the file. Blocks become available if the data on
them is deleted.

SIR/XS holds the case id, record number and key fields asthe key. All keys are
the same length, which is either the maximum length of adefined key or the Max
KEY SI ZE specified. Pay attention to the size of the key. A key is held for each
data block in the index and the key is held for each record in each data block.
Defining avery large key for one record type impacts the overall database size,
regardless of the number of occurrences of that record type.

At the lowest level, an index consists of akey and a pointer to the data block that
has that key asthe lowest value. At the highest level thereis a single Master Index
block. This contains a key and a pointer to the index block that has that key as the
lowest value. If necessary, because of the size of a database, there may be further
index levels between the Master index and the lowest level index. When akey is
specified, SIR/X S uses the master index (and any other index levels) that point to
the lowest level index block that corresponds to the value given and retrieves that
data block.

SIR/XS

Database 182

Block Organisation

SIR/XS calculates the size of data blocks and index blocks for a particular
database based on keysize, maximum record size and maximum numbers of
records when it first puts any datainto the database. The block sizeis between a
minimum and maximum (from 2K bytesto 32K bytes on all current systems). The
data blocks and index blocks in a database may be different sizesthoughin a
particular database all data blocks are the same size and all index blocks are the
same size.

When ablock is created on disk, it is assigned a number known as the PRU or
physical record unit that can then be used to retrieve the block directly. In
operating system terms, a SIR block consists of multiple physical disk blocks
since most operating systems write in fixed blocks.

The LI ST STATS command gives information about the database including the

'I NDEX/ DATA BLOCK SI ZE'. This gives the sizes of the SIR/XS index and data
blocks. Sizes are given in double words - eight bytes on current systems. Sizes do
not include the control information SIR/XS holds on each block. A logical block
of 2K is 256 doublewords. A typical size for logical blocks for small keys and
small data records would be 253/254.

Data Blocks

Records are stored in blocks in the order of the keys:

case 1 CIR of case 1
records of type 1 within case 1
records of type 2 within case 1

case 2 CIR of case 2
records of type 1 within case 2
records of type 2 within case 2

case 3 CIR of case 3

SIR/XSholds al of the records in a data block in sequence and to do this it
constructs an extra key area at the beginning of each record and holds keys there
separately from the data. All record key areas are the same length, which isthe
same as the keys held for the index.

SIR/XS Database 183

Data block size depends on the size of records defined. If there are not any very
long records, SIR/XS uses one block (i.e. 2K). SIR/XStriesto allocate a block
sizethat is big enough to hold 4 of the largest records. The largest block sizeis
32K. If the maximum record length is between 512 bytes and 8k bytes, then
SIR/XS dlocates ablock size between 2K and 32K. A datarecord isheld in one
block. That is, arecord is not split across blocks so the maximum size for asingle
record typeis 32K.

SIR/XS Database 184

L oading Factor

When SIR/XS needs to insert data that does not fit in the original data blocks, it
creates a new block and splits the original data leaving some space on each block.
The amount of space left on ablock when it is split is determined by the "L oading
Factor"”.

A loading factor can be specified on aretrieval update, a batch datainput or on a
utility update run such as RELOAD. This affects the way afull block is split. The
factor isanumber between 0 and 1 and the default is .5 on updates and .99 on
imports and reloads. The most efficient database is one where each block is
loaded to the maximum since this minimises the amount of disk space used and
makes retrievals more efficient by reducing the number of disk I/Os. However, a
high loading factor for existing blocks can affect the ways that updates work. To
take some examples:

Example Loading Factor Effects

If aloading factor of .99 is specified on a RELOAD, then all the blocks are
approximately full. Suppose that Batch Data Input is then used to add alarge
amount of data at the end of the database, say with an .99% loading factor. Again
all blocks are approximately full. (Blocks have to hold whole records and each
record is a different length. So when arecord does not fit into ablock a certain
amount of space is left free. This space varies from block to block.)

Now suppose that a Retrieval Update adds records randomly using a loading
factor of .8. At some point a block becomes full. The record being added at that
timeisinserted in the correct place and 20% of the space on that block is made
available by copying those records to a new block and entering that into the index.
If the original block is added to further with data that belongs in that block (i.e.
with akey lower than an existing record in that block or than the lowest key in the
next block) then again it becomes full and again split with the next new block
again taking 20%. Thusit is possible under some sequences of updates that many
new blocks are only 20% full. If the loading factor were higher, the result would
be even worse. Adding data in reverse key sequence with a high loading factor
would produce very poor block usage.

The best loading factor depends on the nature of the activity at thetime. In
general, adding in sequence at the end of the database is best served by factors
nearer to 1. Randomly adding data throughout the database is best served by
having enough space available for the inserts to work without splitting blocks and,
without specific knowledge as to the sequence of updates, aloading factor of .5
should be used.

SIR/XS Database 185

SIR/XS uses .5 as adefault for updates and .99 as a default for reloads and
imports.

The actual, exact loading is reported by the VERI FY FI LE command. The number
reported gives an average over all blocksin the database. SIR/XS does not split
records across data blocks and each block contains complete records only. A
block contains amix of records. For example an 80% full block in the EMPLOYEE
database might contain data for 3 or 4 employees and as such might have say 4
CIRs, 4 Employee records, 7 Position records and 13 review records. Thus the
exact loading of the block depends on the exact mix of records.

Index Blocks
The key is comprised of:

the CASE ID
the record type number (O for the CIR)
the Key Fields

Each key has the same length - itslength is either defined implicitly in the schema
or by the MAX KEY SI ZE command.

The index holds the key of the lowest record in each data block. An index block
holds 'n' entries depending on the size of the key. If normal size keys are
specified, say up to about 80 bytes, SIR/XS uses the minimum 2K block size;
after that SIR/XS increases theindex block size. Theindex block sizeisawaysa
multiple of the minimum size. If there are very large keys or a very high number
of data blocks, SIR/XS increase the size of the index block to cope with this.

Index Levels

There are always at least two levels of index, a Master Index, which isasingle
index block, and alow level index. There may be up to 6 levels of index. A six
level index can point to the number of keysin one index block raised to the power
of 6. For example, with 36 keysin ablock, asix level index copes with over
2,000,000,000 data blocks.

To illustrate the way index levels work, assume there are 80 keys per index block.
Oneindex block can point to 80 other blocks. If there are less than 80 blocks of
data, then there are only two index blocks. The master index and one low level
index block. The master index only has one entry. With 81 to 160 data blocks,
there are three index blocks, the master index with two entries, one index block
for the first 80 data blocks and the second for the next eighty blocks. This
continues on until there are 80* 80 data blocks, 80 index blocks and one master
index block with 80 entries. When the next data block is added, one of the low
level index blocksis used to create two new low level blocks. The original low

SIR/XS

Database 186

level index block isnow athird level index that contains just two entries pointing
to the two new low level indexes. As records are added, indexes split as
necessary. Thethird level takes the index capacity up to 80* 80* 80 data blocks.
This process continues as necessary.

At no one point in timeis there any major overhead or any need to reorganise the
database assuming that none of the limits specified in the schema definition are
reached.

Secondary I ndexes

All secondary indexes are held on a separate database file (.sr6). Thisis created
when the first index is created and deleted if the last index is deleted.

Each secondary index is physically very similar to a standard database. It contains
index blocks and data blocks. The sizes of these blocks are calculated in asimilar
way to the block size calculations for standard database blocks to ensure
reasonably efficient processing given the size of the secondary index key and the
maximum number of records of that type. Each index potentially has different
block sizes.

Each record in the data block in a secondary index has the secondary key as the
key and contains the standard database key as the data. Thus the size of these data
blocksis affected by the size of both keys.

SIR/XS

Database 187

Size Estimating

Once records have been added to the database, each physical data block contains
anumber of different record types. For size estimation, calculating the number of
data blocks each record type would take gives a reasonabl e estimate of disk space
requirements. In addition, space isrequired for the dictionary and procedures but
typically these are relatively small requirements. See Procedure File for further
details on managing a procedurefile.

The following discussion refersto the LI ST STATS output listed at the bottom of
this page.

Fromthe LI ST STATS, find the data block size in double words. For
example 254.

Fromthe LI ST STATS find the keysize in bytes. Convert thisto double
words by dividing by eight and rounding up. For example, keysize 12 is2
double words.

Takethefirst record typein the LI ST STATS. Take the size of the record
in words and add the keysize from step 2 to find the space this record type
takes. For example, "Sizein Words' 8 plus key size 2 equals 10.

Take the data block size and divide by the length from step 3. This gives
the number of that record type that fit in one data block. For example,
record size 10, block size 254 gives 25 records per block.

Divide the total number of records in the database by the number per
block to find the number of blocks needed. For example 1000 records at
25 per block need 40 blocks.

Repeat steps 3 thru 5 for each record type plus the CIR. (One CIR per
case). For example:

CIR Size=5wordspluskey 2=7.

254 divide by 7 = 36 per block.

1000 cases in database means 1000 CIRs.
1000 divided by 36 means 28 blocks.

Add up all the blocks needed for each record type to get the total data
blocks required. For example,

CIR = 28 blocks

Recl = 40 blocks

SIR/XS

Database 188

Rec2 = 32 blocks
Total = 100 blocks

This shows how many data blocks the database requires and the record types that
use the space.

Apply the 'loading factor'. If using 50%, then twice as many data blocks
are needed; if using 80%, then 20% more are needed. For example, 100
blocks at 80% require 120 blocks.

Next calculate the index size:

Take the Max Entries per Index Level from the LI ST STATS. For example,
126.

Take the number of data blocks and divide by the Max Index Entries. This
gives the number of lowest level index blocks. For example 120 blocks
divided by index entries of 126 gives 1.

If the number of index blocks so far isless than the Max Index Entries,
then do not do this step. If the number is more than the Max Index Entries
then divide the answer by the max index entries to get the number of
second level index blocks. If this number is greater than the max index
entries, divide again to get the third level index blocks. Repeat this until
the answer is less than Max Index Entries. Add up all levels.

Add 1 for the master level.

For example, if Max Index Entries is 40 and there are 100,000 data blocks.
Bottom Level = 100,000/40 = 2,500.

Second level = 2,500/40 = 63 (Rounding up).
Third level = 63/40 = 2.
Total required 2,500 + 63 + 2 + 1 = 2,566.

This gives how many index blocks are needed. To trandlate these two figuresinto
physical disk blocks or megabytes on a particular operating system, multiply by
the appropriate factors:

Take the data block size and index block size from LI ST STATS in double words
and convert to physical blocks or bytes. There is asmall overhead on each
physical block such that the reported size is smaller than the real physical size.

For example, adata block of 254 double wordsis 2K (whichis four 512 byte
blocks on some Windows file systems). 1,000 254 double word data blocks would
take approximately 2 megabytes of disk space.

SIR/XS

Database

189

Thisis how much space the data and indexes are going to take for a database.

Sample VERIFY FILE output

| ndex PTBYNAME

Verify database statistics
Data records on dat abase
Cases on dat abase

I ndex bl ocks read

Dat a bl ocks read

Aver age i ndex bl ock | oading
Aver age data bl ock | oading
WAr ni ng nessages
Correctable errors
Non-correctable errors

Verification conplete wth no errors

Sample LIST STATS Output

Statistics for HEART
Dat abase nane

Creation Date/Tine
Last update Date/ Tinme
Updat e | evel

Aver age Records per Case
Max/ Current Nunber of Cases
Max/ Current Number of Records

Max/ Current Nunber of Record Types
Maxi mum | nput Col umms/ Li nes

Rect ype Col umms

Jour nal i ng

Encryption

Case Id Variabl e

Nunber of | ndex Levels

Max Entries Per |ndex Bl ock
| ndex/ Data Bl ock Size
Active/lnactive Data Bl ocks
Active/lnactive | ndex Bl ocks

Keysi ze In Bytes

M n/ Max Record Size

Nunmber of Tenporary Vari abl es
Maxi mum Nunmber of Data Vari abl es

Verified - Entries 1852

60408
1852
16
1467
91
97

cococoo

HEART

Dec 13, 2005 11:55: 40
Dec 13, 2005 11:57: 15
1

25000
75000/ 1852
1875000000/ 60408

117/ 85
136/ 30
1-3

ON

ON

SSNUM (A)

2

101

1011/ 1529
1467/ 0
16/ 0

72

1/ 346
0

958

SIR/XS

Record Record

Tot al
No.

In

Nanme

Dat abase Words

96
HOSP
140
CLI NPRES
346
CATH
213

Database

Size In Entry Use

Nunber of

Vari abl es

89
292
958

530

Maxi num

Per Case

100

100

100

190

SIR/XS Database 191

A DATA TYPE 64
A FORMAT 14, 71
ACCEPT 113
ACCEPT REC IF 59
ADD 123
ADD REC 112
BATCH DATA INPUT 112
ADD VARS 22
ALIMIT 113
ALL 113
ALPHANUMERIC VARIABLES 9
AUTO INCREMENT KEY 73
AVGREC 165
BACKUPS 144
BATCH PROCESSING EFFICIENCY 180
BLANK 81
BLANKUND 113, 118, 121
BLIP 113, 116, 118, 121, 125
INDEX 185
BLOCK SIZE 182
BOOLEANS 59
B-TREE 181
BOOLEANS 129
CASE ID 39
CASE STRUCTURED DATABASE 6
CASELESS DATABASE 7
CAT VARS 60
VARIABLES 9,176
CATEGORICAL VARIABLES 9, 60, 176
CCF 156
CHARACTER VARIABLES 9,61
CHECK 156
CIR 6, 41, 100, 103
CIRDATA 156
CIRKEY 156
CLEAR BOOLEANS 22
CLEAR COMPUTES 22
CLEAR RECODES 22
CLEAR VALUE LABELS 22
CLEAR VAR DOC 22
CLEAR VAR LABEL 22
COMMON 103, 139
COMMON INFORMATION RECORD 6
COMMON SECURITY 40
COMMON VARS 41

COMPUTE 62, 123

COMPUTED VARIABLES 62
CONNECT DATABASE 30
CONNECT TABFILE 169
CONSISTENCY CHECKS 16
CONTROL VARS 63
CORRUPTION FLAG 156
COUNT JOURNAL RESTORE 154
CIR 74
CREATE 31
CREATE DATABASE 29
CREATE DBINDEX 97
CREATE INDEX 171
CREATE TABFILE 170
TABFILE 170
csv 113,115, 118, 121, 124, 127, 132
D DATA TYPE 64
D FORMAT 14
DATA BLOCK 175, 182
DATA FILES 42
DATA LIST 64
DATA STORAGE 176
DATA TYPES 9
INDEX 175
VARIABLES 9
DATABASE LABEL 44
DATABASE PASSWORD 29
DATABASE PASSWORD SPECIFICATION
30
DATABASE PREFIX 29, 30
DATABASE STATISTICS 150
VARIABLES 10
DATE DATA TYPE 64
DATE FORMAT 14
DATE VARIABLES 10, 66
DATE VARS 66
DBA 53
DECIMAL POINTS 17
PQLFORM 103
DEFINE TABFILE 170
DATABASES 83
DELETE SCHEMA 38, 108
DELETE STANDARD SCHEMA 38
DELETE VARS 22
DELETING A DATABASE 37
DETAILED 99
DISCONNECT DATABASE 32

SIR/XS

DISK SPACE
DOCUMENT
DOCUMENTATION
VARIABLES
DOWNLOAD

DPOINT

DROP DBINDEX
DUMPING DATA

EDIT LABELS

BATCH DATA INPUT
ENCRYPT

ERRFILE

ERROR CODES
VERIFY FILE

ERROR LISTING
ERROR RECORDS
DATABASES

BATCH DATA INPUT
EVICT REC

EVICTCIR

EXACT DATE FORMAT
EXPORT

EXTENDED DATA TYPES
VARIABLES
EXTERNAL VARIABLE FORMAT
FDATA TYPE

F FORMAT

FILE DUMP

FILE LIST

FILE NUMBER
CREATE TABFILE
FILENAME

FLOATING POINT VARIABLES
FORMAT SPECIFICATION
FORMAT,DATE
FORMS

FREE SPACE

FROM UPDATE LEVEL
| DATA TYPE

| FORMAT

CREATE TABFILE

IF 69

IMPORT

DATABASE

INDEX NAME
INDEXED BY

Database
174 INPUT
45, 67 INPUT DATA
93 INPUT FORMAT
93 VARIABLES
161 INTEGER VARIABLES
127 INTEGER*N
98 VARIABLES
127 INTERNAL VARIABLE FORMATS
22 INTERNALS
180 ITEMIZE FILE
46 JOINING RECORDS
112 JOURNAL
157 JOURNAL RECORD NUMBER
157 JOURNAL RESTORE
110 JOURNAL ROLLBACK
110 JOURNAL UPLOAD
187 JOURNALING
115 KEY FIELDS
115 KEY LENGTH
116 KEY VARIABLES
11 KEYS
138 LABEL
9 VARIABLES
14 LABELS
14 LIST DATABASE
64 LIST STATS
14 LISTFILE
127 LISTING DATA
129 LISTING SCHEMA
165 LOAD FACTOR
170 LOADING
99 DATABASE
9 LOADING FACTOR
70 LOCK
10 LOCKING RECORD TYPES
103 LOG
175 LOGALL 113, 118,
153 LOGFILE
64 LOGFILE FORMAT
14 LOGICAL BLOCK
170 LONG
MASKPW
137 MAX INPUT COLS
175 MAX KEY SIZE
97 MAX REC COUNT
132 MAX REC TYPES

192

112
110
70

9
9,72
72

15

15
181
148

8

34, 144
155
153
155
146
29, 30
73
181

8

8, 185
17

17
99, 132
33
150
112
129
9
165
113
175
175, 184
83

83
110
121, 124
112
110
182
100
103
47

48
49, 74
50

SIR/XS Database

RECORDS 52 BATCH DATA INPUT
DATABASES 52 READ INPUT DATA
DATABASES 74 SECURITY

MERGING DATABASES 162 READ SECURITY
MESSAGES 161 DATABASES
MISSCHAR 123 REAL

MISSING 81 VARIABLES

DATES 75 REAL VARIABLES
MISSING VALUES 16, 75 REC SECURITY
VARIABLES 16 RECDATA

MODIFY SCHEMA 22 RECKEY

MODIFY VARS 22 RECODE

MODIFYING DATA TYPES 104 RECORD DOCUMENTATION
MULTIPLE DATA FILES 42 RECORD LABEL

N OF CASES 51 RECORD SCHEMA

N OF RECORDS 52 RECORD SCHEMA 0
NEGATIVE NUMBERS 15 RECORD SCHEMA DELETE
NEW FILE 29 DATABASES

NEWDB 144 RECORD TYPE
NEWPW 145 CASES

NEXT UPDATE LEVEL 154 DATABASES

NOAUTO 113,116, 118, 121, 124, 128 RECS PER CASE
NOBOOL 123 RECTYPE

NOCASEID 39 RECTYPE COLS
NODATA 139 RECTYPES

NOFCASES 166 REGULAR

NOINDEX 139 REJECT REC IF
NOMAXKEY 103, 139 RELOAD

NONEW 83, 113 RENAME

NOOLD 83 RENAME VARS
NOPASSWORDS 140 BATCH DATA INPUT
NOPROCS 140 REPLACE REC

NOTO 103, 140 RESTART UPDATE LEVEL
NOTXS 103, 140 RESTORING JOURNAL
OBSERVATION VARS 77 DATABASES

OLD FILE 30 RESTRUCTURING

ON RECNAME 97 RLIMIT

PASSWORD 29, 35, 103 NAMES

PATCH 157 LIST STATS

PCTFREE 171 VARIABLES

PRU 182 SCALED VARIABLE
PURGE SIR FILE 37 SCALED VARS
VARIABLES 16 SCHEMA LISTING
RANGES 95 SCHEMA WRITE
RANGES OF VALID VALUES 16 SCIENTIFIC NOTATION
RCF 157 SECONDARY INDEX CREATION

193

117
117
53
53
53
78

o ©

79
157
156

80

45

83

83

41

38

79

83

113,132
55
100, 102
99
85
165
163
22
120
120
166
153, 155
107
106
114

189
13
13
86
9

102
14
97

SIR/XS

SECONDARY INDEXES
DATABASES
SECURITY

VALLAB

CASES

SET DATABASE
SHORT

SHOW DATABASE
SIRFILE DUMP
SIRFILELIST

SIR MERGE

SIR SCHEMA LIST
SIR SPREADSHEET
SIR SUBSET
VARIABLES

LIST STATS

SIZE ESTIMATING
SCALED VARS

VAR RANGES
VARIABLES

SIZE OF VARIABLES
SKIP

SORT IDS
SPREADSHEET
STANDARD SCHEMA
STANDARD VARS
DATABASES

STOP

STORAGE EFFICIENCIES
VARIABLES

STRING VARIABLES
DATABASES
STRUCTURED
DATABASE

SUBSET

SUBSET DATABASES
SUMFILE

SUMMARY
SECURITY

SYSTEM SECURITY
SYSTEM SECURITY LEVEL
TABLE

TEMPVARS
FORMAT

Database 194
186 VARIABLES 12
56 TIME DATA TYPE 65
30, 36, 103 TIME FORMAT 14
28 TIME VARIABLES 12
129 TIME VARS 89
33 TITLE 146
99 TOLISTS 24
33 UNDEFINED 81, 128
127 UNIQUE 97
129 UNIQUE INDEX 171
162 UNLOAD FILE 144
99 UPDATE 132, 163
132 UPDATE LEVEL 149, 154, 155, 165
142 UPDATE LEVEL RESTART 166
15, 176 BATCH DATA INPUT 123
187 UPDATE REC 123
187 UPLOAD 146
177 EFFICIENCY 179
176 VALID VALUES 16, 90
176 VARIABLES 16
15, 176 VALLAB 132
114 VALUE LABELS 17, 28, 91
73 VARIABLES 17
132 VAR DOC 93
87 VAR LABEL 17, 28, 94
88 VAR RANGES 16, 95
182, 189 VARIABLES 16
114 VAR SECURITY 96
174 SECURITY 96
9 VARIABLE LABEL 28
9, 61 VARIABLE LIST 92
181 VALID VALUES 28
100 VARIABLES 130, 132
174 VARLIST 103, 140
142 VARSEQ 104, 140
174 VERIFY FILE 156
112 VERIFY TABFILE 172
110 WRITE SCHEMA 102
56 DATABASES 58
56 WRITE SECURITY 58
56 ZERO AS BLANK 75
132 ZERO MISSING VALUE 81
57
12

