SIR/XS SQL 1

(@Y= 1= OSSN 5
DatabaseS & TalfIlES........oceie et 7
Dz 0= 0 =S 7
Tables and TabfilES.....ccuec e 7
W IEBWS .ttt ettt et e et et e et e e te e te e eaeesaeeeaeeeaeeeaeeeaeeeaeeeaneenreereereenreenaeeaneen 7
SYNEAX RUIES ...ttt sttt sre s e e teenee it 9
N =T =SS 9
NON-SLANAAIT NAMIES.........eeiueeitieciecee et sae e ae e seesreenseeenns 9
Single Vv Double QUOLESccuiiieiie et 10
Qualified Record and Table NaMES.........ccoieiiie e 10
Qualifying variabl@ NAIMES..........ccceiieiiisie e 10
ATBS .. e bR e b ae et reere e e nne 10
FHBNAIMES ...ttt te b e b e e be e b e e nbe e beesreenseens 10
NUMENTC CONSIANES.veeieeieeiiesiee e r e sb e e se e s e sreesnaesnneeneens 11
CharaCler SINQS. .. cveeueerieeieeiee e st e ettt te et ae et e e b e sre e s seessaeenseenseeneeeneas 11
155 0] 1SS SSSSN 11
DA FOIMELS......eeiieiiiie ettt st be e sab e sbe e e beesbeesreeeas 11
QLI LTS 0 0= 12
[0 1 0] OSSR 12
(o]0 011 011U 12
SE L B T et Rt bR e e R e R e et e Re e e et e ne e e e 13
(O 11101 | SRR 15
F 0 0] (= = 1 o o USSR 16
V= o] 1= I SRS 18
ComMPULING NEW VEIUES.......ccueiiiieeieeiesiee ettt e 18
FUNCLIONS. ...ttt e et e et e e ae e nte e sreeeseesneesneenseesrnenneens 18
e RSP R 19
Referencing MUltiple TabIS.......c.ooieieiiee e s 19
N I8 1 TSP 20
Path Mode and Case MOGE...........coveiiecece ettt enneens 20
(=AY 0 PR 24
FORMAT .ttt sttt b st e st e b e se e s b e et e st e e b e e besbesbeeneenbesreeneennas 25
ColUMN REFEIENCES.ottt ee e et e e reeneeeneas 26
COlUMN FOIMELS.....c.veeieeecie et te ettt e eere e s s e s beesaeesseesaeesneesnnesnneannas 27
GROUP BY .ttt sttt sttt b e se e be s b e et et e nbe et et e ene et e 29
[TSP 31
ORDER BY ..ttt sttt sttt s b et ettt b et e teene et e 32
(O U I TSP 33
UINTON ...ttt h bt e e b e e e e b e ehe e e e b e eb e e e beeae e e e abeaneennennis 34
WHERE ...ttt e e sb e ae e e e r e e e nne s 35
(RIS 1017 o] 1= = (0] £ OSSR 35
IH 00 1< 1= PR 37
TS o = PSR 39
EXCLUDE and INCLUDE.........coiiiiieteeieee et 40
Formatting COmMMENS..........cooveriiiiierie e sre e s esreesreennes 41

HeadingS and FOOLINGS........cuviiieiieieesie ettt sre e s e s sreesnes 42

SIR/XS SQL 2

Grouping aNd TOAHING........coieiiiiieie et a e e 44

2 44

L€ 2 0 U = 45

(@ = = @ VT 45
U S 1O A T 46
B IO 2 48
PRINT @GN WRITE......ooiii ittt sttt bbb s s saba s s snr s s anres 49
SELING PalraMELEN'Sceeeieieceecee et esre e ne e reesnneeneas 50
(s = 0= (= S T S 51
(000 10 I O] 101017110 R 61
O A I PP 62
CONNECT DATABASE ...ttt st e sabe e e s sbee e 63
CONNECT TABFILE ...ttt sb bbb s s 65
CREATE ATTRIBUTE ...ttt sttt st st s sab e s s sabe e s snbee e 67
CREATE SYNONY M ..ottt sttt stee s are s s sabes s sbae s s sbb e s s sbbesssanbesssns 68
(DS O\ AN = S 69
[S 70
= 10 71
] PR 72
ST\ TR 72
EXECULION SEALEIMENToveii ettt e e s ebe e s sbe e s sbae e e eares 73

27z (0 N e = 115 (£ TP 73

[0 01= 0 T 74

DataDase PalraMELErS.......coicieii ittt e s sbb e s s sba e e s s bb e e e s sabees 75

LK O L LN R = 10150 £ TS 76

ENVIrONMENE ParamELErS......ccoi ittt sttt st s bbe s s ebb e s s sabee e s sraee s 77
SIrSQL USE INLEITACE........eeeeiie ettt e e ae e e nes 78
[T ESN Y= 1 80
CONNECE AALADBSEeeee ittt e s s sb e e s s sb e e e s sabee s s sbbeessabeeasns 81
List Of CONNECLED AALADASESveviiiriiii it ares 82
DataDASE SLIUCIUNE........veeie ittt e e sb e e e s sbae s s sbae e s sbbe s s sbbeessanres 83
Oz 7101 L= 84
(0000 0=Toi = o 1 L= TSRO 85
List Of CONNECLEA tADFIIES.....eeiiieiii e 86
= o LT LT 10T (T 87
1810 12T (= 88
Oz (] 10 [TR 89
TS 1< R 90

[(0] 1 1 1P 91

LAY = | R 92

ATAT L 0 (R 93

(@0 1= gl oY TSR PR R 9

(€001 0 o)V ST 95
VA= (VA8 7= o 1= OSSN 96
EXPOIt tADFI€ ... 97

SIR/XS SQL 3

(RS0 SN = o 11 [T 99
Data Entry and MOGifiCaiONccoiiririiinenieiesee et 100
DELETE FROM ..ottt e et e e e et e e ea e e e e et e e e e e e e e neeesaeneeeeaaneeeeraneeen 101
ENTER INTO ettt e et et e e e e e e e et e e e ea et e e easeeeeaenneeesaneeeeaeeeanannnnenns 102
INSERT INTO .. oot e et e et e e e et eeeae e e e e e e e aneeeeeemeeeenneeeeaneeenanns 103
U P D AT E ..ot e et e e et e e e e e e e e e e e et e e anreeeeaeneeeeeaneeeeeaneaeaaneeeas 105
[z I SR= 010 VALY PO 106
s 1 TP 106
R A= TR 107
CREATE PATH . .ottt ettt ettt et e s sttt e s sttt e s s et e e s sasa e e s sanb e e e ssbeeessareeessareeas 108
CREATE VIEW. ..ottt ettt ettt et e s st e e s s ettt e s s st e s s aabe e e ssbeeessreeessareeas 111
RENAME VIEW COMMANDcoi ittt eie e e siree e s sereeessaraeessseraeessereeesa 113
TaADFHES ANA TADIES....eeeee e e e e e e e e s e e saraaeaeeas 114

BLIE= o LTI 114

1010 1 114

COMMABNGS ...ttt et e e e e e e e e e e s e e e e e e e e e eesabaaeeasessssssbeeeasssansrasesesaans 114
CREATE TABFILE. ...ttt ettt ettt e sttt s et e s st e e s s e e e s sre e e s rareeessnees 116
(O I 7Y = 1 I TR 118

COlUMN DALATYPES. .. eeveeieeitee e sttt ettt sr et e e sseeebeenseenseesneesneens 120

(0011010010 ®] o1]0] 1 7SRRI 122
CREATE INDEX ... eii ittt ettt et e s et e s et ee s s et e e s sasae e s saabeeessasseeesareeesanees 126
[S TR o 127
LAY N TR 128
REV OKE ...ttt e e et e e e e e e e e et e e e aa et e e ea et e e ea e e e eaneeeseeeeananneneeas 132
E X P ORT ..ottt e et e e et e e e et e e et e e et e e an e e e aa—eeeaa—eeaarnraeaaneeeas 134
AV = RO 136
BACKUP TABFILE ...ttt e e e e e e e e e e e e e e aee e e e e e e eanreeen 137
RESTORE TABFILE ...t e et e et e e e e e e e e e e e e e e e e aaneeen 138
DISPLAY JOURNAL .ottt e et e e e e e e et e e e e e e s aneeeesaneeesaeeeenaneneeas 139
SQL FUNCHIONScoutiiteitieiesieeie ettt sttt st st aesbe e e neesbe s e e sbesreeneesrenneas 140
SEANAAIT FUNCLIONS......ccoiieeeeeeee ettt ettt et e e e e ettt e e e e saereeeeeseaaesseeeeesssasrneeeeseeeaanns 141
AQQregation fUNCLIONS.........couiiiieeeierese e et et 146
SYSIEM TADIES ... et renne s 148

Database System TaDIES ..o 148

TafIlE VIEWS AN TAIES ...ttt et e e e e e e e e s e e eenreeee s 149
FCOL - TaDIE COIUMNS SCNEIMAL. ...ttt et e et e e e e e e e e e e s e eeeneeeeneenees 151
PSDBCASE - Database Case SCNEIMAceeeeeeeeeeeee e et et e eeeeeeeeseeaeeeeeaeeeanns 154
$DBDOC - Datahase DOCUMENEALIONveeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeaeeeaeeeaeneaneenenes 156
PDOBSTATS - DAtaDase StAtiStCSvveeiiireeeiieeeeeiseeeeseeessareesssreessssreeessereeeesasserssenns 157
SINDEX - Tabfile INdeX DEfiNITIONSveeeeeeeeeeeeeeee e eee et ee e et e ere e e e e e eneeeneennes 160
SINDEXCOL - Tabfile Index Column DEfiNitioNS........coooveeeeiveeiie e 161
PPASSWORD - Group USer NAIMES.........cceieriiieieireeiesiesie s see e 162
PREC - Database RECOIT SCNEMAL.......ceoreeeeeeeee e et eeee et eeeeree st e seeesereeereeeeeseeesneennes 163
$SECURITY - Tabfile and Table PerMiSSIONS.ooveeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeens 164
PSORTID - SOrt A ValADIES ...ttt ettt e e s e e 166

BTAB - TADIES ... 167

SIR/XS SQL 4

STFSTATS - Tabfile StatiStCS.....cveeeereeiesicce et e 169
STRANGE - Tabfile Column RaNQGES.........ccccoevveirieiiieesee e 170
SVALLABEL - Database Value Labels...........ccooeeieiiiieccceeece e 171
SVALUE LABEL - Tabfile Value Labels........ccoveveiecice e 172
SVALVALUE - Database Valid ValUES........cccceeeeiieieceee e 173
SVAR - Datahase Variabl€S.........ccccuevveiiieiieicee et 174
$VARLABEL - Database Variable Labels.........ccccceviieviciieecesecee e 176
RESEIVED KEYWOITS ...ttt st st 177
L 1= 0 011/ = (o] o TSR 179

SIR/XS SQL 5

Overview

SQL stands for "Structured Query Language” and is an industry standard language which
allows you to query existing data, modify that data and to define new tables, indexes and
views.

The SQL module of SIR/XS implements the dataretrieval, update and definition
capabilities defined by "American National Standard X 3.135-1986 Database L anguage
SQL." In addition, SIR/XS has implemented many enhancements to simplify the
interactive use of SQL and to take advantage of SIR/XS database structures.

The primary function of SQL isto select datafrom records and tables where particular
conditions are true. The selected data always creates a new table. The data from atable
can be then be displayed in a simple and straightforward manner. Tables can also be used
by the other SIR/XS components such as Visual PQL to produce more complex analyses
and outputs.

SQL creates and populates new tables and can also be used to create indexes and views to
tables.

SQL can be used to update and modify databases and tables and can update whole sets of
data which match particular conditions. While SQL also has some direct data entry
functions, these are limited and data entry is better handled in other SIR/XS modules.

The SirSQL interface is a menu driven system, which, since SQL is acommand based
language, generates commands.

The main SQL command is SELECT, which selects data according to particular
conditions, creating a new set of data on a new table. There are various formatting
options for individual columns.

There are commands such as UPDATE which updates individual records or sets of
records and CREATE which defines new tables.

The SQL settings such as the connected databases and tabfiles, the limits on reading and
writing records, any synonym definitions, path definitions, etc. make up the workspace.
The SAVE and GET commands save the workspace and get it again in subsequent
sessions. SQL uses adefault workspace file, called Si r SQL. wsp which isloaded when
you access SQL. Y ou can modify and save the default workspace, or create and use any
number of different workspace files.

A simple editor is used to enter commands into acommand area. SQL commands can be
created and saved for subsequent execution. Commands can be kept as membersin the

SIR/XS SQL 6

procedure file of a database or as operating system files. Commands can be run as a batch
process.

Online help isavailable for explanation and syntax of all commands, options and clauses.

SIR/XS SQL 7

Databases & Tabfiles

Databases

SQL can operate on multiple SIR/XS databases. Before working with a database, the
database must be connected. The last database connected is the default database which is
used whenever a particular database is not specified.

Queries are optimised to take advantage of database case structures and records with
common keys, ssmplifying the required query specifications and making the retrieval
more efficient. All quality controls, including security, defined in the database schema
are applied when using SQL for data entry or modification.

SQL can operate concurrently with other SIR/XS modules when reading data and through
Master for concurrent update.

Tables and Tabfiles

SQL can read, write and create tables. A table holds a single type of record and is
equivalent to a database record. Tables can be used by VisualPQL and FORMS aswell as
by SQL. Tables can only be used for update by one user at once. Tables are held on a
Tabfile.

A tabfile contains tables, indexes to the tables plus System tables which hold information
about other tables. A single tabfile can contain multiple tables. Tabfiles can contain
security controls and authorised users may grant or revoke permissions for operations on
atabfile or on specific tables within a tabfile.

SQL can operate on multiple tabfiles. Before working with atabfile, the tabfile must be
connected.

A temporary system tabfile ($SY STEM) is the default used for creating temporary tables.
Thisis created and deleted per session and is not normally listed on displays of tabfiles.

The $ asthe start character in aname is used by the system to recognise system generated
names and so should not be used except for this purpose.

The system expects afile extension of . t bf to be used for tabfiles.
Views

A View isalogical table created within SQL. A logical table is a table which does not
physically exist; it is created 'on the fly' from other tables and records. Once defined, a

SIR/XS SQL

view may be used and referenced in the same way as other tables. Views can only be
used by SQL.

SIR/XS SQL

Syntax Rules

SQL is primarily acommand based system so there are rules for the syntax of the
commands. The syntax isintended to be English like and as natural as possible. SQL
trandates all commands, keywords and names (unless a non-standard name) to
uppercase.

A command normally ends at the end of aline. To specify that acommand continues on
the next line, put a hyphen (continuation character) after all the text on the line to be
continued.

SELECT NAME SALARY -
FROM EMPLOYEE -
WHERE GENDER EQ 1

Y ou can submit multiple commands at one time. To do this, start each command on a
new line. The starting position of acommand on a line is unimportant.

Names

Names are normal SIR/XS names. Standard names are 1 to 32 characters long with no
spaces. The first character must be aphabetic. Characters can be letters, digits or four
characters ($, #, @,_). Names are translated to upper case so uppercase and lowercase
letters are equal. A name cannot be an SQL reserved word. The following are examples

of valid names;
A PART _NUMBER NANVE1L

Non-standard names

If you wish to use a name which does not conform to these rules, enclose the name in
curly braces{} as per other SIR/XS references to non-standard names. (Note: for
compatibility with previous versions and with the SQL standard, the SIR/XS SQL
module also supports the use of double quotes ™" as delimiters on input for non-standard
names, but these will be trandated to curly brackets on output.)

A non-standard name can contain blanks or use lowercase letters. Non-standard names
might be:

{On hand} { SELECT} {part*}

Suppose a column is created with a SELECT such as:

SELECT ... mex(salary)*1.1
If this column is referred to in a subsequent SELECT, the column name is not avalid SQL
name and must be enclosed in curly brackets. This name was not specified as a non-

SIR/XS SQL 10

standard name when originally created and was thus mapped to upper case, so the

reference would be;
SELECT { MAX(SALARY)*1.1}

Note: It is possible to specify new column names with the FORMAT COLUMN NAME
command and it is possible to refer to columns by a column number. This minimises the
need to have non-standard column names, even where these have been derived from a

calculation. For example:
SELECT id salary*1.3 FORVMAT COLUWN 2 NAME newsal

Single v Double Quotes

Strings inside single quotes are constants; strings inside double quotes are names. (Thisis
according to the SQL standard and is thus different from other SIR/XS modules standard
behaviour.) When creating atable, it is possible to specify constants as columns, so you

must use single or double quotes correctly. For example, suppose the following:
SELECT ' MAX(SALARY) *1.1'

Because this command has single quotes, it creates a character constant with the value
MAX(SALARY) * 1. 1 rather than looking for a column with this name.

Qualified Record and Table Names

Unless using the default database or tabfile, qualify record and table names with the

appropriate database or tabfile name. Separate the names by a period. For example:
SELECT NAME FROM COVPANY. EMPLOYEE ON MYTFI LE. TABLE1L

Qualifying variable names

Variables within arecord or table always have unique names. However, variablesin
different records may have the same name. If referring to two variables with the same
name from different records or tables, qualify the name by preceding it with the record or

table name. Separate the names by a period. For example:
SELECT EMPLOYEE.ID DEPT.ID FROM EMPLOYEE DEPT

Alias

Sometimes you may need to qualify the record or table by a database or tabfile name.
However, qualification at two levels (A.B.C) isnot avalid SQL format. In this case (or
when joining arecord to itself) specify an alias. Specify a single name after the qualified
record or table name, optionally using the AS keyword and then specify this to qualify
individual variable names used in the select, where, order by or other clauses. For
example:

SELECT A. 1D B. | D FROM COVPANY. EMPLOYEE AS A, OLD. EMPLOYEE AS B -
WHERE A.ID = B.ID

Filenames

When specifying filenamesin SQL, use the standard short or long SIR/X S Filenames.

SIR/XS SQL 11

Numeric Constants

Specify integer constants as a series of digits without any embedded blanks or commas.
They may be preceded by a+ or - sign to indicate whether they are positive or negative.

No signisan indication of a positive number. For example:
1 134 999 +333 -9322

Specify real constants as a series of digits followed by a decimal point and another series
of digits. They may be preceded by a+ or - sign. Either theinitial or terminal series of
digits may be absent but not both. Specify a power of 10 exponent by suffixing the
number by the character 'E' followed by the power of ten. There can be no embedded

blanks or commas in the number. For example:
1. .44 +1. 4 -. 44433 123. 456E3 333. 432E-3

Character Strings

Specify character strings within single quote marks. To include a single quote within the
character string, enter the single quote twice in succession for each occurrence required.

For example:
'aaa’ "THISis A string' "Bill'"s job'

Expressions

Expressions are a combination of variables and operators which produce anew value.
There are numeric expressions and string expressions. For example, adding two numeric
variables produces the sum; concatenating two string variables produces alonger string.

There are functionsin SQL which convert numbersto strings and vice versa.

Dates, times and categorical variables can be either integers or strings and SQL decides
which format to use from the expression that uses the variable. If astring is called for, the
string is used; if anumeric valueis called for, the integer value is used. For example, a
time can be an integer (the number of seconds since midnight) or a character string such
as'11.15AM".

Numeric expressions consist of numeric variables, constants, all of the normal arithmetic
operators (+, -, /, *, **), numeric functions, and parentheses. Expressions are evaluated
according to normal precedence and parentheses can be used. Within equal precedence
they are evaluated from left to right. Example numeric expressions are:

2*5- 4 2* (5-4) SALARY * 52 / 12
String expressions consist of string variables, string constants in single quotes, string
functions, the concatenation operator (+) and parentheses. Example string expressions

are:
' ABC + ' DEF' SBST(' ABCDEF' , 4, 3) TI MEC(NON(0) , ' HH: MM SS')

Date For mats

SIR/XS SQL 12

Specify adate format for dates. See date formats for a complete description of date
formats.

Time Formats

Specify atime format for times. See time formats for a complete description of time
formats.

Functions

A function is a keyword followed by one or more arguments enclosed in parentheses.
Arguments may be either variable names, constants or expressions. The function operates
on the arguments and returns an appropriate value for each record selected. For example,

RND is a function which returns a number rounded to the nearest whole integer;
SELECT NAME RND(SALARY*12/52) FROM EMPLOYEE

Comments

Comments can be included in commands using the exclamation character (!).
When this character appears on acommand line and is not enclosed in quotes, then that
character and the remainder of the input line are ignored. The continuation character,
must be the last character on the line.
Example:

SELECT NAME I get the full nane -
RND(SALARY*12/52) ! and weekly salary -
FROMV EMPLOYEE I for each enpl oyee

SIR/XS SQL 13

SELECT

SELECT [DOSTINCT] wvariable_list

FROM [tabfile.] table_nane, |
[tabfile.] view_nane , |
[database.] record_nane, |
[database.] CR, |
pat h_nane |, |
[AS] alias_nane,

Keywords:
CASELI M n
COWPI LE_ONLY
DBMS [filenane]
QUTPUT fil enane
RECLI M n
SAMPLE proportion [, seed]
SELLIM n

Clauses:

FORMAT

GROUPBY

ON

ORDER BY

OUTER

UNION

WHERE

The SELECT command takes data from one or more existing records or rows and creates a
new table with the selected datain it. The definition of datain the new tableis copied
from the existing definition. The number of rowsin the new table depends on the number
of rows in the input and the particular clauses specified. (See Output from SELECT.)

The variable list and the FROMclause are required. All other clauses are optional.

The result of the SELECT is anew table containing the selected variables. Tables created
with the SELECT command are exactly the same as tables created in any other way. The
SELECT command also controls the display format of the variablesin the created table.
The display format of the table can be modified with the display processor. Formatting
can be specified on the SELECT with the FORVAT option.

The basic form of the command is:

SELECT variable_list FROMrecord_list WHERE condition
The variable list specifies the variables to be saved in the new table; the FROM clause,
lists the records and tables which contain the input data and the WHERE clause, specifies

SIR/XS SQL

the conditions under which records or rows are selected.

14

SIR/XS SQL 15

Output

One occurrence of the set of selected variablesis one row in the output table. The clauses
and keywords specified in the SELECT affect the way in which the output table is
constructed. If variables are selected from a single record or table, one output row is
written for every individual datarecord or row which satisfies the WHERE clause.

If variables are selected from multiple records or rows, one output row iswritten for each
individual datarecord or row which exists and which meets the selection criteria. For
exampl e the following results in one output row per combination of employee and
review:

SELECT NAME POSI TI ON RATI NG -
FROM EMPLOYEE REVI EW -
WHERE EMPLOYEE. I D = REVI EW | D

Thisis sometimes referred to as an inner join. Thereis no output for instances where a
record of one type exists but not the other. A join which produces an output row
regardless of whether the joined record or row exists is known as an outer join. Specify
the QUTER keyword following the FROviclause. Follow OUTER with one or more record or
table names. For example;

SELECT FROM A B QUTER B
SELECT FROM A B QUTER A
SELECT FROM A B QUTER A B

All these examples generate an output row for every combination of A and B; the first
example adds all occurrences of A where B does not exist; the second example adds all
occurrences of B where A does not exist; the third example takes both occurrences of A
with no B and occurrences of B with no A. These are sometimes referred to asaRI GHT
outer join, a LEFT outer join and a SYMVETRI C outer join.

DISTINCT

The DI STI NCT keyword specifies that one output row is written for each distinct or

unique set of values selected. For example;
SELECT DI STI NCT SALARY FROM EMPLOYEE

lists each salary that one or more people are earning. There is only one output row per
value of salary, regardless of how many people earn that salary. The keyword UNI QUE
(abbreviation UNQ) is asynonym for DI STI NCT.

SIR/XS SQL 16

Aggregation

Aggregation functions compute single values from multiple records and change the
number of rows that are created. An aggregation function returns asingle value to

represent a calculation (such as an average) across multiple records. For example:
SELECT AVG(SALARY) FROM EMPLOYEE

This returns one value, the average salary of all the employees; correspondingly, only one
row is created in the output table.

The following functions are aggregation functions and alter the number of output rows
produced:

SUM

Sum of values selected
AVG

Average of values selected
STD

Standard deviation of values selected
MAX

Maximum value selected
M N

Minimum value selected
FI RST

First non-missing value selected
LAST

Last non-missing value selected
COUNT

Count number of values

SUM AVG and STD operate only on numeric data. Other aggregation functions operate on
any type of data.

GROUP BY

The GROUP BY clause specifies that one output row is written for each unique value of the

variables specified . For example,
SELECT FROM EMPLOYEE GROUP BY CURRPCS

produces one output row per value in the CURRPGCS variable. Since thisis a grouping of
data, individual dataitems cannot be selected; the only legal expressions that can be used
in the variable list when GROUP BY is specified are aggregate data or the variables in the
GROUP BY clause. For example, to produce a count of people and atotal salary in each
position.

SELECT CURRPOS COUNT(SALARY) SUM SALARY) FROM EMPLOYEE -

SIR/XS SQL 17

GROUP BY CURRPCS

The table that results from aggregation has one entry per aggregation level. To produce a
table with individual values for a column plus subtotals and totals (sums, averages,
counts, or other statistics) , use the Format clauses.

SIR/XS SQL

VariableList

Thevariablelist in the SELECT isalist of variable names and expressions. When a
variable name is specified, the definition of that variableis copied from the existing
definition. If variables have the same name on different records or tables, qualify the
variable name by the name of the record or table. Qualified names are separated by a
period.

18

An asterisk (*) specifies all of the variablesin all of the records or rows referenced in the

FROMclause. For example,

SELECT | D NAME FROM EMPLOYEE
SELECT * FROM REVI EW
SELECT EMPLOYEE. NAME FROM EMPLOYEE

Computing New Values

Expressions may be specified in the variable list. For example, the following query
computes the weekly salary by multiplying monthly salary (SALARY) by 12 and dividing
by 52.

SELECT |1 D NAME SALARY*12/52 FROM EMPLOYEE

The name of the computed variable in the output table is the first 32 characters of the
expression used to calculate it.

Numeric expressions may use numeric constants, numeric variables, the arithmetic
operators(+,-,/,* ,**), SQL functions, and parentheses to denote the order of
operations.

Character expressions may use quoted strings, variables which are strings, the " +"
character to join strings, SQL string functions, and parentheses to denote the order of
operation. Enclose strings in single quotes.

Functions
Functions are specified as a keyword followed by one or more arguments enclosed in

parentheses. Arguments may be variable names, constants or expressions. The function
operates on the arguments and returns a single value for each record selected.

For example, RND is a function which returns a number rounded to the nearest whole
integer:

SELECT NAME RND(SALARY*12/52) FROM EMPLOYEE

SIR/XS SQL 19

FROM

The FROMclause is required on the SELECT and specifies the records, paths, views and
tables to be accessed. Database records may be specified by name or number. If more
than one record or tableis specified on the FROVclause, ajoin is performed.

Referencing Multiple Tables

A join retrieves data from two or more records or tables with one query. A joinisimplied
whenever the FROM clause references more than one source for the data.

There must be common values in some corresponding columns between the data sources
in the FROMclause. For example, to create a table of employee name and position level for
each position ever held by the employee:

SELECT NAME PCSI TI ON FROM EMPLOYEE OCCUP -
WHERE EMPLOYEE. | D = OCCUP. | D

Thisuses| D to form the relationship between the records in the WHERE clause. Use the
record name as prefix to differentiate between column names which are the samein
different records or tables. That is, EMPLOYEE. | D refersto the value of | Din the
Employee record, while occup. | D refers to the value of 1 Din the Occup record.

In acase structured database with case mode enabled (the default), there is an automatic
relationship between records. A query automatically joins records for the same case. The
automatic relationship has the same effect as the WHERE clauses matching each record on
the case ID. For example, referencing data from multiple records on the COVPANY
database, has the following implicit WHERE clause:

SELECT ... FROM EMPLOYEE OCCUP REVI EW -
WHERE EMPLOYEE. I D = OCCUP. I D -
AND EMPLOYEE. I D = REVIEWI D

Thereis no need to specify the WHERE clause to join on the case identifier.

SIR/XS SQL 20

PATHS

A PATH links one record (or table) to another record (or table) and specifies the manner
in which they are to be joined. System defined paths are automatically created by SQL
between records in a database which have common keyfields. Common keyfields mean
the same variable names of the same type in the same sequence in different records. For
example, on the company database there is a system defined path between occup and

REVI Ewwhich is equivalent to:
WHERE OCCUP. POSI TI ON = REVI EW PCSI TI ON

Each path has a name. Paths are explicitly invoked by naming arecord (or table) and a
path name on the FROMclause. The path isinvoked implicitly by naming both records (or
tables) in the FROViclause. If there are multiple paths between two record types, SQL uses
the earliest defined path. SQL never automatically creates more than one path between
any two records. The SHOW PATH command displays the path definitionsin order.

Create paths with the CREATE PATH command. This names the path, the two records
(or tables) to be joined and the variable(s) used to join them. For example,

CREATE PATH MYPATH -
FROM COVPANY. OCCUP TO COVPANY. REVI EW -
VI A PGSI TI ON

Use the path by naming the path rather than the second record on the FROMclause. For
example,
SELECT FROV OCCUP MYPATH

Path M ode and Case M ode

Records are joined whenever multiple tables or records are referenced in the FROMclause.
The way in which records are joined is determined by the WHERE clause, by any PATHs
that are referenced in the FROViclause and by the current settings of CASE mode and PATH
mode.

If CASE mode is set, records are joined when the case identifier variable in onerecord is
equal to the case identifier in another. Thisis equivalent to specifying a WHERE clause
such as:

WHERE RECONE. CASEI D = RECTWO. CASEI D
If PATH mode is set, any paths between the records referenced in the FROMclause are
automatically used. The system defined paths imply joins based on the case identifier and
relationships implied in the keyfields.

For example, the default path joining the occup and REVI Ewrecords in the sample
database is equivalent to the WHERE clause:

SIR/XS SQL 21

WHERE OCCUP. | D EQ REVI EW | D AND OCCUP. POSI TI ON EQ REVI EW PCSI TI ON
The setting of CASE has no effect on joinsif PATH mode is set. (However if you are using
a subquery, case mode must be off). The setting of CASE does have an effect if PATHS are
cleared (records are still joined within case).

If PATHS are explicitly referenced in the FROVIclause, the setting of CASE and PATH have
no effect, the PATH is always applied as defined.

SIR/XS SQL 22

Joins

The normal type of join and the automatic join performed by case and path modeisan
Equi-Join because the comparison operator between the two columnsin the two tablesis
an"Equa" (EQ or =).

A join condition can specify other relationships between columns, such as "greater than”
(GT or >), "lessthan" (LT or <), etc. These are referred to as Non-Equi-Joins. For
example, suppose atableis created of minimum and maximum starting salaries by
division:

SELECT DI VI SION M N(STARTSAL) MAX(STARTSAL) -
FROM OCCUP -

ON DI VSAL -

GROUP BY DI VI SI ON -

FORVAT COL 2 NAME M NSAL -

FORVMAT COL 3 NAME MAXSAL

Then, select anyone whose current salary is greater than the maximum or less than the

minimum starting salaries.
SELECT |1 D NAME SALARY FROM EMPLOYEE REVI EW DI VSAL -
WHERE SALARY GT MAXSAL OR SALARY LT M NSAL

Note that this non-equi-join isajoin and not just atest on a column value. This means
that arow is produced for every matching condition between the joined rows. Therefore,
arow appears once for each time that salary is greater than one of the division maxsal
columns or less than one of the division minsal columns.

Non-equi-joins on large tables can produce a tremendous number of rows and the WHERE
conditions should be carefully examined to limit the output to the required combinations.

SIR/XS SQL 23

Alias

Y ou can define an Alias name for arecord or atable in the FROMclause. Use an aliasto
qualify avariable name when it cannot be done by using the unique record or table name.
A record or table nameis not unique if the same record or table is on two different
databases or tables you are joining, or if you join arecord or table to itself.

The dliasis defined in the record or table specification in the FROMclause and is used
wherever the table or record name would be used in other parts of the SELECT statement.

When an diasis defined, it follows the record name or the optional keyword AS and must
be followed by a comma (,) to separate it from any other record names.

For example, suppose a genealogical database where everybody isin a PERSON record,
and each person has an | D. In each person's record are the | Ds of their father and mother.
Because thisinvolvesjoining arecord type to itself, use an dlias.

SELECT CHI LD. I D FATHER | D MOTHER. I D -
FROM PERSON AS CHI LD, PERSON AS FATHER, PERSON AS MOTHER -
WHERE CHI LD. FATHERI D EQ FATHER. I D AND -

CH LD. MOTHERI D EQ MOTHER. | D

SIR/XS SQL 24

Keywords

The following keywords can be specified on the SELECT command:
CASELI M n

Specifies that the process stops after reading n cases and prompts whether to
continue processing. If thisis not specified, the default is used. The system default
is 1000, which can be changed with the SET command.

COWPI LE_ONLY
Specifies that the query is compiled but not executed. Thisis used to check the

syntax of a query without performing the retrieval.
DBMS fi |l enane

Specifies that a VisualPQL version of the query iswritten. This option is intended
as a debugging tool. Some modifications to the resultant program may have to be

made before use.
QUTPUT fil enane

Sets the print filename for subsequent PRI NT commands. This can aso be set by

the SET command and by the DI SPLAY command.
RECLI M n

Specifies that the process stops after retrieving n records or rows and prompts
whether to continue processing. If thisis not specified, the default isused. The
system default is 1000, which can be changed with the SET command.

Abbreviation: RLI M
SAMPLE proportion [, seed]

Specifies that arandom sample is produced. (0.0 < proportion<=1.0) The
optional seed parameter specifies an odd integer to be used as the seed for the

random number generator. This permits the generation of different samples.
SELLIM n

Specifies that the process stops after n rows have been selected and prompts
whether to continue. If thisis not specified, the default is used. The system default
is 1000, which can be changed with the SET command.

Abbreviation: SLI M

SIR/XS SQL 25

FORMAT

FORVAT COLUWN col unm_list col um_f or mat

Use FORMAT clause(s) on a SELECT command to specify the appearance of particular
columns. When atable is created, the default settings are used to format columns unless
specifically overridden with FORVAT clauses. Specify multiple format clauses on asingle
select command by repeating the complete FORVAT clause.

Thefirst part of aformat clause specifies one or more columns to be formatted. Specify
the keyword coLUWN followed by the column_list. The next part of the FORMAT clause
specifies the Column Format for the particular columns which istypically akeyword
(e.g. W DTH) and a setting.

Y ou can specify multiple options on a single format clause where the options apply to the
specified column(s). For example:

SELECT I D SALARY*1.1 FROM EMPLOYEE -
FORVMAT COLUWN 1 NAME EMPLOYEE_|I D WDTH 12 -
FORMAT COLUWN 2 NAME NEWSALARY

SIR/XS SQL 26

Column References

Columns can be referenced by column number or by column name. Column number
refers to the sequentia (left to right) number of the column in the table. Column numbers
remain the same regardless of any formatting commands. Each column has a name that
can be altered by formatting commands. If the column name is changed then the new
column name is used. A column label may be displayed, but the column is always
referenced by its name or number.

Specify alist or range of consecutive columns by specifying the start and end columns
separated by acolon (:).

Examples of column specifications might be as follows:

FORMAT COLUMN SALARY option
FORVAT COLUWN 1 option

FORVAT COLUWN 3:7 option
FORVAT COLUW 1 4 8 option
FORVAT COLUWMN SALARY option
FORVAT COLUWN BI RTHDAY opti on

SIR/XS SQL

Column For mats

Columns have a number of display characteristics which can be specified. The
specification can be supplied when the table is created by a SELECT or aCREATE
TABLE or can be amended by specific commands.

The column formats are specified as a keyword and a setting as follows:

DATE ' date_map']

DPLACES n]

EXPONENT n]

LABEL ON | OFF]

M SSCHAR 'c']

NAVE col urm_nane]

NULL 'string']

SEPARATOR 'string' | n BLANKS]
TIME time_map' |

VALLAB ON | OFF]

W DTH n]

ZERCS ON | OFF | '"string']

— — — — — 1 — 1 — — —

DATE ' date map'

Sets the date map.
DPLACES n

Sets the number of decimal places to display. Abbreviation: DPL
EXPONENT n

Specifies that exponential notation is used for display or printing. The number

27

specified is the number of decimal places and zero (0) is used to indicate that the

field is not displayed in exponentia format. For example:
1) To display the number 8,267 as 8.267E+003 specify EXPONENT 3.

2) To display the same number as 8.267000E+003 specify EXPONENT 6.
LABEL

ON specifies that the variable label is used as the column name. OFF specifies the

variable name is the column name and is the default. Abbreviation: LAB
M SSCHAR

Sets the single character to display and fill the column when it contains missing

values. Abbreviation: M SS
NANVE

Sets the column name. Names must obey the SQL name rules or be specified asa

string constant in single quotes. For example:
FORMAT col 3 NAMVE ANNUAL_SALARY
NULL

Sets the string to display if the column contains missing values. If the specified

string islonger than can be displayed, it is truncated. NULL takes precedence over

any M SSCHAR specified.
SEPARATOR

SIR/XS SQL 28

Sets the separator to the specified string. The separator precedes this column,
separating it from the previous column and is typically a number of blanks. The
separator may be set to a particular string or to a specified number of BLANKS.

Abbreviations. SEP and BL, BLANK. For example:
FORMAT COLUWN sal ary SEPARATOR 4 BLANKS
TI VE

Sets the time map. For example:
FORVAT COLUWN startime TIME ' HH MW
VALLAB

Specify VALLAB ONto display value labelsinstead of datavalues. Specify VALLAB
OFF to display values. Use SET and CLEAR to change the VALLAB setting for all

variablesin the table. For example:
FORVAT COLUWN nmarstat VALLAB ON
W DTH

Sets the column width to the specified number of characters. Column headings
that do not fit are wrapped to as many lines as needed. Abbreviation: W D. For
example:
FORMAT COLUWN sal ary W DTH 12

ZERCS

Enables or disables the display of leading zeros for numeric variables. ZEROS OFF
isthe default. You can also specify astring to be displayed if the value is zero.

For example:
FORMAT COLUWN sal ary ZEROS ON

SIR/XS SQL 29

GROUP BY

GROUP BY specifiesthat all sets of values selected are grouped together according to
their unique valuesin the value list. This produces a summary table with one entry per
group of records. For example, to calculate the average salary for male and female
employees.

SELECT VALLAB(GENDER) AVG(SALARY) FROM EMPLOYEE -
GROUP BY GENDER

This produces a table with two entries:

VALLAB(GENDER) AVG SALARY)

Mal e 2745. 83

Femal e 2831. 25

The aggregation can be done at additional levels by adding further variables to the GROUP

BY clause:
SELECT VALLAB(GENDER) VALLAB(EDUC) AVG(SALARY) -
FROM EMPLOYEE GROUP BY GENDER EDUC

VALLAB(GENDER) VALLAB(EDUC) AVGE SALARY)
Mal e El enentary 2533. 33
Mal e Hi gh School 2500. 00
Mal e Sonme University 2550. 00
Mal e B.Sc. or B. A 3050. 00
Mal e M S. 2625. 00
Mal e Ph. D. 3350. 00
Femal e H gh School 2600. 00
Femal e Sonme Uni versity 2700. 00
Femal e B.Sc. or B A 3533. 33
Femal e M S. 1650. 00
Feral e Ph. D. 2400. 00

Where there are no records for alevel, no row is created in the retrieval. For example,
there are no female employees with only elementary education.

Selecting Groups: HAVING Clause

Use the HAVI NG clause with the GROUP BY clause to select groups according to some

condition. For example, to select groups with an average salary greater than 2500.
SELECT VALLAB(EDUC) VALLAB(GENDER) COUNT(SALARY) AVG SALARY) -
FROM EMPLOYEE GROUP BY EDUC GENDER HAVI NG AVG(SALARY) > 2500

Case Aggregation

In acase structured database, by default SQL computes aggregate functions within cases.
To compute aggregates across cases, turn off case mode with the CLEAR CASE command.
This turns off case mode for the rest of the session, or until it is re-enabled. Use the SET
CASE command to re-enable case mode. For example; with case mode on, to select the

average starting salary for all the positions an employee has had:
SELECT | D AVG(STARTSAL) FROM OCCUP

SIR/XS SQL 30

The result is one row for each employee with any OCCUP records. This gives the average
of the starting salaries for each position the employee has had. This same query with

cases cleared gives avery different result:
CLEAR CASE
SELECT AVG(STARTSAL) FROM OCCUP

The result is one row, giving the average starting salary for all the positions held by all
the employees in the company.

Case mode is equivalent to a GROUP BY clause on the caseid for the aggregation
functions.

Aggregationswith Missing or Undefined Values

Missing or undefined values are ignored in the computation of aggregation functions. For
example, if the value of SALARY ismissing for an employee, the record isignored in the
computation of the average. The average is atrue average of actual values.

COUNT

COUNT counts the number of values selected in aquery. It is often used in conjunction
with other aggregation functions to count how many records were used in computing the
aggregated value.

For example, the following query computes the mean salary and the number of all male
employees.

SELECT AVE SALARY) COUNT(SALARY) FROM EMPLOYEE -
WHERE GENDER = 1

This counts only those records which have a non-missing salary. COUNT can aso have the
argument * which specifies a count of all selected records regardless of whether the
values are valid, missing, or undefined.

SIR/XS SQL 31

ON

ON specifies the name of the new table to contain the results of the query.

If an output table is not specified with the ON clause, atable called PREVI OUS_SELECT is
used.

All tables are on tabfiles. If atabfile is not specified, the default is used. If adefault
tabfile has not been explicitly SET, atabfile caled $SYSTEMis used.

If all defaults are used, the results of a SELECT are stored on the table

$SYSTEM PREVI OUS_SELECT. Thistableis overwritten as necessary without prompting
for confirmation. If you specify atable as output which already exists, you are prompted
for confirmation that you want it overwritten before proceeding with the SELECT.

Y ou cannot select ON to atable you are selecting FROM

SIR/XS SQL 32

ORDER BY

Specify ORDER BY to sort the selected rows. Thefirst variable in the ORDER BY listis
the major sort key. Specify keys in sequence from major to minor. By default, variables
sort in ascending sequence. Follow the variable with the DESC keyword to sort in
descending sequence. This only applies to the variable immediately preceding DESC.
Missing values sort to the beginning of a set of values regardless as to whether ascending
or descending is specified. (The M ss function can be used to retrieve original values for
missing values.)

The sort keys may contain variables and expressions. The sort key variables do not have
to bein the variable list of the SELECT.

DI SPLAY does not resequence rows and ORDER BY must be specified on the SELECT to
create the table in a particular sequence if this differs from the source data. For example:

SELECT I D NAME SALARY FROM EMPLOYEE
ORDER BY SALARY NAME

Synonyms. ORDER, SORT, SORT BY

SIR/XS SQL 33

OUTER

When joining records on a case structured database, QUTER specifies that, if no
matching record exist, the SELECT operates asif arecord containing undefined values for
al variables did exist.

Normally, ajoin operation creates arow for the resultant table if there exists arecord for
every record name in the FROMclause. The OUTER option allows the retrieval of some data
even when some records may not exist. This operation is called an outer join. The
keyword QUTER is specified after all records in the FROMclause and specifies all record
names that the OUTER applies to.

SELECT NAME REVDATE FROM EMPLOYEE REVI EW QOUTER REVI EW

SIR/XS SQL 34

UNION

UNI ON adds the result of a second SELECT clause to the table created by the main SELECT
command. With the UNI ON clause, each SELECT must result in the same number of output
columns and each column must correspond in type. The first SELECT command
determines the names and the types of the output columns. Numeric variables must
correspond to numeric variables, string variables with string variables.

The main SELECT command defines the table that is produced when using the UNI ON
statement. For example, assume two tables, one for current employees and one for ex-
employees. A single output table for all employees could be produced with the UNI ON
clause:

SELECT NAME SALARY FROM EMPLOYEE ON ALLEMPLOYEES -
UNI ON SELECT NAME SALARY FROM EXEMPLOYEE

This creates a new table with two columns and arow per employee.

Asmany SELECT clauses as required may be UNI ONed together as long as the rules on
number and type of variables are followed.

If sequence of the output table isimportant, use the ORDER BY clause to specify it. Any
such ORDER BY should follow the last clause of the last SELECT in the command.

SIR/XS SQL

WHERE

VHERE specifies the logical conditions used to select records or rows. Only records or
rows meeting the conditions are selected. The WHERE clause can reference any variables,
regardless as to whether the variables are in the SELECT variable list or not.

The WHERE clause can reference expressions. Expressions are a combination of
variables and operators which produce a new value.

The WHERE clause may contain compound conditions connected by the logical operators
AND, OR, XORand NOT.

AND means both expressions must be true;

OR means either expression must be true;

XOR means one expression must be true but not both;

NOT means the expression must not be true.

The WHERE clause is evaluated in the following order of precedence (parentheses () can
be used to denote an explicit order of evaluation):

Expressions
Relational Operators
NOT

AND

OR, XOR

agrwDdDE

Relational operators

The WHERE clause may include the following operators:
EQor =or IS
Equal to
NE or ><
Not equal to
LT or <
Lessthan
LE or <=
Lessthan or equal to
Gl or >
Greater than
GE or >=
Greater than or equal to
BETWEEN expr AND expr
Between or equal to the values of two expressions
IN (expr,......)
Equal to one of the valuesin alist
LI KE

SIR/XS SQL 36

Matches a specified character pattern
EQ NULL

Ismissing
NE NULL

Isnot missing

The logical operator NOT can be used to test for the opposite of any condition.
EQ,NE,LT,LE,GT,GE & BETWEEN

These operators test the relationship between two values. If the specified condition is
true, the data is selected. NE is provided as a convenient shorthand; it isidentical to NOT
EQ.

BETWEEN means equal to the end values or any value in between.

IN

Selects records or rows when the value that matches one or more valuesin alist. For
example, to select data for employees 1, 5, and 7.

SELECT ... FROM EMPLOYEE WHERE ID IN (1,5, 7)
To select all records except those in the list use NOT:
SELECT WHERE NOT (IDIN (1, 5, 7))

LIKE Pattern Matching

A patternis apartia string where symbols are used to indicate how that position isto be
treated. The pattern consists of symbols plus the string you want to match.

SIR/XS SQL 37

Subqueries

Subqueries are used to select rows from a table based on data in other rows. The rows
returned by one SELECT statement are used in the WHERE clause of another SELECT
statement. The subquery executes first and returns one or more values which are then
used by the main SELECT asif it were given a set of constant values. For example, to
select the name, gender and education of al employees who have the same education as

Mary Black.

SELECT NAME GENDER EDUC FROM EMPLOYEE -

VWHERE EDUC = -

(SELECT EDUC FROM EMPLOYEE WHERE NAME = ' Mary Bl ack')

The subquery (the one enclosed in parentheses) returns the value of Mary Black's
education. This value is then used as the object of the WHERE clause for the main SELECT.
The information selected by the main SELECT consists of the name and education for all
employees with the same education as Mary. This set of employees naturally includes

Mary.

The data comes from multiple cases and case structure must be off (CLEAR CASE) for this
guery to operate as required. With a case structured database and subqueries which
retrieve datafrom one case which is used to SELECT other cases, CLEAR CASE mode.

Subqueries can be used wherever a WHERE can be specified.

The previous example shows the most basic use of a subquery - one that returns asingle
value. If a subquery can return more than one value, specify how the returned values are
treated in the WHERE clause with the I N, ANY and ALL functions. ANY tests against any
returned value; ALL tests against every returned value. These can be used with the
relational operators (EQ NE, LT, GI, LE, GE).INtestsavalueto beequal toavaue
in thelist of returned values and is equivalent to EQ ANY.

Where a subquery can return more than one value, thisis equivalent to alist. For
example, to select people whose salary is greater than anyone whose current positionisin
divison 1:

SELECT | D NAME SALARY FROM EMPLOYEE -

WHERE SALARY GI' ALL -

(SELECT SALARY FROM EMPLOYEE OCCUP -

WHERE CURRPOS EQ POSI TI ON AND DI VI SI ON EQ 1)

The subquery finds the division in the OCCUP record which matches the current position
and teststo be in division 1; the salary of all employees where thisistrueisretrieved and
these are now equivalent to alist of salaries. The salary for each employeeistested
against thislist to be greater than all entriesin thelist. A subquery must only return one
column to be used to construct the list.

SIR/XS SQL 38

A WHERE clause can contain a combination of conditions and subqueries. Any subguery
either returnsasingle value or alist and can be treated as equivalent to avalue or list
specified by expressions which are not subqueries. The logical operators (AND, OR,
XOR, NOT) are used to connect separate clauses in the WHERE expression.

Thelogical function EXI STS tests that the subquery returns at least one row. EXI STS
returns "True" if at least onerow exists, "False" if not. The test can be reversed with the
NOT logical operator. For example:

SELECT I D NAME SALARY FROM 1 WHERE -
EXI STS (SELECT * FROM REVI EW WHERE RATI NG = 5)

When using the EXI STS function, the column returned by the subquery isirrelevant and
must be specified as an asterisk (*).

Note: This query could have been performed more easily and more efficiently asasimple
join athough this would return multiple rows for people who had received multiple
ratings of 5:

SELECT I D NAME SALARY FROM EMPLOYEE REVI EW -
WHERE RATI NG EQ 5

SIR/XS SQL 39

Display

Y ou can view the data in the current table created by SELECT. If you choose to display
the data or AUTODI SPLAY isON, the tableislisted.

Thewholetableislisted in your scrolled buffer. This has alimited size (64k bytes) but, if
session logging is turned on, the output from the session is also written to the session log

(SirSQL.dg).
Lines are as wide as necessary to hold al columns and no paging is done.

If you choose to alter the appearance of your table with the column formatting
commands, re-issue the display command to see the altered display. The DI SPLAY
command displays atable and sets the table as the most recently displayed table. This
table is then altered by any display commands. It is not necessary to do a SELECT
command from atable before displaying it. If a specific table is not specified on the
DI SPLAY command, the | ast table used to store the result of a SELECT is displayed.

(N.B. Re-issuing aDISPLAY command re-displays the last table created by a SELECT
not the last table named on a previous DISPLAY command. If you have not just done a
SELECT, and do not specify atable name, you may display the result of atable created
by the system as part of running the menus.)

There are commands for formatting the currently displayed table. Any format changes are
held as part of the table and are permanent changes. Formatting options include:

including or excluding columns
changing the display format of columns
specifying headings or footings
specifying totals and sub-totals

There are two commands to create output files:

The PRINT command writes afile for subsequent printing. (Use an appropriate
operating system command to output the file on a printer.)

The WRITE command outputs afile without headings, which may be easier if it
isto be used asinput to another program.

SIR/XS SQL 40

EXCLUDE and INCLUDE

EXCLUDE col unm_li st

Specifies columns to exclude from the display. ALL BUT specifies columnsto include. As
many column names or numbers can be specified in the column_list as necessary.
Excluded columns can be brought back with the | NCLUDE command. Abbreviation: EXCL

I NCLUDE col um_I i st

Includes columns that were previously excluded with the EXCLUDE command. If no
columns are specified, all excluded columns are included. ONLY specifies that the named
columns are included in the display and that all other columns are excluded.
Abbreviation: | NCL

SIR/XS SQL 41

Formatting Commands

The formatting options specify the appearance of the displayed table. (These are
identical to column options on FORMAT clauses on a SELECT command.

Y ou can specify the command as FORVAT COLUMN or just coLUWN followed by the column
references. For example, suppose atable had been created with two columns SALARY and
NAME. The following display commands alter the width of these:

COLUWN SALARY WDTH 8
COLUWN NAME W DTH 30

The following SELECT achieves the same results as the table is created:

SELECT SALARY NAME FROM EMPLOYEE -
FORMAT COLUWN SALARY W DTH 8 -
FORVMAT COLUWN NAME W DTH 30

SIR/XS SQL 42

Headings and Footings

The following commands set the titles and headings of the overall report.

HEADING [RIGHT | CENTER | LEFT] headi ng_specifications
FOOTING [RIGHT | CENTER | LEFT] footing_specifications

Specifies the heading or footing of the report. By default, the first 50 characters of the
SELECT statement are used as the | eft-justified heading.

The text can be Rl GHT justified, placed in the CENTER of the report or LEFT justified. LEFT
is the defaullt.

The heading or footing can have multiple character strings plus three predefined names
and positioning characters. The predefined names are DATE, TI ME and PAGE. The
positioning charactersare " X", "T" and "/":

DATE
Specifies the current date in the heading or footing. The date format is determined

by the setting of the system parameter DATE.
TI VE

Specifies the current time in the heading or footing. The time format is

determined by the setting of the system parameter TI ME.
PAGE

Specifies the page number in the heading or footing. The page number is 1.
nXx

Skips n columns before the next print position.
" Tabsto a particular column for the next print position.
Skipsto anew line.
Example: Heading specification
HEADI NG CENTER ' Report 1' 25T ' Produced on' 2X DATE 2X PAGE

There are two other commands which can also be used to alter the headings. These are:

BTITLE 'footing string' | ERASE

SIR/XS SQL 43

Sets the report footing to the specified string. The ERASE option clears the footing line.
Thereis no default footing. Abbreviation: BTI

TTITLE 'heading string" | ERASE

Sets the report heading to the specified string. The ERASE option resets the heading back
to the default . Abbreviation: TT

SIR/XS SQL 44

Grouping and Totalling
Grouping and totalling is controlled by a number of commands:

BREAK defines the columnsto be used for breakpoints.

GROUP can be used as an aternative syntax to BREAK offering the same
functionality.

OFF and oNturn al totalling off, and back on again, without altering the definition
of any of the totals.

SUBTOTAL and TOTAL define the type of subtotalling and totalling to be performed.

BREAK

BREAK col urm,[([break_heading,] [C] [G] [L, 1 [P.1)],....

Specify BREAK (abbreviation BRE) to control subtotalling. When a column is designated
as a break column, a break occurs for each new value in the column. The table should
have been produced sorted on the break columnsin order to get meaningful results.

One line of subtotalsis produced for agiven break level with one value for any given
numeric column. By default, atotal (Sum) is produced for each numeric column at each
break level. Specify the type of total with the SUBTOTAL and TOTAL commands. Grand
totals are also produced.

BREAK clears any previous break settings, subtotalling, and totalling. It sets the specified
columns as breaks in the order specified, maor to minor.

Optionally specify a break heading and the codesC, G, L and P. Enclose the options for
acolumn or acolumn list in parentheses and separate multiple options with acomma. An
option applies to the preceding columns. Specify aminus sign "-" in front of an option to
turn off that option if it is the default.

break headi ng
Specifies a character string to display at the break point. The default is either the
type of subtotal being produced, (Count, Sum, Max, etc.) or the column name.
Column nameisused if different statistics for different numeric columns at the
same break level are specified.

Specifies that the Column headings are re-printed when this column breaks. This
is the default.

SIR/XS SQL 45

Specifies that the column is Grouped. When a column is grouped, the first line
after abreak contains the new value and all subsequent lines are blank until the

next break. Thisisthe default.
L

Specifies that the subtotals are displayed in the L eft margin.
P

Specifies that a Page g ect is done when this column breaks.
BREAK educ (' Salary total',-CL,P)

GROUP

GROUP [EXCEPT] [ERASE] (colum-1list)
GROUP

Performs the same functions as BREAK with different syntax. The combination of
BREAK and SUBTOTAL and of GROUP and SUBTOTAL can be used to provide identical

functionality. GROUP is provided for compatibility with the SQL standard.
EXCEPT

Specifies that the break level grouping is removed on the specified columns.
ERASE

Specifies that the break level grouping isremoved from all columns.

OFF | ON
OFF | ON
OFF

Suspends all grouping, subtotalling and totalling.
ON

Re-enables all grouping, subtotalling and totalling.

SIR/XS SQL 46

SUBTOTAL

SUBTOTAL [COUNT | MAX | AVG| MN | STD| SUM]
[break colum, ...] [(subtotal colum, ...)]
[EXCEPT (colum, ...)]
[ERASE]

SUBTOTAL (@bbreviation STOT) sets subtotals for all numeric columns or for specified
columns for a specified break column.

The settings for SUBTOTAL apply to the calculation and display of grand totals unless
altered with the TOTAL command.

Seethe SET SPACES and SET SPACED system parameters for control of spacing around
SUBTOTAL lines.

The type of subtotalling can be specified. There can only be one type of subtotalling on a
given column for abreak level. The options are;

COUNT
A count of the non-missing values in the column. This can be used on non-
numeric columns as well as numeric.

MAX
The maximum value found in the column. This can be used on hon-numeric
columns as well as numeric.
AVG
The average value for non-missing occurrences in the column. This applies to
numeric columns only.
M N
The minimum value found in the column. This can be used on non-numeric
columns as well as numeric.
STD
The standard deviation of the column. This applies to numeric columns only.
SUM

Thetotal of valuesin the column. This applies to numeric columnsonly. Thisis
the default subtotal.

SIR/XS SQL a7

Break and Subtotal Columns

Two types of columns can be specified on a SUBTOTAL command, and two formats are
used to differentiate these. First, the break column(s) for which the subtotals are
produced. Break columns are simply listed. Second, the column(s) that are to be
subtotalled. Enclose the columns to be subtotalled in parentheses.

EXCEPT
By default, subtotalling is on for all numeric columns. EXCEPT sets subtotalling
off for specified columns. EXCEPT is cumulative. Set subtotalling back on for a
column by specifying it as a subtotal column. EXCEPT appliesto all break columns

and cannot be specified for individual break columns.
SUBTOTAL EXCEPT (1D)
ERASE

Sets subtotalling off for all columns.
Examples:
To display averages for all numeric columns when the break column EDUC changes.
SUBTOTAL AVG EDUC
To display the maximum of salary on any break:
SUBTOTAL MAX (SALARY)
To display the minimum of SALARY when the break column EDUC changes:

SUBTOTAL M N EDUC (SALARY)

SIR/XS SQL 48

TOTAL

TOTAL [COUNT | MAX | AVG| MN | STD | SUM]
[total colum, ...]
[EXCEPT (columm, ...)]
[ERASE]

TOTAL (@bbreviation TOT) setstotals for all columns or for specified columns. Name the
column(s) to total. Either enclose the column specifications in parentheses or smply list
the columns. Use the SET SPACET system parameters to control spacing of total lines.

COUNT
A count of the non-missing values in the column. This can be used on non-
numeric columns as well as numeric.

MAX
The maximum value found in the column. This can be used on non-numeric
columns as well as numeric.
AVG
The average value for non-missing occurrences in the column. This applies to
numeric columns only.
M N
The minimum value found in the column. This can be used on non-numeric
columns as well as numeric.
STD
The standard deviation of the column. This applies to numeric columns only.
SUM

Thetotal of valuesin the column. This applies to numeric columns only. There

can be one type of totalling on a given column. sumis the default totalling.
EXCEPT

Totalling is on for al numeric columns. EXCEPT sets totalling off for specified
columns and resets any previous specification.

ERASE
Sets totalling off for all columns.
Examples:
To produce the average salary from all recordsin the table:
TOTAL AVG SALARY

To produce totals for al numeric columns except CURRPCS.

TOTAL EXCEPT (CURRPOS)

SIR/XS SQL 49

PRINT and WRITE

PRI NT
[QUTPUT fil enane]
[LOAER | UPPER]

WRI TE
[OUTPUT filenanme]
[LONER | UPPER]

These commands write a copy of the current displayed table to afile. PRI NT writesa
formatted file with column headings, underlines, blank lines, etc. Thisis more suitable
for printing.

VRl TE writes an unformatted file with a space between each column and displays alist of
column positions used for each column. This may be more suitable as input to another
program.

Use the Include/Exclude commands to vary the columnsin the output.

OUTPUT
Abbreviation: ouT. Specifiesthe output filename. If OUTPUT is not specified, the
current setting for the system parameter OUTPUT is used. An output file must be

specified if adefault has not been set.
PRI NT OUTPUT ' TEST. LST'
LOWER | UPPER

Abbrevi ations: LC, LOWERCASE.LOVWER specifiesthat the output uses upper and
lowercase characters. Thisisthe default. UPPER specifies that the output maps all
characters to uppercase.

SIR/XS SQL 50

Setting Parameters

SirSQL contains a set of parameters, each identified by a name which affect the operation
of SQL inavariety of ways. At the start of an SQL session, each parameter isset to a
default value. These values can be updated and saved in a workspace file which can be
re-used in subsequent sessions. Three commands control and display parameters:

SET

Sets the parameter either to a specified value or simply to be ON.
CLEAR

Resets the parameter either to the default or to be OFF.
SHOW
Displays the current setting of the parameter.

Specify the name of the parameter and, optionally, any values with these commands.
Certain parameters can also be set by options on the SQL execution statement.

The values of some settings are used to set column formats when atable is created.
Altering these settings has no effect on existing tables. Y ou can update the format of
columns in existing tables with the column command.

SIR/XS

SQL 51

Parameter List

AUTODI

CASE

CASELI

CVMPTRI

SP

Controls whether display mode is automatically entered after a AUTOSAVE
Only used from the menu system. Controls whether a SAVE command is
automatically executed when exiting the system.

Abbreviation: AUTOD

Default: CLEAR

Enables use of the database case structure during retrieval processing. When Case
IS SET, thereisan implicit CIR record type added to the records in the FROMIist of
a SELECT. Joins and aggregations are done within each case rather than over all
the recordsin the database. Thereisan implied Join by caseid. When
aggregations are performed, there is an implied GROUP BY caseld clause on the
SELECT specification. The setting of case has no effect on casel ess databases.
CLEAR disables use of the database case structure during retrieval processing. In
join operations, records are joined across al records in the database. System and
user created paths may join records within case even with cases cleared.
Aggregations occur within records or tables.

Default: SET

M n

Specifies alimit on processing casesin a SELECT. When the limit is reached, the
process stops and prompts to continue with three options; continue and receive a
further warning after another CASELI Mnumber of rows are created; continue with
adifferent CASELI M stop the SELECT.

CLEAR disables the check.

Abbreviation: CLI M

Default: 1000

M

Specifiesthat trailing blanks are trimmed prior to string comparisons.
Default: SET

CMPUPPER

Specifies letters are trand ated to uppercase prior to string comparisons.
Default: SET

SIR/XS SQL 52

COLHEAD

Sets the printing of column headings at break pointsin the output of the DI SPLAY
command.
Default: SET

CONTI NUE ' -

Sets the character to indicate acommand is continued on the next line to the
specified character. There must always be a continuation character, CONTI NUE
cannot be CLEARed though it may be setto' ' (a blank).

Abbreviation: CoNT

Default: A hyphen' -

DATABASE

Sets the default database if more than one is connected.
Default: The last database connected.

DATE ' format'

Sets the default date format. Any date column without a specific format, usesthis
format as a default.

CLEAR clears the default date map. If the column comes from a database, the
format described in the schemaiis used as a default.

Default: 'Mm DD, YYYY'

DEFI NE_SECURI TY

Specifies that tables created with SELECT have security definitions. When
connecting to atabfile with security definitions, specify group(.user) names to
connect to the tabfile. Anyone with DBA permission at the tabfile level, has full
permissions for al tables. With DEFI NE_SECURI TY set, you have full permissions
for the new table created with SELECT but any other groups(.users) (except DBAS)
have no permissions on that table. Y ou (or aDBA) can grant permissions to other
users. (see Permissions)

CLEAR specifies that created tables are Public access.

Default: SET

DETAI L

Controls whether detail lines are displayed when subtotalling is requested with the
BREAK Or GROUP commands. CLEAR suppresses the printing of the detail lines.
Subtotal and total lines are printed.

Abbreviation: DET, DTL

Default: SET

SIR/XS SQL 53

DOUBLE

Displays ablank line between rows. CLEAR specifies that rows are displayed
single-spaced, that is with no blank lines between them.

Abbreviation: DBL

Default: CLEAR

DPLACES n

Sets the number of decimal places used in printing decimal numbersto n. CLEAR
resets to the default number of decimal places.

Abbreviation: DPL

Default: 2 decimal places.

ECHO

Specifies that any input from an alternate input file or from acall procedure is
echoed to the screen.
Default: CLEAR

EXEC

Specifies that SELECT commands are translated and executed after the last line of
the statement is entered. CLEAR prompts to translate and then execute the query.
Default: SET

EXPONENT n

Specifies that the non-integer numeric values are displayed in scientific notation.
n is the number of decimalsto display and zero (0) is used to indicate that values
are displayed in normal decimal notation.

CLEAR specifies that decimal notation is used.

Default: CLEAR

FAM LY fani | y_nane[/ passwor d]

Specifies the default family and password for procedure file references. CLEAR
clears the default family name and password.

Abbreviation: FAM

Default: Last family referenced

GROUPI NG

Specifiesthat if break levels are set, the break column value is printed the first
time that the value changes. For the subsequent lines the break column valueis
suppressed. CLEAR specifies that if break levels are displayed, the break column
values are printed on every line.

SIR/XS

SQL 54

Abbreviation: GRP
Default: SET

GRPSI ZE n

I NPUT

LABEL

LOVNER

Specifies the size of the internal buffer used by the GROUP BY option on SELECT.
If the number of different values grouped by, isless than or equal to this value, all
processing is done in memory. If the number of entries exceeds this value, adisk
sort is performed. CLEAR specifies that the GROUP BY in-core sort sizeis 1.
Default: 256.

filename [NOABORT]

Specifies that input commands are read from the specified file instead of
interactively. This continues until an END command is encountered or end-of-file
is detected. Thisis normally used for batch runs and is set as a parameter on the
execution statement. Use this command interactively to run stored command
sequences.

If an error occurs on an input file, the processing of that file stops at that point.
NOABORT specifies that the command in error is written to the LOG file, and
processing continues.

This can be used to import an SQL export file.
Default: Commands are read interactively.

Specifies that column headings and break titles are labels instead of names. CLEAR
specifies that variable names are used for column headings and break titles.
Abbreviation: LAB

Default: CLEAR

Specifies that the report produced by the PRI NT command has mixed uppercase
and lowercase characters. Thisisidentical to CLEAR UPPER . CLEAR LOVER
specifies that the report produced by the PRI NT command is in uppercase only and
lowercase characters are translated to uppercase. Thisisidentical to SET UPPER.
Abbreviation: LC

Default: SET

MASTER ' master _ip[:port]’

Sets the use of Master. If aname is not specified, sets the Master to be the
previously used Master.

SIR/XS SQL 55

Equivalent execution statement parameter: MST=name
Default: Last master referenced

MEMBER nenber _nanme [/ password]

Specifies the default member name and password. CLEAR specifies that there is no
default member.

Abbreviation: MEM

Default: Last member referenced

M SSCHAR ' ¢!

Specifies the character used to display a column when it contains missing val ues.
Specify one character which fills the column. See also SET NULL. CLEAR setsthe
character to blank. Thisis equivalent to specifying SET M SSCHAR
Abbreviation: M sS

Default: Asterisk " *

NULL 'string'

Specifies a string displayed when afield contains missing values. NULL takes
precedence over M SSCHAR. CLEAR clears the parameter; fields with missing
values are filled with the M SSCHAR character.

Default: CLEAR

QUTPUT fi |l enane

Specifies the default print file. CLEAR specifies that there is no default output file
and must be named on the QUTPUT clause on PRI NT or WRI TE commands.
Abbreviation: ouT

Default: CLEAR.

PATH

Paths are automatically used by SELECT. CLEAR specifies that paths are not
automatically used by SELECT and you must name a path explicitly in a SELECT to

use it.
SHOW PATH [pat h_nane]

Aswell as showing the current path parameter setting, SHOW PATH shows the
definitions of al paths or of the pathname specified.
Default: SET

RECLI M n

Specifies alimit on the number of records read by a SELECT. When the limit is
reached, the process stops and prompts whether to continue. There are three
options: continuing and receiving a further warning after another RECLI Mnumber

SIR/XS SQL 56

of records is processed, continuing with adifferent RECLI M and stopping the
SELECT at that point. CLEAR disables the record limit option.

Abbreviation: RLI M

Default: 1000

SELLI M n

Specifies alimit on the number of new rows selected by a SELECT. When this
number of new rows is reached, the process stops and prompts whether to
continue with three options; continue and receive a further warning after another
SELLI Mnumber of rows are created; continue with adifferent SELLI M stop the
SELECT. CLEAR disables the select limit on new rows.

Abbreviation: SLI M

Default: 1000

SELSI ZE n

Specifies the size of the internal buffer used for holding of the results of a sub-
guery on SELECT. If the number of different values selected in the sub-query, is
less than or equal to this value, al processing is donein memory. If the number of
entries exceeds this value, disk I/O is performed. This parameter controls the
number of entriesthat are kept in memory. CLEAR specifies that the in-core sizeis
1.

Default: 256.

SEPARATE ' string'

Specifies the string used to separate columns on the display. CLEAR specifies that
columns are not separated.

Abbreviation: SEP

Default: Two blanks.

SI NGLE

Detail lines are single spaced on adisplay. There are no blank lines between
consecutive detail lines. This parameter is changed by SET DOUBLE or SET
TRI PLE. To seethe value of al line spacing parameters, use SHOW SPACI NG.
Abbreviation: SGL

Default: SET.

SPACEC n m

Specifies that there are n blank lines between the page heading and the column
headings and m blank lines between the column headings and the underline
beneath the column headings on displays. CLEAR specifies that there are no blank
lines.

Default: n=1,m=0

SIR/XS SQL 57

SPACED n m

Specifies that there are n blank lines between the column heading underlining and
the detail lines and m blank lines between the detail lines and the underline prior
to the subtotals on displays. CLEAR specifies that there are no blank lines.

Default: CLEAR

SPACES n m

Specifies that there are n blank lines between the underline under the detail lines
and the subtotal line and m blank lines between the subtotal lines and the next
column headings on displays. CLEAR specifies that there are no blank lines.
Default: n=0,m=1

SPACET n m

Specifies that there are n blank lines between the subtotal lines and the grand total
underline and m blank lines between the grand total underline and the grand total
line on displays. CLEAR specifies that there are no blank lines.

Default: n=0, m=1

SRTSI ZE n

Specifies the number of entriesin to sort. Sorting is done with the ORDER BY
clause on SELECT for detail rows. CLEAR sets the sort size to the default of 1000.

STATS

Specifies that statistics are displayed automatically at the end of execution of a
SELECT. These same statistics are displayed whenever a SELECT reaches a
CASELI M RECLI Mor SELLI Mand prompts for a decision to continue. CLEAR
suppresses the display of statistics after a SELECT.

Default: CLEAR

SUBTOTAL

Specifies that subtotals are displayed when a BREAK or GROUP command is given
for areport. CLEAR specifies that subtotals are not automatically produced for
breaks or groups for areport.

Abbreviation: STOT

Default: SET

TABFI LE nane

Sets the default tabfile. CONNECTing to a tabfile sets that tabfile to the default.
Abbreviation: TF
Default: $SYSTEM

SIR/XS SQL 58

TABSI ZE n

A synonym for SELSI ZE. The use of a sub-query on SELECT requires the holding
of the results of the sub-query. This parameter controls the size of the internal
buffer. If the number of different values selected in the sub-query, is less than or
equal to thisvalue, al processing is done in memory. If the number of entries
exceedsthisvalue, adisk 1/0 is performed. This parameter controls the number of
entries that are kept in memory. CLEAR specifies that the in-core sizeis 1.

Default: 256.

TIME 'fornmat'

Sets the default time format. CLEAR specifies that system default time format is
used.

Default; 'HH: Mvt SS'

TOTALS 'string'

Specifies that totals are produced for displays with a break or group option. The
"string' isalabel displayed on thetota linein the left margin. If not specified,
the default label is TOTAL. CLEAR disables the total line display.

Abbreviations: TOT, TOTAL

Default: CLEAR

TRANSFER _VALLAB

Specifies whether value labels are transferred to the new table created by select
wherever they exist. CLEAR specifies that value labels are not transferred to the
new table.

Default: SET

TRI PLE

Specifies that the detail lines are displayed triple spaced, with two blank lines
between each detail line. This parameter is altered with SET SI NGLE and SET
DOUBLE. To see the value of this parameter, use SHOW SPACI NG.

Abbreviation: TPL

Default: Detail lines are single spaced.

UNDERCOL

Specifies that the column headings are underlined. CLEAR specifies no
underlining.

Abbreviations: uCOL, UNDCOL

Default: SET

UNDHEAD

SIR/XS SQL 59

Specifies that an underline is printed before a subtotal. CLEAR specifies no
underlining.

Abbreviation: UHEAD

Default: SET

UPPER

Specifiesthat areport produced by PRI NT isin uppercase. (Identical to CLEAR
LOVER.)

CLEAR UPPER specifies that reports are in mixed lower and upper case. (Identical
to SET LOAER.)

Abbreviation: uc

Default: CLEAR

VALLAB

Specifies that value labels are used in place of values, for columns with value
labels defined. CLEAR specifies that values are used regardless of whether value
labels exist.

Default: CLEAR

VARCHAR n

Specifies the display size for character columns. This does not effect the field size
created on tables by SELECT. Field sizeis determined by the definition of the
column or expression. CLEAR sets the display width of character fields to zero;
they are not displayed.

Abbreviation: VCHR

Default: 20

WDTH {n | LABEL | M N}

Sets the width of output columns. This can be the specified number of characters
(n); the width necessary to accommodate the column and value labels (LABEL); or,
for numeric fields, to the minimum number of characters necessary to
accommodate the widest number in the column (M N). The M N option can only be
used at the table level in the display processor.

CLEAR sets the column widths to 8 for numeric data and to the string length
specified in the schema for strings.

Default: CLEAR

WORK fi | ename [PASSWORD passwor d]

Specifies the default workspace for SAVE and GET. CLEAR specifies that there is no

SIR/XS SQL 60

default workspace.
Default: Si r SQL. wsp

ZERCS ON | OFF | "string'

Specifies the printing of leading zeros for numbers. ON means leading zeros are
printed; OFF means they are suppressed. Also specifies a string to be printed if the
valueis zero. CLEAR iSthe same as SET ZEROS OFF.

Abbreviation: ZERO

Default: CLEAR

SIR/XS SQL 61

Control Commands

There are anumber of ancillary commands which execute procedures, connect databases
and tabfiles, etc. Most of these operations can be carried out more easily from the menus.
The commands are as follows:

CALL

Executes commands stored as a procedure
CONNECT DATABASE

Connects databases
CONNECT TABFILE

Connects tabfiles
CREATEATTRIBUTE

Creates a short internal name to represent a filename
CREATE SYNONYM

Defines a short word to stand for longer text
DISCONNECT

Disconnects a database or tabfile
DROP

Deletes atabfile or elements such as paths or views which have been created
END

terminates session
GET

Restores the workspace from afile

SAVE

Saves the workspace to afile

SIR/XS SQL 62

CALL

CALL [database.] [fanily.] nenber [(paraneter, ...)]

CALL executes a procedure from a SIR/XS procedure file. The procedure file must be
connected. A procedure (or member) may be edited, amended and added to the procedure
file from the SQL menus.

A procedure that is called in SQL should only contain SQL commands.

Procedures can be created which have parameters to specify particular conditions.
Parameters are positional; that is, the stored procedure references parameters by number
and these numbers are assigned in the order they are specified. A procedure parameter
can be any sequence of text. Parameters are enclosed in parentheses and separated by
commas. Null parameters are specified by a commaimmediately following the previous
comma.

Example: Suppose the following were in the text of procedure REP1:
SELECT | D NAME <1> <2> FROM EMPLOYEE <3>
Call this procedure with:
CALL REP1 (SALARY , GENDER , WHERE (SALARY GT 2250))
which resultsin the full command:

SELECT I D NAME SALARY GENDER FROM EMPLOYEE -
VWHERE (SALARY GI 2250)

SIR/XS SQL 63

CONNECT DATABASE

CONNECT DATABASE dat abase_nane

PASSWORD dat abase_password]

PREFI X 'file_prefix']

SECURITY read_security,wite_security]
SUPPRESS PATH]

SUPPRESS QPROFI LE]

—— — ——

Abbreviation: con DB Connects the named database. Supply the appropriate password
and security passwords. If the database is not in the default directory, supply a prefix.
Enclose the prefix in single quotes.

This database is made the default database. If other databases are connected, the SET
DATABASE command alters the default. When using multiple databases, prefix non-unigue
record names with the database name. For example, in a database called COVPANY with a
record named EMPLOYEE:

SELECT FROM COVPANY. EMPLOYEE

PASSWORD

Specifies the database password.
Abbreviation: Pw

PREFI X

Specifies adirectory other than the current default directory for database access.
The directory used for any other filesis unaffected. Specify the prefix in single
quotes.

Abbreviation: P

For example:
PREFI X ' C:\ MYFI LES\"

SUPPRESS PATH

Suppresses the generation of paths. Paths are automatically generated when a
SIR/XS database is connected. Turn off the use of paths with the CLEAR PATH

SIR/XS SQL 64

command. Disconnect and reconnect without suppressing paths to generate the
paths.

SUPPRESS QPRCFI LE

Suppresses automatic execution of SYSTEM QPROFI LE. When a database is
connected, SQL automatically executes this procedure on that database. The
procedure can contain any SQL commands executed each time this database is
connected. If the procedure does not exist, no member is executed.

SECURI TY

Specifies the read and write security passwords for the database. Specify the read
password first, then acomma, then the write password. If thereisawrite
password but no read password, precede the write password with a comma.

CONNECT DATABASE SECURI TY HI GH, H GH

SIR/XS SQL 65

CONNECT TABFILE

CONNECT TABFILE nane
[AUTO| READ | WRITE]
[FILENAME fil enane]
[IDENT BY grpnane/ gr ppass. user name/ user pass]

Abbreviation: CON TF

Connects the named, existing tabfile. The name used must be the name specified when
the tabfile was created. Thisisan internal name and is independent of, and unaffected by,
the operating system filename. All references to the tabfile are by this name. Tabfiles
with the same name cannot be connected at the same time.

AUTO

Specifies that the tabfile is opened and closed every time an SQL operation, such
as a SELECT, is executed. Thislocks the tabfile for exclusive write for the
minimum period of time. AUTOIs the default. Specify WRI TE for exclusive
updating or READ if only doing queries.

READ

Specifies that the tabfile is opened and remains open for shared read-only access
until DI SCONNECTed.

VRI TE

Specifies that the tabfile is opened and remains open for exclusive write
operations until DI SCONNECTed.

FI LENAMVE

Specifies the operating system filename for the tabfile. If afilenameis not
specified, the internal name of the tabfile plus ".tbf" is used as the operating
system filename.

| DENT BY

Specifies group name, group password, user name, and user password for access
to thistabfile. If security controls were not defined when the tabfile was created,

SIR/XS

SQL 66

these clauses are unnecessary. Depending on the access controls, you may need to
specify a password for the group, a username and a password for the username.

SIR/XS SQL 67

CREATE ATTRIBUTE

CREATE ATTRIBUTE name FILENAME 'external fil enang'
Abbreviation: CRE ATTRI B
Associates an SQL internal name with an operating system filename specified in quotes.

The SQL name can be used in subsequent commands wherever you need to specify a
filename.

SIR/XS SQL 68

CREATE SYNONYM

CREATE SYNONYM nane text

Abbreviation : CRE SYN Creates a synonym. A synonym is atext replacement
mechanism, typically used for long, repeated sets of names. Create the synonym and then
use it wherever applicable. A synonym can be used at any point in any SQL command.

Do not enclose the text in quotes. The synonym name is a standard SQL name up to 32
characters. Do not use reserved words as Synonym names.

CREATE SYNONYM MYSELECT SELECT | D NAME SALARY FROM EMPLOYEE

SIR/XS SQL

DISCONNECT

DI SCONNECT DATABASE dat abase_nane
DI SCONNECT TABFILE tablefile _nane

Abbreviation: DI SCON DB, DI'S DB, DI SCON TF, DI S TF Disconnects a database or
tabfile. The database or tabfileis closed and all schema information is released.

69

SIR/XS SQL

DROP

DROP ATTRIB attribute_nane
DROP | NDEX i ndex_nane
DROP JOURNAL fil e_nane

DROP PATH pat h_nane

DROP SYNONYM synonym nane
DROP TABFI LE tabfil e _nane
DROP TABLE tabl e_nane
DROP VI EW Vi ew_nane

Deletes the named entity. The entity no longer exists and must be re-created if required
again.

70

SIR/XS SQL 71

END

END [CLEAR | SAVE [workspace_filename]]
Synonynms: BYE, EXIT, QU T, STOPR,

Terminates the SQL session from SQL.

If the workspace has been modified, you are prompted to save it. It will be saved asthe
default workspace file which is either the workspace file that has been restored (with a
GET, the workspace file most recently saved or the default Si r SQL. wsp. If thefileis new,
you are prompted for a password. If you specify a password, a user must specify the
password when restoring the workspace. If you do not specify a password, you will not
be prompted for it again.

SIR/XS SQL 72

GET

GET [filenane] [PASSWORD password]

Restores a workspace from the specified file name. When starting an SQL session, the
default workspace (SirSQL.wsp) is loaded unless the WORK = execution parameter is
specified.

Use GET to load a previously saved workspace. The default workspace (set by SET WORK
name), isloaded if anameis not specified on the GET command.

Specify the keyword PASSWORD and the required password if one is needed. If the
password is not specified and oneis required, you are prompted for it.

SAVE

SAVE wor kspace_fil ename [PASSWORD wor kspace_password]

SAVE saves the current workspace on the specified file. If the file name is omitted, the
workspace is saved on the default workspace file. The default for thisis SirSQL.wsp.

SIR/XS SQL

Execution Statement

The parameters can be specified on the SQL execution statement. The parameters may
be specified on the execution statement in any order and separated by a space. The
parameters determine:

Batch Mode

Whether to run SQL in batch mode
Database

Specifies a database to connect automatically
Tabfile

Specifies atabfile to connect automatically
Environment

Specifies the workspace to restore.

Batch Parameters

ABORT

BA

IN = filename
QUT = fil enane

Use these to run SQL in batch mode.

ABCRT

Specifies that batch processing is stopped if an error is detected. If ABORT is not
specified, processing continues after an error. Specify ABORT if commandsin the
input file depend on the results of an earlier command.

BA

Specifies Batch Mode. SQL commands are read from an input file specified by
the | N parameter.

73

SIR/XS SQL 74

I N
Specifies the input file containing SQL commands. Any SQL command can be
included in the file. In batch mode SELECT does not automatically cause a display.
To display the output, include a DI SPLAY statement and an END command.

ouT
Specifies an output file for error and status messages.

Format File

SQL messages are held in aformat filesi rsql . f nt . Thisisamachine readablefile
produced by a batch run of SQL. Thisreads atext input file of messages and either
creates a new format file or adds messages to a pre-existing file. Thisfacility might be
used to produce messages in a different language. Please contact SIR support if you
require thisfacility.

PREPARE
FMI = format fil ename (output)
IN = input format text filenane

QUT = output filenane (nmessages)

PREPARE

Specifies that thisis a batch run to prepare aformat file.

FMT
Specifies the format file to create or added to if it already exists.

I'N
Specifies the input text of the messages. Thisisin a predetermined format
available from SIR.

ouT

Specifies the output file for any messages or errors.

SIR/XS SQL 75

Database Parameters
DB = dat abase

P = ‘prefix

PW= password

RS = password

WE = password

EX = nmenber nane
SUPQ

Specify the following parameters to connect a default database.

DB
Specifies the name of a database to connect and use as the default.

P
Specifies adirectory other than the current directory is the location of the
database. This parameter has no affect on the directory used for any other files.
For example: P=" C: \ MYFI LES\"

PW
Specifies the database password. If a database name is not specified, any
passwords are ignored.

RS
Specifies the database read security password.

'S
Specifies the database write security password.

EX
Specifies the procedure executed when the database is connected. The procedure
isamember in the family SYSTEM If this member does not exist, no member is
executed. If thisis not specified, the member QPROFI LE (if it exists) is executed.

SUPQ

Specifies that QPROFI LE is not executed when the database is connected.

SIR/XS SQL 76

Tabfile Parameters

TBL (or TFL) = nane
TBFN (or TFFN) = fil enane
CRP = name
GPW = passwor d
USER = name
uPw = passwor d

Specify the following parameters to connect a default tabfile.

TFL
Specifies a tabfile connected when SQL is executed.
TBFN
Specifies the operating system filename of the tabfile specified on the TBL
parameter. If thisis not specified, the filename is assumed to be the same as the
tabfile name plus aprefix of . t bf .
GRP
Specifies the group name to access the tabfile.
GPW
Specifies the password for the group.
USER
Specifies the user name to access the tabfile.
UPW

Specifies the password for the user.

SIR/XS SQL 77

Environment Parameters

CENY = nnnn
WORK = wor kspace
WORKPW = password

Specify the following parameters as necessary to alter the default environment settings:

CENY

Specifiesthe four digit year used for century calculations when converting dates
with only two digit years. Specify the year below which dates are in the next
century. The system setting is 1920. This means that years below 20 are assigned
acentury of 20xx. Y ears above this are assigned a century of 19xx. Valid dates
run from 1582 to 2900.

[N WORK

Specifies the name of the workspace file automatically loaded when SQL starts. If
aworkspace is not specified on the execution parameter, if Si r SQL. wsp exists, it
is automatically loaded unless NOWORK is specified. For example:

SQL/ WORK=' SQLMYW8. wsp'
V\ORKPW

Specifies the password for the workspace

SIR/XS SQL 78

SirSQL User Interface

SirSQL has asimple and easy to use graphical user interface. The main window contains
amenu bar, atoolbar, output and input windows and a status bar.

The input window is the place to type SirSQL commands. Y ou can load afile with SQL
commands into this window using the menus or by dropping afile on the main window.

Y ou can save the contents of the input areainto atext file. Y ou can also store and retrieve
sets of SQL commands as procedures (members). To execute the SQL commands from
the input window, use the Fi | e/ Run menu or the toolbar or the Ctrl-R key.

Results and messages are displayed in the output window. Thisisarelatively small
window and is automatically rebuilt when necessary. This means that earlier output is
discarded and lost unlessit logged to the Si r SQL. si g file. Logging depends on the
LogOutput setting in theinitialisation file.

The output window is as wide as necessary to display a complete line of the output. Itis
treated as a single page with headings at the beginning of a display of atable.

Y ou can select part of the output to save, print or copy to the clipboard. Y ou can use the
appropriate INCLUDE/EXCLUDE commands to ater the output display of atable.

The status line displays the information about execution of the last command. If a
command was unsuccessful, the status line indicates this and the command is retained in
the input window to be edited and re-submitted.

SirSQL provides a set of menus and dialog boxes to perform many common operations.
Some popular menu commands are aso available on the toolbar.

The main menu consists of the following:
File

Open

Save As
Run

History
Clear Output
Save Output
Print Output
Exit

Database

SIR/XS SQL

Connect
Database
List
Members

Tabfile

Connect
Disconnect
List

Create

Interactive Select
Utilities

Verify
Export
Import
Backup
Restore

Options
Settings
Auto Display
Save workspace

Help

79

SIR/XS SQL 80

File Menu

Open loads atext file (presumably containing SQL commands) into the input window.
Save As savesthe contents of the input areainto atext file.
Run executes the SQL commands from the input area.

Hi st ory displays any previously entered commands and allows you to re-run them or
load them into the input areafor editing.

Cl ear Qutput clearsthe output area.
Save CQutput savesthe output area as a named text file.
Print Qutput sendsthe output areato the current system printer.

Exi t finishesthe SQL session and exits the system. This also saves the workspace.

SIR/XS SQL 81

Connect database

Use this dialog to connect a database. Specify the database by its name. If the databaseis
not located in the current working directory, prefix the database name with the
appropriate path.

Specify the main password and read/write security passwords. A database can be
protected by write and read passwords, only awrite password or not have passwords at
all;. it cannot have aread password without awrite password. If you specify the read
password without a write password, the system uses the same password for both read and
write security.

The most recently connected database is selected as the default database.

See the CONNECT DATABASE command.

SIR/XS SQL 82

List of connected databases

Use this dialog to perform basic operations on databases. Y ou can use it to change the
default database. Select a database from the list and use the OK button to close the
dialog. If you close the dialog using the Cancel button, the previous default is not
changed (if this database is still connected).

Y ou can add databases to the list using the Connect button. Other buttons act on the
database selected in the list. Y ou can disconnect databases using the Disconnect button.
Use the Structur e button to get the information about the tables and fields defined in the
database. Use the M ember s button to get the list of families and members (stored
procedures) associated with the selected database.

SIR/XS SQL 83

Database structure

Use this dialog to inspect the database structure. Select atable to get the list of itsfields.
Usethe Field Info and Table Info buttons to get properties of individual tables and
fields.

SIR/XS SQL 84

Createtabfile

Usethisdialog to create a new tabfile. Specify the tabfile name. A tabfile nameis up to
32 characterslong and not case sensitive.

Specify the filename explicitly to place the physical file into a directory other than your
current working directory or to have the file name other than the name of the tabfile
suffixed by the . t bf extension.

Specify the journal file name if you want to have ajournal for the tabfile. Specify group
and user passwords if you need to control access to this tabfile.

Only specify block size when necessary.
Thetabfile is created, automatically connected and selected as the default.

See the CREATE TABFILE command.

SIR/XS SQL 85

Connect tabfile

Use this dialog to connect atabfile. Specify the tabfile by name. Specify the filename if
the tabfile is not in the current working directory, or where the filename is not the tabfile
name with a. t bf suffix. Y ou can use the browse button to locate thefile.

Specify group and user IDs and passwords if the tabfile is password protected.

The latest tabfile connected is set to be the default.

See CONNECT TABFILE command.

SIR/XS SQL 86

List of connected tabfiles

Use thisdialog to perform basic operations on tabfiles.

Y ou can change the default tabfile. Select atabfile from the list and use the OK button to
closethe diaog. If you close the dialog using the Cancel button, the previous default will
not be changed (if thistabfileis still connected).

Y ou can add tabfilesto the list using the Create and Connect buttons. Other buttons act
on the tabfile selected in the list. Y ou can disconnect tabfiles using the Disconnect
button. The Drop button disconnects and removes the tabfile.

Use the Structure button to get the information about the tables, fields and indexes
defined in the tabfile. This also alows you to Create indexes for the table.

SIR/XS SQL

Tabfile structure

Use this dialog to inspect the tabfile structure. Select atable to get the list of itsfields.

Usethe Field Info and Table Info buttons to get properties of individual tables and
fields.

Use the Drop Table button to delete the table from the tabfile.

Use the I ndexes button to inspect/add/remove the tabl€e's indexes.

87

SIR/XS SQL

| ndexes

Select an index to get the list of its key fields. Use the Add index and Drop I ndex
buttons to add/remove indexes.

88

SIR/XS SQL 89

Createindex

To create a new index select the desired fields of the table and add them to the list of key
fields. Define a name for the new index. Check the Unique checkbox if you create a
unique index.

See the CREATE INDEX command.

SIR/XS SQL 90

Select

This dialog helps you to construct simple SELECT queriesinteractively. It does not
provide all functionality of the SirSQL SELECT statement, but you can load the resulting
statement into the input window and use it as the starting point for writing a more
complex query.

The query under construction is displayed in the lower part of the dialog.

Start construction of the query by selecting some tables for the FROM clause on the
From tab of the dialog. Y ou can then activate other tabs. Y ou can always return to the
From tab later to modify the list of tables, but you need to have at least one table in this
list to enable other tabs.

If you select the fields from atable and later delete this table from the table list, this
resultsin an invalid query as references to fields are not deleted from the query.

Use these links for the information on the individual tabs:

From
What
Where
Order by
Group by

See the SELECT command.

SIR/XS SQL 91

From

Use thistab to define the list of tables you want to run the query on. SirSQL alows you
to run query on tables from multiple databases and tabfiles. Y ou need to define aliases
(use the Add As button) if you have the same table name on two databases/tabfiles or
need to do a self-joint.

Y ou need to specify at |east one table to enable the other tabs. Y ou can always return to
thistab and modify the list of tables.

See the FROM clause of the SQL SELECT statement.

SIR/XS SQL 92

What

Use thistab to define the list of variables you're interested in. Y ou can select the variables
from any table in the FROM clause.

Y ou can use Add As button and type any SQL expression (like aggregate function or
arithmetic expression) if what you want to get is not just the value of the field.

SIR/XS SQL

Where

Use thistab to write the WHERE clause of your SELECT statement. Basically you just
typeit in, but you can select the variables from any table in the FROM clause and insert
them into the text of your conditions.

See the WHERE clause of the SQL SELECT statement.

93

SIR/XS SQL 94

Order by

Usethistab to build the list of key fields used to sort the results of the SELECT
statement. Y ou can select the variables from any table in the FROM clause and use them
as keysfor ascending or descending sort.

See the ORDER BY clause of the SQL SELECT statement.

SIR/XS SQL 95

Group by

Thistab is useful only when you do select on aggregate functions (you can do it using the
Add As button on the What tab). Use the Group by tab to build the list of key fields
used to group the results of the SELECT statement. Additionally you can write the
conditions for the HAVING clause very much like for the WHERE clause. Y ou can
select the variables from any table in the FROM clause and insert them into the text of
your conditions.

See the GROUP BY and HAVING clauses of the SQL SELECT statement.

SIR/XS SQL 96

Verify tabfile

Specify the tabfile to be verified. It doesn't need to be connected. Y ou need to specify the
file name if the tabfile uses non-standard name or located not in the current working
directory. Y ou can use the browse button to locate the tabfile.

Seethe VERIFY command.

SIR/XS SQL 97

Export tabfile

Usethisdialog to export atabfile as atext file. Specify the filename and select the tabfile
to export from the list. Y ou can export all the tables or individual tables and specify some
other options here.

The resulting text file can be transferred on the different type of computer and imported
by the Utilities/mport command.

See the EXPORT command.

SIR/XS SQL 98

Backup tabfile

Use this dialog to backup atabfile. Specify the filename and select the tabfile to backup.
Y ou can backup the tabfile without indexes. In that case the indexes will be rebuild when
you restore the tabfile.

To restore the tabfile use the Utilities’Restor e command.

See the statement.

SIR/XS

Restor e tabfile

See the RESTORE command.

SQL

99

SIR/XS SQL 100

Data Entry and Modification
Datain SIR/XS databases or tables may be entered, modified or deleted with SQL. There
are four commands available to do this. Three commands operate on sets of datain a
similar way to SELECT with aWHERE clause. These are:
DELETE FROM
Deletes rows or records.

INSERT INTO

Inserts new records or rows into databases or tables. The new records or rows to
insert are generated by a SELECT statement which is part of the command.

UPDATE

Modifies values in existing rows and records

The fourth command creates single records or rows interactively:
ENTER INTO

Prompts interactively for new records or rows data to add to the database or table.

SIR/XS SQL 101

DELETE FROM

DELETE FROM [tabfile.] | [database.] nane
[WHERE condi ti on]
[COVPI LE_ONLY]

Deletes rows or views from tables and records from databases.
Specify record name, record number or the keyword CIR as a database record name. If a
database name is not specified, the default database is used. Specify atable or aview and
the tabfile name. If the tabfile name is not specified, the default tabfile is used.
WHERE

WHERE defines the set of records to be deleted.

COWPI LE_ONLY

Compiles the command and checks for syntax errors but does not perform the
deletions.

SIR/XS SQL 102

ENTER INTO

ENTER I NTO [tabfile.] | [database.] nane
[LABELS]
[LENGTH n]

Prompts for data from the screen to enter new records or rows interactively. It is
recommended that one of the other SIR/XS facilities such as FORMS or VisuaPQL is
used for interactive data entry for all but the most trivial instances.

Specify record name, record number or the keyword CIR as a database record name. If a
database name is not specified, the default database is used. Specify atable or aview and
the tabfile name. If the tabfile name is not specified, the default tabfile is used.

SQL prompts for the values of each variable. After the last value for one record or row,
SQL prompts again for an entry into the first variable of the next record or row. Finish
input at any time with the Cancel button. This cancels the current record and terminates
the process.

ENTER | NTO creates new records or rows. It does not allow the updating of existing data.
If arecord with the same key as an existing record is entered, it is rejected. If arow with
the same valuesin a unique index as an existing row is entered, it isrejected. If arecord

or row isrejected the process is terminated.

LABELS

Specifies that the variable label is used as the prompt in place of the variable
name and data type.

LENGTH

Specifies the length of the prompt in characters. Prompts are padded or truncated
to the specified length. Maximum length is 32 characters.

SIR/XS SQL 103

INSERT INTO

I NSERT I NTO [tabfile.] | [database.] nane
[(variable list, ...)]
VALUES (value_list) | SELECT statenent
[COVPI LE_ONLY]

Inserts rows into tables and records into databases. The inserted rows or records are
created by the SELECT clause.

Specify record name, record number or the keyword CIR as a database record name. If a
database name is not specified, the default database is used. Specify atable or aview and
the tabfile name. If the tabfile name is not specified, the default tabfile is used.

The variable list specifies the variables or columns. This must match the columns created
by the SELECT. If the variable list is omitted, all variables defined for the record or row
are expected.

VALUES

Thevauelistisalist of constants to insert. This creates one new record or row
with the specified values. The values must correspond in type, length and order
with the | NSERT | NTOVvariable list. Specify stringsin single quotes.

SELECT

SELECT retrieves data from other tables or record types and this data is then used
to create the specified rows or records. Any valid SELECT can be used as the
source of values for the insert operation. The variables that are in the SELECT list
must match in type, length and order with the | NSERT | NTOvariable list.

COWPI LE_ONLY

Causes the | NSERT command to be compiled but not executed. It isused for
checking syntax.

Example: Suppose atable has been created from the employee database with the
following SELECT, and some new employees are to be added:

SELECT * FROM EMPLOYEE ON MYTABLE WHERE GENDER EQ 1
I NSERT | NTO MYTABLE -

SIR/XS SQL 104

SELECT * FROM EMPLOYEE WHERE CGENDER EQ 2

SIR/XS SQL 105

UPDATE

UPDATE [tabfile.] | [database.] nane
SET vari abl e_name = expression,
[WHERE | ogi cal condition]
[COWPI LE_ONLY]

Updates existing rows or records in atable or database. Specify record name, record
number or the keyword CIR as a database record name. If a database name is not

specified, the default database is used. Specify atable or aview and the tabfile name. If
the tabfile name is not specified, the default tabfile is used.

The SET statement lists the variables to update. Separate each variable name or
expression with acomma.

The WHERE clause specifies the rows or records to be updated. COVPI LE_ONLY

Specify to compile the UPDATE command but not to execute it, for checking
syntax before updating data.

Example: To give everyone a 10% raise in Salary and to change date to today:

UPDATE MYTABLE SET SALARY = SALARY * 1.1, CURRDATE = TODAY(O0)

SIR/XS SQL 106

Paths and Views

A Path isalogical connection between two records or tables which tells SQL how to join
the two data sources when they are referenced in aFROM clause on a SELECT.

A View isavirtual table which is created from one or more records or tables and can then
be referenced in the FROM clause asif it was areal table.

Create paths and views with the CREATE PATH and CREATE VIEW commands. List
paths and views with the SHOW command. Delete paths and views with the DROP
command.

Paths

Paths are implicitly invoked if the path is the only path between two records or tables
named in the FROMclause of a SELECT. If there is more than one path defined between
two records or tables, SQL uses the earliest defined path. When a SIR/XS database is
connected, paths are automatically created between al records with matching keys.

Use the SHOW PATHS command to see the currently defined paths in the order that
SQL deals with them.

Paths are explicitly invoked in the FROM clause of the SELECT statement by specifying the
name of the first record type or table and the path name as the second name. For example,
if thereisa PATH called NEWPATH from RECX to RECY, invoke the path with:

SELECT RECXVARS RECYVARS FROM RECX NEWPATH

A path defined between two records on a case structured database operates within the
same case unless the USI NG clause is specified on the path. The UsI NG clause joins
records belonging to different cases. The setting of CASE mode does not affect the
operation of the path. Paths can be defined between the common information record
(CIR) and other records or CIRs by specifying the keyword CIR.

A table name may be specified and the rows on the table are used in exactly the same
way as records on the database. The WHERE clause in the path definition determines how
the path operates and should normally reference indexed columns. Vi A and USI NG clauses
are not used if the TO clause specifies atable.

SIR/XS SQL 107

View

A View isavirtua table which does not physically exist. It isamapping that retrieves
data from tables and records and presentsit asif it was atable. A view can provide a
simpler presentation of a given subset of data. The view is dynamic and reflects the | atest
data contained in the base records and tables. Views provide additional security;
permissions for various activities on the view may be granted to specific users; security
on columns and rows may be controlled through the SELECT statement and the WHERE
clause within the view.

A view definition resides in atabfile and its columns are defined by a SELECT statement
on the CREATE VI Ewcommand. Thisis the same as any other SELECT except that the
DI STI NCT, ORDER BY, FORMAT and UNI ON clauses may not be used.

When aview iscreated, it is created on the tabfile in the same way as any other table.
Views can be exported and imported on another machine. Security can be defined as for
any other table. Permissions on views can be granted and revoked. (See Permissions).

Viewscan be used to SELECT ... FROM ... asany other table. DI SPLAY does not access
views. Views are used in SQL only; they cannot be used in other SIR/XS products such
as VisuaPQL or FORMS.

The underlying datain tables or records can be updated using the vi Ewname on the
update command with the following conditions:

- If the FROMclause in the SELECT statement of the CREATE VI Ewcommand references
more than one table or record, the view cannot be updated.

- If the SELECT statement implies any aggregation (GROUP BY or aggregation functions),
the view cannot be updated.

- If the base table is arecord or atable with a unique index, the view must include al the
columns that compose the key or index in order to be updateable.

- If the SELECT statement contains a constant or an expression, then:
| NSERT is not allowed on that column

UPDATE is not allowed on that column
DELETE is allowed

- If the view does not include all columns or variables from the table or record, then any
unspecified columns in new rows or records are assigned undefined values.

SIR/XS SQL 108

CREATE PATH

CREATE PATH pat h_name

FROM [[dat abase.] recordtype] | [[tabfile.] table]
TO [[dat abase.] recordtype] | [[tabfile.] table]
[WHERE bool ean]

[VIA value list | USING value list]

FI RST LAST OUTER REVERSE Cl R
CREATE PATH names the path and specifies the two records or tables that the path joins.

Paths may use Views as the FROVMiand TOreferences. The WHERE, VI A, and USI NG
clauses link records and rows depending on the values of dataitems.

FROM

FROMis required. It specifies the record, table or view which isto be joined to the
TOrecord, table or view.

TO
TOisrequired. It specifies the record, table or view which is to be joined to the
FROMrecord, table or view.

WHERE
The WHERE isalogica condition applied to individual occurrences of the data at
execution time. If the condition istrue, arow is returned.

VI A

Specifies values for the key fields of the TOrecords. If one or more of the key
fields are omitted, all records with the specified key fields are returned. The
values can be an arithmetic expression, a constant or a variable name.

An asterisk (*) can be substituted for explicit values to indicate that the key fields
of the FROVIrecord are to be passed. The asterisk can be used in combination with
other values. The asterisk can only appear as the first item. An asterisk cannot be

specified when atable is the FROVireference.

SIR/XS SQL 109

The caseid is passed automatically when Vi Ais used. Do not specify the caseid
in the vi A clause.

USI NG

Specifies values for the case id and any other key fields for the TOrecords. USI NG
allows the joining of records from different cases. The values can be constants,
variables or arithmetic expressions. Only variables in the FROMrecord type can
appear on the USI NG clause.

FI RST

Specifies that the path selects only the first record from the record type listed in
the TOclause.

LAST

Specifies that the path selects only the last record from the record type listed in
the TOclause.

OUTER

Specifies that if no occurrences of the TOrecord can be found to satisfy the path
definition, then adummy of all undefined valuesis used to complete the join.

REVERSE

Specifies that the records pointed to by the path definition are processed in
reverse order. Abbreviation: REV

Examples:
1) To join employee records to occup records only where the employee is female and
worksin division 1, specify:

CREATE PATH MYPATH
FROM EMPLOYEE TO OCCUP -
WHERE GENDER EQ 2 AND DI VI SION EQ 1

2) To create a path called CURRENT that joins EMPLOYEE and OCCUP records only for the
current position, specify

CREATE PATH CURRENT -
FROM EMPLOYEE TO OCCUP VI A CURRPGS

SIR/XS SQL 110

Notethat VI Aand USI NG are not specified together. Valid Specifications on the Vi A,
VI A *, and USI NG clauses are;

FROM TO VI A VIA * USI NG
tabl e recnane Yes No Yes
tabl e tabl e No No No
recnane rechane Yes Yes Yes

recnane table No No No

SIR/XS SQL 111

CREATE VIEW

CREATE VIEW [tabfile.] viewname [(colum list)]

AS SELECT variable |ist

FROM [dat abase.] rectype | [tabfile.]table ,
[GROUP BY variable list, ... [HAVING expression]]
[QUTER [dat abase.] rectype | [tabfile.]table]
[WHERE expressi on]

[W TH CHECK OPTI ON]

CREATE VI Ewcreates anamed view. The view is a SELECT from a number of records,
tables or other views with particular conditions.

Vi ewnane

Every view has aname and its definition is stored in atabfile. If the tabfileis not
specified, the current default tabfile is used.

colum |i st

The optional column name list renames the columns specified in the SELECT
statement in the CREATE VI Ewcommand. The column list must reference the same
number of columns as the SELECT statement does. Renaming columnsis useful
when the SELECT creates columns with awkward names such as expressions or
concatenations of table and column names.

AS SELECT

Specifies the columns in the view. The names are the variables and columns from
the records and tables in the FROMclause. Specify expressions (constants,
arithmetic expressions, functions) asin a SELECT command. If the view includes
record(s) from a case structured database, the view automatically includes the
case id and common variables.

FROM

Specifies the records, tables, views or paths which contain the specified variables
or columns. Aliases may be assigned. If aliases are used, each FROvirecord or
table must be separated by commeas. If the optiona database and tabfile names are
not specified, the current defaults are used.

GROUP BY

SIR/XS SQL 112

Specifies that sets of values selected are grouped together according to their
unique valuesin the value list. If thisis a case structured database and the
GROUP BY isintended to group records from more than one case, CLEAR CASE
before using the view.

HAVI NG

The selection criteriais applied to each group selected with the GROUP BY clause.
Only groups which satisfy the specified condition are included in the view.

QUTER

Specifies that if no occurrences of the specified record or table can be found, then
arow iscreated with all variables or columns from the missing record or table set
to undefined. If QUTERis not specified, arow is not returned.

WHERE

Specifies a condition that must be satisfied for arow to be included in the view.
The WHERE clause can contain subqueries but these may not reference another
view.

W TH CHECK OPTI ON

Specifies that, when aview is being used to update a base table or record, the new
row must conform to the WHERE clause conditions. This means that the view can
only add or modify rows which are part of the view. If thisis not specified, rows
can be added which the view could not retrieve.

Examples:
To create aview of EMPLOYEES with | D, NAME and SALARY for male employees only
(including | D automatically because it is the case id):

CREATE VI EW MALES -
AS SELECT NAME SALARY -
FROM 1 WHERE CENDER EQ 1

To create aview of EMPLOYEES who have had low review ratings:

CREATE VI EW LOARATI NG -
AS SELECT NAME SALARY POSI TI ON DI VI SI ON REVDATE RATI NG -
FROM1 2 3 -
VWHERE RATI NG LT 4

To create adynamic summary of people by education level:

CREATE VI EW EDSUMM -
(LEVEL, NUMBER, WAGES, AVERAGE) -

SIR/XS SQL 113

AS SELECT EDUC COUNT(SALARY) SUM SALARY) -
SUM SALARY) / COUNT(SALARY) -

FROM 1 -

GROUP BY EDUC

RENAME VIEW COMMAND

RENAVE VIEW [tabfile_name.] view_nane TO vi ew_nane

Renames aview. If the tabfile is not specified, the default tabfile is used.

SIR/XS SQL 114

Tabfilesand Tables

SQL can create, define, populate, modify and retrieve data from tables stored in tabfiles.

A tabfileisaphysical file on disk and isindependent of all other tabfiles. A tabfile can
hold multiple tables and is the largest unit that exists for security and access control.

An SQL session may be connected to multiple tabfiles and can retrieve data from tables
in any connected tabfile.

Whenever tables are referenced, the tabfile can be specified or the default can be taken.
One tabfile is always the default and can be any tabfile. If no other default is set, the
$SysTEMtabfile is the default.

Table

A tableisall of the individual instances (or rows) of asingle type of record. A recordisa
set of columns (or variables). The definition of the individual columnsincludes the
column name, format, data type, missing values and value labels. There are no key
columnsin atable; key processing is done through indexes.

I ndex

Anindex isaway of accessing the rowsin atable using the values of particular
column(s) as the key. Indexes can be defined on any column or combination of columns.
Anindex may specify that rows must have unique values or may allow many rows with
the same value. Indexes can be used to process tables randomly given a particular index
value asthe key, or sequentially in index order. If atable is processed without an inde, it
isretrieved sequentially in the order in which it was created. When an index is defined, it
is built from any existing data and is automatically maintained as the table is updated.

Commands

The SQL commands which create tabfiles, create tables, and create indexes are CREATE
TABFILE, CREATE TABLE and CREATE INDEX.

The SELECT command also creates tables which are exactly the same as tables created
in any other way. SELECT copies data definitions and populates the table and can be a
much more convenient way to define new tables than using explicit commands.

Y ou can aso use Visua PQL or the SirSQL menus and SirDBM S menus to create tabfiles
and tables.

SIR/XS SQL 115

There are five utilities which can be used with tabfiles. These are:

EXPORT which creates atext version of the tabfile or individual tables which can then
be used by SQL to re-create the table. This can be used to move the tabfile from one
machine to another.

VERIFY which checks tabfiles for possible corruptions.

BACKUP TABFILE which takes a sequential file copy of atabfile.

RESTORE TABFILE which rebuilds atabfile from the sequential copy and applies
changeslogged to ajournal.

DISPLAY JOURNAL which lists the contents of ajournal file.

SIR/XS SQL 116

CREATE TABFILE

CREATE TABFILE tabfile-nane
[FI LENAME fil enane]
[DENTI FI ED BY grpnane [/grppass] [.usernane[/userpass]]]
[JOURNAL fil enane]
[BLOCKS n]

CREATE TABFI LE creates a tabfile to store one or more tables. The tabfile nameisthe
name by which thisisreferenced in al other commands. This name must be used to
CONNECT to thisfile in subsequent sessions. A tabfile is automatically connected after
being created. For example:

CREATE TABFI LE MYFI LE FI LENAMVE ' MYFI LE. TBF

FI LENAME
Specifies afilename for the tabfile. If this parameter is not specified, the tabfile name
plus a suffix of .tbf is used as the filename. (This must therefore be avalid filename).

| DENTI FI ED BY

Starts to create security definitions for access to the tabfile. The group name and optional
group password specifies a group name who has DBA permission for the tabfile. If the
DBA wishes other groups to access this tabfile, the DBA gives permissions with the
GRANT command. The user name and optional password further restrict original DBA
access to the tabfile to a second level of name and password. For example to leave

MYFI LE available to everyone to connect to it:

CREATE TABFI LE MYFI LE. TBF

To require that the group name SURGEON password BYPASS and user name JONES
password | NTERN are needed when connecting to this tabfile as a DBA in subsequent
Sessions:

CREATE TABFI LE MYFI LE. TBF | DENTI FI ED BY -
SURGEQV BYPASS. JONES/ | NTERN

SIR/XS SQL 117

If the 1 DENTI FI ED BY clauseis not specified, any user can access the tabfile with all
permissions and this cannot be changed subequently without rebuilding the tabfile, for
example exporting and editing the export file to have the | DENTI FI ED BY clause.

JOURNAL

Specifies that journaling is turned on for this tabfile and names the operating system file
which isto be used. If thejournal file is not there when the tabfile is updated, a new
journal is created, otherwise new journal datais added to the end of thefile.

BLOCKS

Specifies the number of the blocks that are used to create a physical block. The default is
1. The actua block size is 2k bytes. A specification of 2 would give 4k bytes and so on.
The number must be a positive integer.

In general the default is adequate. There is one circumstance where the block size must
be specified. A block must be able to hold the largest physical row. If you plan to define
very large rows, specify a BLOCKS clause to create a block large enough to accommodate
this.

The BLOCKS clause may be specified for performance reasons. Larger blocks are more
efficient for seria processing but take more memory. Small blocks are more efficient for
random processing through indexes where each 1/0 probably accesses a different block.

SIR/XS SQL 118

CREATE TABLE

CREATE TABLE [tabfile.]table
(col um- nane data-type [options] , ...)
[optional -tabl e-cl auses]

Creates a definition of anew table. A SELECT does this automatically.

Specify the name of the table and alist of the columns that make up the table. A
maximum of 250 columns can be specified for atable. The table and one column with its
data type are the only required clauses.

Each column must have a name and a data type. Other column specifications are optional.
Enclose the complete column list in parentheses. Optional specifications that are not
explicitly defined take the default values SET in the current session.

tabfile
Specifies the tabfile where the table islocated. A single tabfile can contain any number of
tables. The table is stored in the default tabfile if atabfile is not specified.

tabl e
The table name is required. The table name must be unique within the tabfile.

col utm_nane
Specify aname for each column. Column names must be unique within the table.

The Data Type controls whether a column is numeric, date or string, etc. and cannot be
altered once the tableis created.

The Column Options clauses control how the column is created and stored and cannot be
altered once the tableis created. The Display Format control the appearance of a column
and these can be altered after the tableis created.

Specify as many optional clauses as needed for any column (provided that the clauses
used are compatible with the data type specified for the column).

There are further optional clauses which can be specified after al of the column
specifications:

[FORMAT cl auses]
[PCTFREE (n)]
CONSTRAI NTS UNI QUE col um-1ist]

SIR/XS SQL 119

FORMAT
Specifies how SQL displays output. These clauses only effect the SQL display process.
Any of the formatting clauses that do not describe individual columns can be specified.
See Format.

PCTFREE (n)

Specifies the percentage of free space that is reserved for future expansion in each data
block of atable. The only purpose of allowing room for growth in this clause, isfor
existing rows to be modified where the modified records takes more space. Specify an
integer from 1 to 99. Rows grow when column values increase in size. The default is 10
(percent).

CONSTRAI NTS UNI QUE (columm i st)

Specifies alist of columns where combinations of the values in the columns must be
unique for anumber of rows. If an attempt is made to add a row where the combination is
not unique, the row is rejected with an error message. The columns must also be specified
as NOTNULL.

CONSTRAI NTS UNI QUE creates a unique index for the table which is given a system
generated name: ' &UNI QUE_MULTI PLE_|I NDEX_I _n' where n isthe number of the index.

Specify the column names enclosed within parentheses. Repeat the clause for as many
combinations of columns as required. For example:

CONSTRAI NTS UNI QUE (Nane, Sex, Birthday).

The same result could also be achieved with the CREATE UNIQUE INDEX command.

SIR/XS SQL 120

Column Datatypes

There are anumber of possible specifications for column data types, some of which are
synonyms for others.

CATEGORI CAL [(n)]

CHARACTER | STRING [(n)]

DATE [(' date_map')]

DEC | NUMERI C [(I engt h, deci mal s)]
FLOAT [(n)] | REAL | DOUBLE]
TINYINT | SMALLINT | INT |

TIME [("time_map')]

CATEGORI CAL
Defines the column as character which contains one value from a pre-specified list of
values. The input datais checked against the list. The position in the list that corresponds
to the input data is stored in the table rather than the value of the entry. Typically thisis
used for alist of names (e.g. Names of States), where it is more efficient to store a code
rather than avalue.
n isthe number of entriesin thelist. Valuesfor the strings are then defined in the VALI D
VAL UES clause.

CHARACTER
Defines the column as character. STRI NGis a synonym for CHARACTER.
n specifies the maximum string length. The default is 254 which is a so the maximum.
Strings are held as variable length unless the optional clause FI XED is specified.
CHARACTER can be abbreviated to CHAR.

DATE
Defines the column as a date which is displayed or entered according to the date map.
Internally, the date is held as a number of days since the start of the Gregorian calendar.
Externally, the date isinput and output in accordance with the date map. If a date map
clause is not specified, the current system date map is used.

DEC
Defines the column as a scaled integer number. NUMERI Cis a synonym for DEC. Length
specifies the total length of the number. Decimals specifies how many of those digits are
to come after the decimal point. For example: DEC (10, 2) means that the integer is 10

SIR/XS SQL 121

digitslong, with 2 digitsto the right of the decimal point. Thisis equivalent to defining
an integer type and the optional SCALE clause with avalue of -2.

FLOAT n | REAL | DOUBLE

Defines the column as a floating-point number. FLOAT n iseither 4 or 8 and the default is
8. FLOAT (4) or REAL givessingle precision. FLOAT (8) or DOUBLE gives double
precision.

I NT | SMALLINT | TINYINT
Defines the column as a fixed length integer.
| NT isa4 byte integer; SMALLI NT isa 2 byte integer; TI NYI NT isa 1 byte integer;

TI VE

Defines the column as atime which is displayed or entered according to the time map.
Internally, thetimeis held as a number of seconds since midnight. Externaly, thetimeis
input and output in accordance with the time map. If atime map clause is not specified,
the current system map is used.

SIR/XS SQL 122

Column Options

The clauses controlling how the column is stored are :

BIAS (n)]

FI XED]

M SSI NG val ue 'l abel')]
NOTNULL [UNI QUE]]
PRESET]

SCALE]

VALID (value)]

VALUE LABELS]

VARYI NG]

Bl AS

Specifies an integer constant that is added to an integer before it is stored. For example,
this might be used in a study with questionnaires from multiple sources, each of which
was numbered from 1. To avoid multiple questionnaires numbered the same, Bl AS the
guestion number in each table by a different amount such that one table had
guestionnaires 1 - 99, the next 101 - 199, 201 - 299, etc.

With SCALED integers, the Bl AS is done before scaling, so express the bias as the unscaled
number. For example, if the scaleis 2 (hundreds) aBl As of 1, resultsin abias of 100.

FI XED

Specifies that the string column is stored as fixed length. Strings are variable length by
default. FI XED may result in faster processing, but may use space inefficiently if thereisa
wide variation in lengths of values. For example, a string for socia security number,
which is always present and always the same length, could be specified as FI XeD. If a
string may vary considerably in length, let it default to variable length.

Numeric columns are always FI XED.

M SSI NG
Specifies the column's missing values and can associate a label with each value or range
of values. Specify single missing values or ranges of missing values with optional |abels
for these values. The value may be avalue that corresponds to the data type of the
column or may be the keyword BLANK or UNDEFI NED which are allowed for any data type.
If the datatype is a string, enclose the value in quotes.

The command may be specified asM SSI NG VALUES or M SSI NG RANGES as
documentation but this has no effect on the specification.

Defining avalue as M sSsI NGisan implicit definition that it isa VALI D value. M SSI NG
and VALI D values are stored asa single list which is searched serially. Once amatch is

SIR/XS SQL 123

found, the search stops. The list is checked for overlapping ranges which are reported as
an error. Separate each entry with a comma. Enclose the whole list in parentheses.

Except for undefined or BLANK numeric variables, the actual value entered is still held in
the table. However when the value isretrieved, it is flagged as amissing value. The M Ss
function can be used to retrieve values which include original values that would
otherwise be missing.

For example:

M SSING (8 'Refused to Answer',
9 'Not Applicable',
BLANK ' No Answer Coded')
M SSING ('N A 'Not Applicable',
BLANK ' No Answer Coded')

Specify arange of values and associate a single value label with any value entered in that
range. A rangeisapair of values, separated by a colon, which correspond to the data type
of the column. To separate ranges for readability, use the square brackets|].

Parentheses specify ranges where the end points are not missing. When using
parentheses, the keywords LOAEST and HI GHEST can be used to specify end points.

For example:

M SSI NG (0: 18 ' Under Age', 66:99 'Retired')

M SSI NG ([1:18],[50:59],[90:99])

M SSING ((LOWEST:18) 'Too Young', (65:H GHEST) 'Too A d')

The second example creates ranges without labels. The third example specifies that those
younger than 18 and older than 65 are missing. The parentheses specifies that the actual
guoted value is not missing but that all values from that point on are. Thisis useful for
real numbers, where it may be impossible to specify the actual end of arange.

NOTNULL
Specifies that the column cannot be missing. An attempt to insert arow that contains a
missing value for this column fails.

NOTNULL UNI QUE

Specifies that no two rows can have the same value for the column. An attempt to insert
the same value twice fails, and an error message isissued. The CONSTRAI NTS UNI QUE
clause specifies combinations of columns to be unique.

SIR/XS SQL 124

PRESET (val ue)

Specifiesavalue that is stored if no value is explicitly given. The value must agree with
the type, length, and map specifications for the column. Enclose string values in quotes.
By default, columns are set to UNDEFI NED and there is no need to specify this.

SCALE (n)

Specifies the power of 10 that anumber is multiplied by asit is placed in storage as an
integer. This provides efficient storage of large or small integers where the accuracy level
isonly required at the scaling factor.

For example, for aresult in kilovolts, where the calculations are in volts, specify ascale
of 3 for kvolts data, and the conversions are handled properly.

A scale of -n, specifies that there are n decimal positions. For example, decima money
can be held at ascale of -2.

Any calculations which refer to a scaled integer, should express the number as the
external normal value of the number; the software deals with any internal scaling. For
example, to select rows where an amount of money is greater than 100 dollars:

SELECT ... WHERE AMOUNT GI 100

Scaled integers, by definition, cannot hold data at less than their scale. Any computation
isrounded. For example, setting KVOLTS (scale 3) to any number which is not around
thousand, results in the number being rounded to the nearest thousand.

VALID (range list).

Specifiesthe valid list of values or ranges of values that are allowed in the column. The
syntax rules for the range list are the identical to the rangelist in the M SSI NG clause. A
specification of avalue as missing, means that thisis alegal value to be input.

The command may be specified as VALI D VALUES or VALI D RANGES as documentation
but this has no effect on the specification.

All missing and valid values are stored as alist which is searched serialy. Once a match

isfound, the search stops. The list is checked for overlapping ranges which are reported
asan error.

CATEGORI CAL Vvariables must have individual valid values not ranges.

VALUE LABELS (val ue | abel Iist)

SIR/XS SQL 125

Specifies labels for particular values that occur in the column. Each entry consists of the
value followed by the label. Separate multiple entries with commas and enclose the
whole list in parentheses. For example:

VALUE LABELS ("AL' ' Al abam',
"AK' ' Al aska',

This associates the full state name with the abbreviation. When referencing CATEGORI CAL
variables, specify the equivalent integer

VARY! NG
Specifies that the column is variable length. This clause is documentary only. Strings are
variable length by default and this clause has no effect on other data types.

SIR/XS SQL 126

CREATE INDEX

CREATE [UNI QUE] | NDEX index-name ON [tabfile.]table
(colum [ASC| DESC], ...)
[PCTFREE i nt eger val ue]

CREATE | NDEX creates an index for atable providing direct accessto a subset of records.
Index usage is automatic in SQL once the index is defined.

UNI QUE

Specifies that two rows cannot have the same index value. Rows with avalue the same as
an existing row are rejected. When creating an index for an existing table, if existing
rows contain identical values, the index is not built and an error message is issued.

i ndex nane
Specifies the name of the index. Index names must be unique on the tabfile.

OoN
Specifies the table to index. If atabfile is not specified, the default tabfile is used.

col um

Specifies the column(s) to index in major to minor sequence. Specify DESC for any
columns in descending order. For example: a specification of (Sex, Nane) givesall
males by name, then all females by name. A specification of (Nanme, Sex) gives
everyone with the same name together, males preceding females.

PCTFREE

Specifies the percentage of free space to leave in the index blocks. Thisis used as new
index entries are made. If the table is updated on aregular basis, take the 50% default. If
the table is static and the index is not going to be updated, specify alow figure. For
example:

CREATE UNI QUE | NDEX XI D ON MYFI LE. EMPLOYEE (| D)
CREATE | NDEX XNAME ON MYFI LE. EMPLOYEE (LASTNAME , FI RSTNAME)
CREATE | NDEX XREVI EW DATE ON MYFI LE. EMPLOYEE (REVDATE DESC)

SIR/XS SQL 127

Per missions

The ability to perform various types of operations (such as the ability to use atabfile or a
table, to update atable, create a new table, etc) may be restricted to specific groups of
usersor to individual users. Users are allowed to perform particular activities through a
set of permissions.

Permissions may apply to the tabfile as awhole, to individual tables and views and to
individual columns. Permissions start with the creator of atabfile. When creating a
tabfile, specify the | DENTI FI ED BY clause to restrict access to the named group or
group.user. If the | DENTI FI ED BY clauseis not specified, you cannot restrict access to
operations on the tabfile and anyone can do anything to any table. The group(.user)
named on the | DENTI FI ED BY clause has DataBase Administrator (DBA) permission for
the tabfile and can assign permissions to other groups(.users).

Permissions may be granted to and revoked from groups of users and individual users
within agroup. A group is a set of users who are allowed to do the same operations. A
group has aname and may have a password.

Thereis no commonality between tabfiles for groups or users; groups and users only exist
within atabfile. To use standard names for groups to access multiple tabfiles, create
naming standards and conventions which are then used for each individual tabfile.

Create agroup by naming it on athe | DENTI FI ED BY clause on the CREATE TABFI LE or
on a GRANT command. An individual user in agroup may be granted permission to do
additional operations. Permissions may be granted and revoked by users, who may only
grant the permissions which they have been granted.

SIR/XS SQL 128

GRANT

GRANT {perm ssion,...| ALL | ALL BUT permission,...}
TO grpnane[/ grppass] [. usernanme[/userpass]],...
ON tabfile | [tabfile.]tabl e_nane
[WTH GRANT OPTI ON]

GRANT gives permissions on tabfiles, tables, views or individual columns to specified

groups or Users.

DBA, CONNECT, and CREATE are only applicable at the Tabfile level. All other permissions
may be granted at the individual table or view level. Permission may be granted on
individual columns for SELECT and UPDATE which restricts access to those specific
columns. To give permissions for particular columns, specify alist of column names on
the permission clause:

GRANT SELECT [(varnane, varnane...)] TO... ON ...
GRANT UPDATE [(varnane, varnanme...)] TO... ON

perni ssion
Specifies the permission(s) being granted. The following permissions may be granted:

ALL - al permissions are granted.

ALL BUT - al permissions except the specified permission(s) are granted.

DBA - permission to do anything to atabfile. Thisisrequired for certain utilities, in
parti(_:ulgr EXPORT. There are no activities on an individual table that require DBA
permission.

CONNECT - permission to connect to atabfile.

CREATE - permission to create tables.

SELECT - permission to SELECT from tables.

DELETE - permission to DELETE rows from atable.

UPDATE - permission to UPDATE rowsin atable.

| NSERT - permission to INSERT rowsin atable.

SIR/XS SQL 129

DROP - permission to DROP or delete tables.

ADDCOL* - permission to add columns to tables.
MODCOL* - permission to modify columnsin tables.
DELCOL* - permission to delete columns from tables.

| NDEX - permission to create or drop an index on table.

* These permissions are provided for the future implementation of the ALTER
TABLE command. These currently do not have any effect.

Permissions exist at two levels, the tabfile level and, possibly, at the individual table
level. When a user connects the tabfile, the appropriate set of permissions are retrieved
and the user isonly permitted to perform allowed activities. For example, a user must be
allowed to SELECT at the tabfile level before being able to SELECT from a specific table. If
agroup(.user) has DBA permission at the tabfile level, they have all permissions on all
tables, regardless as to how the tables were created or permissions assigned.

If auser isalowed an activity at the tabfile level, whether they are allowed that activity
on any table on the tabfile depends on how the table is created and can be modified by
specific GRANT/ REVOKE commands. If the tableisa PUBLIC table, then no further
checking is done.

If thetableis created in SQL with a SELECT, then a Public table can be created in SQL by
clearing the Define_Security setting before doing the select. Otherwise the group(.user)
that created the table has al permissions on that table and is the only group(.user)
allowed any activities on that table until further permissions are granted.

If thetableis created in SQL with the CREATE TABLE command, the group(.user) that
created the table has all permissions on that table and is the only group(.user) allowed any
activities on that table until further permissions are granted.

If thetableis created by the Visual PQL procedure SAVE TABLE, the procedure can
optionally specify groups(.users) that have full permissions on the table. The group name
used to connect the tabfile is always granted all permissions on the table. The procedure
can specify agroup of Public to create a public access table.

TO

Specifies the group names to receive the permissions. If the group does not already exist
for thistabfile, it is created. An optional group password may be specified. An optional
username and user password may also be specified. Permissions granted to a group are
granted to all members of the group. There is no need to specify individual usersin a
group unless you need to alow someone specific additional permissions. Y ou cannot
specify auser to be amember of a group and restrict them from any group permissions. If

SIR/XS SQL 130

you specify a group and user, and the group does not exist, the group and group password
are created but group level permissions are not set up automatically and you cannot use
just agroup name until permissions are set for the group.

Group names, user names and passwords are checked when a tabfile is connected. To
update a group or user password, connect to the tabfile as that group/user and use the
GRANT command with the special keyword PASSWORD. €.g. GRANT PASSWORD TO
GROUP1/ NEWPASSWORD. If a password is forgotten, aDBA can export the tabfile with the
security option and the export file will contain GRANT commands with readable
passwords.

If the group already exists, there is no need to respecify the group password. If the
group/user combination already exists, there is no need to respecify the user password. In
either of these cases, the original password is kept and any password specified on the
command isignored.

OoN
Specifies the tabfile name or table name to which the permissions apply.

W TH GRANT OPTI ON

Specifies that the group or user can grant these permissions, or a subset of these
permissions, to other groups or users. Without this clause, these permissions cannot be
granted by this user to other users.

Examples:
Suppose you want to create atabfile called MY FILE and restrict DBA authority to group
DBAS and they have a password DBASPASS. Specify

CREATE TABFI LE MYFI LE | DENTI FI ED BY DBAS/ DBASPASS

Then, when people try to connect to that tabfile, they either specify CONNECT TABFI LE
MYFI LE | DENTI FI ED BY DBAS/ DBASPASS and get full permissions or they will not be
allowed even to connect to the tabfile. To alow connection, connect asa DBA and
specify, for example, GRANT CONNECT, SELECT TO RESEARCH ON MyFI LE. If you as
DBA create atable called TABLEL then you might GRANT SELECT TO RESEARCH ON
MYFI LE. TABLEL1 to allow that group to select from Tablel. Similarly if you had created a
table EMPLOY EE on tabfile PERSONNEL and granted Connect and Select permissions
to a Personnel group, you might then GRANT SELECT (1D, NAME, SEX) TO PERSONNEL

SIR/XS SQL 131

ON CURRENT. EMPLOYEE W TH GRANT OPTI ON which allows them access to specific
columns on that table with the ability to create other groups(.users) with those
permissions.

SIR/XS SQL 132

REVOKE

REVCKE {permission,...| ALL | ALL BUT permnission,...}
TO grpnane[/ grppass] [. usernanme[/userpass]],...
ON tabfile | [tabfile.]tabl e_nane

REVOKE revokes permissions on tabfiles or on individual tables for the specified groups or
users. REVOKE is the opposite of GRANT and hasidentical keywords and syntax.

Y ou can revoke permissions only if you granted them. Y ou do not have to REVOKE all
permissions originally granted, you can revoke a subset.

If permissions are revoked, that user no longer has the rights accorded by those
permission. This carries down to groups and users who have been granted permissions by
that user. For example, if USERA has granted a permission to update a certain table to
USERB, USERB is not able to update that table if update permission is revoked from
USERA.

Permissions revoked from a group are revoked from all members of the group.

To revoke permissions you must be connected to the tabfile. The group(.user) specified at
connection time isthe grantor. The original creator of atabfile has a special set of
permissions with a special System grantor and you cannot revoke any permissions from
that group(.user). Similarly, the original creator of atable using SQL has the same specia
grantor and you cannot revoke permissions from that group(.user) for that table.

If you are connected as a group(.user) you can revoke permissions from other
group(.users) that you created directly. If those users have granted permissions to other
users, and those permissions are affected by your revoke, then the revoking is carried
down the hierarchy. However you cannot revoke permissions directly from group(.users)
that you did not grant to directly. If you grant to groupa and they grant to groupb, you
cannot revoke groupb even if you are the overal DBA for the tabfile. Y ou also cannot
revoke from yourself.

If you revoke all permissions from a group(.user) at the tabfile level, the group(.user) is
deleted from thefile.

DEFI NE_SECURI TY

Specifies that tables created with SELECT have security definitions. When
connecting to atabfile with security definitions, specify group(.user) names to
connect to the tabfile. Anyone with DBA permission at the tabfile level, has full
permissions for al tables. With DEFI NE_SECURI TY set, you have full permissions

SIR/XS SQL 133

for the new table created with SELECT but any other groups(.users) (except DBAYS)
have no permissions on that table. Y ou (or aDBA) can grant permissions to other
users. (see Permissions)

CLEAR specifies that created tables are Public access.

Default: SET

SIR/XS SQL 134

EXPORT

EXPORT FI LENAME] fil enane

[

[RECSIZE n]

[NOSECURITY]

[NO NDEXES]

[NODATA]

[NOTABFI LE]

[NOWNORKSPACE]

tabfile [(table [(colum,)1,)]

Exports tabfiles, tables, or selected columns from tables. EXPORT creates atext file from
which the exported elements can be imported on any machine running SIR/XS.

fil enane
Specifies the file to contain the exported data. The filename must be the first clause in the
export. The keyword FI LENAME can be specified for readability.

Follow the filename with any keywords:

RECSI ZE
Specifies the record length for the named file. The minimum recsizeis 80. Thisis
the default. Records are fixed length.

NOSECURI TY
Prevents the security privileges from being written to the exported file.

NO NDEXES
Prevents indexes from being written to the export file. By default, all indexes are
written to the export file.

NODATA
Prevents the data from being written to the export file. Only the schemais written.
By default, the export includes the data for each table.

NOTABFI LE

Prevents information specific to the overall tabfile from being exported. When the
export file isimported all of the tables are placed on the default tabfile of the user
performing the import.

NOWORKSPACE
Prevents information about the current settings from being exported.

SIR/XS SQL 135

tabfile
Specifies the tabfile to export. If atabfileis not specified, all connected tabfiles are
exported.

tabl e
Specifies the table(s) to export. If no tables are specified, all the tables on the tabfile are

exported. The entire table or selected columns of that table can be exported. More than
one table can be specified. The entire table is exported when columns are not specified.

(colum, ...)
Specifiesindividual column(s) to export.

Example:

EXPORT ' EXPORT. DAT' MYTABFI LE (MYTABLE (COL1 COL2) MYTABLE2)
Y ou can only export tables and columns for which you have read security.

An SQL export fileis simply a set of SQL commands and data in textual form. It can be
imported in three ways:

It can be used on the I N parameter when executing SQL to import the filein batch
mode.

It can be imported through the utilities menu option.
Y ou can read the file into the input area (with cut and paste or by '‘Opening' it) and

execute the statements directly. If you do this, first delete theinitial BEG N
| MPORT line.

SIR/XS SQL 136

VERIFY

VERI FY tabfile [ON filename]

Checks all of the tables on the specified tabfile. If atable or tables are found to be
corrupt, SQL issues a notice of the affected tables and purges the corrupted tables. Any
tabfile can be verified, it does not have to be connected.

If atabfileis corrupt, there may be difficulty connecting to it. CONNECT to a corrupt tabfile
with READ access only. If the $PASSWORD or $SECURI TY System tables are corrupted, then
all users have DBA permissions on the tabfile.

Specify the ON clause to identify the physical file where the name of the physical file
differs from the internal tabfile name.

SIR/XS SQL 137

BACKUP TABFILE

BACKUP TABFI LE tabfile_nanme FILENAME filename [FULL | DATA]

Backs up atabfile to an operating system sequentia file. Specify the keywords BACKUP
TABFI LE and FI LENAME. The filename is the name of the file being created as the backup.

FULL

Specifies that each block of the tabfile is compressed and written to the output file. When
it isrestored, the tabfile is the exact size as before (no pointer restructuring of the indexes
isdone).

DATA

Specifies that only the physical data records and definitions of the index(es) are written to
the backup file. The backup file is smaller but indexes have to be rebuilt when thefileis
restored.

SIR/XS SQL 138

RESTORE TABFILE

RESTORE TABFI LE tabfile_name [FILENAME fil enane]
[FROM filename]
[JOURNAL filenane]
[APPLY filename , ...]

Restores a tabfile from a backup file and/or applies journalised updates. RESTORE

TABFI LE does not overwrite existing tabfiles. The FROM clause specifies the name of the
backup file; the FI LENAVE clause specifies the operating system name of the restored
tabfile if the tabfile name is not the operating system filename.

Specify JOURNAL to assign anew journal fileto thistabfile. If JOURNAL is not specified,
the original journal fileis used for journaling.

APPLY appliesjournal files changes to the tabfile. Specify the journal file to be used. All
journals applied must be in order with no gaps.

Example:

BACKUP TABFI LE nytabfil e FI LENAME ' MYTAB. BAK'
RESTORE TABFI LE nytabfil e FROM ' MYTAB. BAK

SIR/XS SQL 139

DISPLAY JOURNAL

DI SPLAY JOURNAL fil enanme FI LENAME fil enane
[HEADER [TF| TABLE | INDEX]...]
[DETAI LED [TF| TABLE | INDEX | ROW]...]

Listsinformation about the contents of a specified journal file. The tabfile must be
connected to display the journal. The FI LENANME clause specifies an output file for the
listing. Specify both the journal filename and the output filename. By default, tabfile
headers, table and index entries are listed (headers are one line of information). Specify
detailed information on the tabfile (TF), atable, index or rows with the DETAI LED clause.

SIR/XS SQL 140

SQL Functions

All SQL functions return asingle value that is either a number or a string. Functions may
be used anywhere that a value or expression is appropriate. There are two types of
functions:

St andar d
These return a value from an expression.
Aggr egati on

These compute a value from a number of rows and thus ater the number of rows
produced in the output table.

The EXI STS function tests whether arow is returned by a subquery.

SIR/XS SQL 141

Standard Functions

The expressions in the arguments must be of the correct type (numeric or string) for the
function being used. Expressions can contain constants, variables, computations and
other functions. Functions can be nested as necessary. Enclose string constants in single
guotes. Date, time and categorical variables can be treated as an integer or asastring
depending on the context. A specification of one of these variables retains the original
datatype. However, if these are referred to in a numeric function, the integer valueis
returned; if referred to in a string function, the string value is returned. Once avariable
has been used in a computation or expression in this way, the resulting column isan
integer or a string rather than being a date, time or categorical column. SQL eliminates
null computations, for example TODAY(0) +0, creating an expression which is equivalent
to asimple specification of the variable. For example;

SELECT Bl RTHDAY FROM EMPLOYEE

This creates a Bl RTHDAY column which is adate:

SELECT Bl RTHDAY+365 FROM EMPLOYEE

This creates a "Bl RTHDAY+365" column which is an integer. The SQL functions are:

ABS

Returns the absolute value of the numeric expression.
num = ABS(expression)
ALL

Tests against the values in the value _list. Returns 1 (true) if matches every item.
Equivalent to individual tests against each item in the list joined by AND operators.
ALL isused particularly to test against sets of values returned by subqueries.

value = ALL (value_list | subquery)

ANY

Tests against the valuesin the value list. Returns 1 (true) if matches any item.
Equivalent to individual tests against each item in the list joined by OR operators.
ANY is used particularly to test against sets of values returned by subqueries.

value = ANY (value_list | subquery)

SIR/XS SQL 142

CDATE

Returns the date integer for the date specified by the date string in the first
argument. The second argument is the date map. If the second argument is
omitted, the current value of the system parameter DATE is used as the date map.

num = CDATE (date-string [, date_nap])

CTI ME

Returns the time integer for the time specified by the time string in the first
argument. The second argument is the time map. If the second argument is
omitted, the current value of the system parameter TI ME is used as the time map.

num= CTIME (time_string [, time_map])
DATEC

Returns a date string for the date integer in the first argument. The second
argument is the date conversion map. If the second argument is omitted, the
current value of the system parameter DATE is used as the date map.

str = DATEC (date_integer, date_map)

EXI STS

Tests whether a subquery returns any rows. Returns 1 (true) if one or more rows
are selected in the subquery. NOT can be used to test for the opposite condition.
Specify an asterisk in the subquery as the returned variables when using the

EXI STS function .

Note that this function is different from the Visua PQL EXI STS function. The
SQL Exi STS function isthe ANSI standard function.

SELECT WHERE EXI STS (SELECT *)
SELECT WHERE NOT EXI STS(SELECT *)
I NT

Returns the truncated integer value for the numeric expression.
num = | NT (expression)
LEN

Returns the number of characters (including trailing blanks) in the string
expression.

SIR/XS SQL 143

num = LEN(string)

LOVNER

Returns the string with all uppercase letters converted to their lowercase
equivalent.

str = LOAER(string)
MAXI MUM

Returns the maximum of the two values supplied.
num = MAXI MUM (val uel, val ue2)

M NI MUM

Returns the minimum of the two values supplied.
num= M N MUM (val uel, val ue2)

M SS

Returnsthe original value of the named variable even if thiswould otherwise be
flagged as amissing value. If the variable contains undefined, then missing is
returned. This function can be used with all types of database or tabfile variables;
string values are returned for character, categoricals, dates and times. (M SSI NGis
asynonym.)

num = M SS (col umm)

Returns the remainder of the integer division of the number by the divisor.

num = MOD (nunber, divisor)

Returns the current wall clock time as atime integer. The argument is a dummy
argument.

num = NOW (0)
NUM
Returns the numeric equivalent of the number stored in the specified string.

num = NUM (string)

SIR/XS SQL 144

RECCOUNT

Returns a count of occurrences of thisrecord in this case. The rectype can be the
record name or record number.

num = RECCOUNT (rectype)

RND

Returns the integer value rounded to the nearest integer. The optional second
argument specifies the number of decimal places to be rounded to instead of the
nearest integer.

num = RND (nunber [, digits])
SBST

Returns the substring of the specified string starting at a particular position and
continuing for the specified length.

str = SBST (string, start, length)

SI &GN

Returns the sign of the second argument times the absolute value of the first
argument.

num = SI GN (numnber, sign)
TI MEC

Returns atime string for the time specified by the first argument. The second
argument is the time map. (Defaults to the system parameter Ti ME.)

str = TIMEC (tinme_integer, time_mp)
TODAY

Returns the current calendar date as a Julian integer. The argument is a dummy
argument.

num = TODAY (0)
TRIM
Returns the specified string with trailing blanks removed.

str = TRIM (string)

SIR/XS SQL 145

UPPER

Returns the string specified with all lowercase |etters converted to their uppercase
equivalent.

str = UPPER (string)
VALLAB

Returns the value label associated with the current value of the specified
column_name.

str = VALLAB (col unm_nane)

SIR/XS SQL 146

Aggregation functions

Aggregation functions return asingle value for all of the relevant rows processed. See
SELECT for the effect aggregation functions have on the SELECT process. The
aggregation functions are:

AVG ([UNI QUE] nuneric_col)

Returns the average or mean value of the non-missing values for numeric
columns. If UNI QUE is specified then only unique values are used to calculate the
mean.

COUNT ([UNNQUE] col | *)

Returns the number of non-missing values encountered. If UNI QUE is specified,
then only the unique values add to the count. An asterisk as the argument returns
the number of all rows selected regardless of whether the values are valid, missing
or undefined.

FI RST (col)

Returns the first non-missing value encountered. The type of variable returned
corresponds to the type of the variable being referenced.

LAST (col)

Returns the last non-missing value encountered. The type of variable returned
corresponds to the type of the variable being referenced.

MAX (col)

Returns the maximum non-missing value encountered. The type of variable
returned corresponds to the type of the variable being referenced.

M N (col)

Returns the minimum value of the non-missing values. The type of variable
returned corresponds to the type of the variable being referenced.

STD ([UNTQUE] nuneric_col)

Returns the standard deviation of the non-missing numeric values. If UNI QUE is
specified, then only the unique values are used in calculating the standard
deviation.

SIR/XS SQL 147

SUM ([UNFIQUE] nureric_col)

Returns the sum of the non-missing values. If UNI QUE is specified, then only the
unique values are summed.

SIR/XS SQL 148

System Tables

System tables contain information about the database(s) and tabfile(s) currently
connected. SELECT can be used to retrieve information from these in the same manner as
from any other table or view though the menus can be used to access much of the same
information in a more convenient manner.

As an example of using these tables, the following three SELECTs use the $REC system
view which describes records. Thefirst query retrieves all the information about each
record in the default database; the second retrieves all the information about each record
in the COVPANY database; the third retrieves all the information about the occuP record in
the COVPANY database.

SELECT * FROM $REC
SELECT * FROM COVPANY. $REC
SELECT * FROM COVPANY. $REC WHERE RECNAME EQ ' OCCUP

Most of the system tables are views. That is, they are not physical tables but are
representations of the data presented by SQL astables.

Database System Tables
Database system tables are al views and access information for asingle database at a
time. These views can be referenced on the FROV clause of the SELECT statement as:
[database.]viewname
$DBCASE
Case schema information.
$DBDOC
Case and record document text.
$DBSTATS
Database general information.
$REC

Record schema information.

$SORTID

SIR/XS SQL

Record sort-ids or keys.
$VALLABEL

Variable value labels.
$VALVALUE

Variable valid values.
$VAR

Variable schema information.
$VARLABEL

Variablelabels.

TabfileViews and Tables

$PASSWORD, $SECURI TY and $VALUE_LABEL are tables; all the others are views. The

149

tabfile views and tables can be referenced on the FROMclause of the SELECT as; [tabfile.]

viewname
$COL

Column schema information.
$INDEX

Index definitions.
$INDEXCOL

Index column definitions.
$PASSWORD

Group and user names and passwords.
$SECURITY

Tabfile and table permissions.

$TAB

SIR/XS SQL

Table schemainformation.
$TFSTATS

Tabfile general information.
$TRANGE

Column valid and missing ranges.
$VALUE_LABEL

Valuelabels.

150

SIR/XS SQL 151

$COL - Table Columns Schema

Contains one row for each column (or variable) in each table of the tabfile. The columns
are:

TABFI LE

Tabfile name.
TABLE

Table name.
VARNAVE

Variable name.
VARTYPE

Variabletype.
VARLEN

Variable length.
VARLABEL

Variable labdl.
SCALE

Variable scaling factor.
Bl AS

Integer bias factor.

NRANGES

Number of missing or valid ranges.

Variable display map.

DECI MAL

SIR/XS SQL

Number of decimal places displayed.
FI LL

Fill character for display.
LZERO

Leading zero character.
LNEG

L eading negative character for display.
LPCS

Leading positive character for display.
M SSI NG

Missing value character.
NULL

Missing value string.
FORMAT

Format for printing number.
SEPARATOR

Separator character to left of value.
THOUSANDS

Thousands separation character.
TNEG

Trailing negative character.
TPOS

Trailing positive character.

VALLABS

152

SIR/XS SQL 153

Value labels defined (Y es/No).

ZERO

String printed for hard zero.

SIR/XS SQL

$DBCASE - Database Case Schema

Contains only one row with general database parameters. The columns are:

DBNANME

Database name.
UPLEVEL

Update level.
CASEI D

CASEID variable name.

CASEI DCR

CASEI D order (ascending or descending).
CASEI DTY

CASEI D variable type.
NCASES

Number of cases.
NRECS

Number of records.
NTEMPS

Number of temporary variables.
NVARS

Number of variables.
MAXCASES

Maximum number of cases.

MAXRECS

154

SIR/XS SQL 155

M aximum number of records.

MAXRECTY

Maximum number of defined records. (Different record definitions not individual
records in the database.)

SIR/XS SQL 156

$DBDOC - Database Documentation

Contains one row for each line of documentary text describing the database. The
columns are;

RECNUM

Record number.

RECNANME

Record name.

LI NENUM

Line number of text line.

LI NE

Line of documentary text.

SIR/XS SQL 157

$DBSTATS - Database Statistics

Contains only one row with database statistics. The columns are:

DBNAME

Database name.
UPLEVEL

Update level.
CREDATE

Creation date.
CRETI VE

Creation time.
CHNGDATE

Date of most recent update.
CHNGTI ME

Time of most recent update.
NCASES

Number of cases.
NRECS

Number of records.
NVARS

Number of variables.
NTEMPS

Number of temporary variables.

AVGRECS

SIR/XS SQL

Average number of records per case.
CASEI DSz

Size of CASEID in bytes.
Cl RLEN

Length of CIR in SIR/ XS words.
KEYSI ZE

Key sizein bytes.
ACTDATB

Number of active data blocks.
| NADATB

Number of inactive data blocks.
DATBLKSZ

Data block size.

M NDATSZ

Minimum size of data record in SIR/XS words.

MAXDATSZ

Maximum size of data record in SIR/XS words.

ACTI NDB

Number of active index blocks.
| NAI NDB

Number of inactive data blocks.
| NDBLKSZ

Size of index block in SIR/XS words.

| NDEXLEN

158

SIR/XS SQL 159

Length of index in SIR/XS words.

MAXI NENT

M aximum number of index entries in one block.

MAXRECVR

Maximum number of variablesin any one record.

SIR/XS SQL 160

$INDEX - Tabfile I ndex Definitions

Contains one row for each index in the specified tabfile. The columns are:

TABFI LE

Tabfile name.
TABLE

Table indexed.
| NDEX

Name of index on table.

SIR/XS SQL 161

$INDEXCOL - Tabfilelndex Column Definitions

Contains one row for each column in each index on tablesin the specified tabfile. The
columns are:

TABFI LE

Tabfile name.
TABLE

Table indexed.
| NDEX

Name of index on table.

Name of the column in index.

SIR/XS SQL 162

$PASSWORD - Group User Names

Contains one row for each group and group-user name. Only a DBA has the authority to
view this table. The columns are:

GRPNAME

Group name.

USERNAME

Name of the user within a group.

SIR/XS SQL 163

$REC - Database Record Schema

Contains one row for each defined type of record in the database. The columns are:

RECNUM

Record number.

RECNANME

Record name.

COUNT

Number of records of thistype in the database.

| DCNT

Number of sort ids (including the caseid).

LENGTH

Length of recordsin SIR/XS words.

LCOCK

Lock status (YES/NO).

Max number of records of thistype per case.

VARCNT

Number of record variablesin this record.

SIR/XS SQL 164

$SECURITY - Tabfileand Table Permissions

Contains arow for the tabfile, and arow per table and user permission. Only a DBA has
the authority to view thistable. Each column which refers to a permission holds one of
threevalues, N, Y or G. These mean respectively, no permission, permission and
permission with the ability to grant this permission to others. The columns are;
GRPNAVE

Group name holding these permissions.
USERNAVE

User holding these permissions.
TABLE

Table name.
COLADD

Able to add columns.
TABFI LECONNECT

Able to connect tabfile.
TABCREATE

Ableto create tables.
DBA

Able to act as Database administrator.
COLDELETE

Able to delete columns.
ROWDELETE

Able to delete rows.

TABLEDROP

SIR/XS SQL

Ableto drop table.
| NDEXCREATE

Ableto create or drop an index.
ROWADD

Able to add rows.
COLMOD

Able to modify columns.
SELECT

Ableto select rows.

ROAMCD

Able to modify rows.

GRANTERGRPNANME

Group granting permission to this group or user.

GRANTERUSERNANME

User granting permission to this group or user.

COLPERM

Columns permissions if atable permission entry in column order.

165

SIR/XS SQL 166

$SORTID - Sort Id Variables

Contains one row for each keyfield (sort id) of every defined record in the database. The
columns are:

RECNUNVB

Record number.

RECNANME

Record name.

VARNAME

Variable name.

Sort order (Ascending or Descending) of the sort id variable.

TYPE

Variabletype.

SIR/XS SQL 167

$TAB - Tables

Contains one row for each table on the tabfile. The columns are:
TABFI LE

Tabfile name.
TABLE

Table name.
UPLEVEL

Update level.
DATECREATE

Date of creation.
TI MECREATE

Time of creation.
DATEUPDATE

Date of last update.
TI MEUPDATE

Time of last update.

NROWE

Number of rows in table.

Number of columnsin table.
NI NDEX
Number of indexes associated with table.

MAXROWG

SIR/XS SQL

Maximum length of each row in bytes.

LENGTH

Length of fixed area of each row in bytes.

NBLOCKS

Number of data blocks in the table.
NROWDEL ETE
Number of rows deleted.

PADDI NG

Padding percentage (1-99).

168

SIR/XS SQL

$TFSTATS - Tabfile Statistics

Contains one row for each tabfile currently connected. The columns are:

TABFI LE

Tabfile name.
DATECREATE

Date of creation.
TI MECREATE

Time of creation.
DATEUPDATE

Date of most recent update.
TI MEUPDATE

Time of most recent update.
NTABLES

Number of tables on tabfile.
TABFI LELDI

Tabfile filename (logical dataset identifier).
BLOCKSZ

Tabfile block size.
JOURNAL

Internal filename of journal fileif defined.

169

SIR/XS SQL 170

$TRANGE - Tabfile Column Ranges

Contains one row for each missing or valid range for any column in every table of the
specified tabfile. The columns are:

TABFI LE
Tabfile name.
TABLE
Table name.
VARNAVE
Variable (or Column) name.
RANGETYPE
Type of range
'Valid or '‘Missing' for values
‘Valid[,]' or '‘Missing [,]' for ranges.
LOwW
Minimum value.

H GH

Maximum value.

SIR/XS SQL 171

$VALLABEL - Database Value L abels

Contains one row for each value label of each variable of every defined record for the
database. The columns are:

RECNUM

Record number.
RECNANVE

Record name.
VARNANVE

Variable name.
NVAL

Numeric value.
SVAL

String value.
LABEL

Vauelabel.

SIR/XS SQL 172

SVALUE_LABEL - TabfileValue Labels

Contains one row for each value label in tables of the specified tabfile. The columns are:

TABLE

Table name.

VARNANME

Column (or variable) name.

NVALUE

Vaueif the column is numeric.

SVALUE

Vaueif the columnisastring.

LABEL

Valuelabdl.

MVALUE

Reserved for future use.

REFCOUNT

Reserved for future use.

SIR/XS SQL 173

$VALVALUE - Database Valid Values

Contains one row for each valid value of each variable of every defined record for the
current database. The columns are:

RECNUM

Record number.

RECNANME

Record name.

VARNAME

Variable name.

NVAL

Numeric value.

SVAL

String value.

SIR/XS SQL 174

$VAR - Database Variables

Contains one row for each variable of every record type of the current database. The
columns are;

RECNUM

Record number.

RECNANME

Record name.

VARNAME

Variable name.

LABEL

Variable label.
TYPE

Variabletype.
LENGTH

Variable length in bytes.
NM N

Minimum numeric value.
NVAX

Maximum numeric value.
SM N

Minimum string value.
SMAX

Maximum string value.

M SS

SIR/XS SQL

Number of missing values.

NM SS1

Numeric missing value 1.

NM SS2

Numeric missing value 2.

NM SS3

Numeric missing value 3.
SM Ss1

String missing value 1.
SM SS2

String missing value 2.
SM SS3

String missing value 3.

Date or time map.
SCALE
Scaling factor.

VALLABS

Whether value |abels have been defined.

WALS

Whether valid values have been defined.

175

SIR/XS SQL 176

$VARLABEL - Database Variable Labels

Contains one row for each line of label information for each variable of every defined
record for the database. The columns are:

RECNUM

Record number.
RECNANVE

Record name.
VARNANVE

Variable name.
L1 NENO

Line number.
LABEL

Label text.

SIR/XS

Reserved Keywords

SQL

177

Certain keywords are reserved for use by SQL. Avoid using them out of context. If you
must use one of these words as a column or file name, enclose the word with quotation

marks;

SELECT varnane "keyword" FROM tabl e_nane

The longest form of each reserved word is shown; avoid direct contractions of these
words or plurals as these are also reserved.

ADDCOL
AGGREGAT
ALL
ALTER

AS

ASC
ATTACH
ATTRIBUTE
AUTO
AUTODISP
BACK
BACKWARD
BATCH

BL
BLANKS
BLKSIZE
BLOCKS
BOLD

BR

BREAK

BT
BUFFERS
BUFNO
BUT

BY

BYE

CALL
CASE
CASELESS
CASELIM
CATALOG

DISTINCT
DOUBLE
DPL
DPLACES
DROP
DTL
ECHO
EDIT
EJECT
ENTER
ERASE
ESCAPE
EXCEPT
EXCL
EXEC
EXPERT
EXPONENT
EXPORT
FAM
FAMILY
FILENAME
FILES
FILL
FIRST
FIXED
FLOAT
FMT
FOOT
FOOTING
FOR
FORMAT

CATEGORICAL FROM

LOWER
LOWERCASE
LPOS
LPOSSIGN
LRECL
MAX
MAXIMUM
MEM
MEMBER
MEMORY
MINIMUM
MISS
MISSCHAR
MISSING
MQOD
MODCOL
MODES
MODHIST
MODIFY
MODS
MONITOR
NAME

NEG
NOCOUNTS
NOLABELS
NOSECURITY
NOTABFILE
NOTNULL
NOVICE
NOWAIT

NOWORKSPACE SET

NULL

READ TIMEC
REAL TINYINT
RECALL TNEG
RECCOUNT TNEGSIGN
RECFM TO
RECLIM TOTALS
RECSIZE TPL
RELATION TPOS
REM TPOSSIGN
REMARKS TREE
RENAME TRIPLE
REPORTS TT
REV REVERSE TTITLE
REVOKE uc
RIGHT uCcoL
RLIM UHEAD
RT UNDCOL
SAMPLE UNDEFINE
SAVE UNDERCOL
SCALE UNDERHEAD
SCR UNDHEAD
SCRATCH UNION
SCREEN UNIQUE
SECURITY UNQ
SEL UPDATE
SELECT UPPER
SELLIM UPPERCAS
SEP USING
SEPARATE USRTSIZ
SEPARATOR VALLAB
VALUES
SETTING VARCHAR

SIR/XS

CENTER
CHARACTER
CLEAR
CLIM

CLR

CMD
CMDINCR
CMPTRIM
CMPUPPER
COL
COLHEAD
COLUMNS
COM
COMMANDS
CONTINUE
CONTROLS
CREATE
CTR
DATABASE
DATE
DATEC

DB

DBA

DBL

DBMS
DEBUG
DEC
DECIMAL
DECSIGN
DELCOL
DELETE
DESC

DET
DETAIL
DIFF
DISCONNECT
DISPLAY
DIST

SQL
GET NUMERIC
GRANT OBSERVATION
GROUP OFF
GROUPING ON

GRP ONLY
GRPSIZE ORDER
HAVING ouT

HCTR OUTER
HEAD OUTLINE
HEADCENT OUTPUT
HEADCTR P
HEADING PAGE
HOLD PAGEHEAD
HOST PAGELIM
IN PAGES
INCL PAGESIZE
INCLUDE PAGING
INDENT PASSWORD
INDEX PATH
INDICES PATHLESS
INPUT PATHS
INSERT PCTFREE
INTEGER PERMHIST
INTER PG PGH
INTO PGHEAD
JOURNAL PGLIM

L PGS

LAB PGSIZE
LABEL PREFI X
LAST PRESET

LC PRINT
LEFT PROC
LIMITS PROCEDURE
LININCR PROCS
LIST PROMPT
LNEGSIGN PS

LOCAL PW

LOG R

SGL
SHOW
SINGLE
SLIM
SMALLINT
SORT
SPACE
SPACEC
SPACED
SPACES
SPACET
SPARSE
SPLIT
SPSS
SRLEN
SRTSIZE
START
STATS
STORE
STOT

STRUCTURE

SUBFILE

SUBTOTAL

SUPPRESS
SYN

SYNONYMS

SYNS
SYSTABS
T

TAB
TABFILE
TABLE
TABSIZE

TEXCLUDE

TF

THOUSAND

THOUSIGN
TIME

178

VARIABLE
VCHR
VIA
VIEW
VOL
VOLUME
WEIGHT
WHERE
WIDTH
WORK
WRAP
WRITE

X

ZERO

SIR/XS SQL 179

Pattern Matching

Pattern matching applies to the use of the LI KE keyword in a WHERE clause. This feature
enables the finding of text strings with particular characteristics such as all starting with
the same character.

Patterns are described by the use of symbol characters together with ordinary characters
which are to be matched in the string being searched.

Charactersin a pattern are taken literally unless they are one of the pattern matching
symbols described below. For example,

WHERE ADDRESS LIKE ' Ave'
finds all values of ADDRESS containing the string "Ave". The string "Ave" may appear
anywhere. Thisis different to the EQ relational operator, asin:

WHERE ADDRESS EQ ' Ave'
This condition will only be true when ADDRESS is exactly equal to the string "Ave".

For example, to find the name of everyone whose first name starts with "B" and second
name starts with "L":

SELECT ID NAME CURRPCS
FROM EMPLOYEE
WHERE NAME LI KE ' 9B?*L'

searches for and finds all rows in the EMPLOYEE table in which NAME starts with the |etter
"B" followed by zero, one, or more intervening characters followed by the letter "L".
Trim and Upper

Pattern matching is affected by system parameters CMPTRI Mand CMPUPPER. CMPTRI M
causes trailing blanks of strings to be trimmed before they are compared. CMPUPPER maps

all stringsto upper case before the comparison takes place. Generally, when using the
LI KE function, SET CMPTRI Mand CLEAR CMPUPPER. By default, both parameters are SET.

Symbols

The symbols are;

SIR/XS SQL 180

%

beginning of line

end of line

match any single character

start a character class

range of characters

end a character class

negate a character class

closure, zero or more occurrences

closure, one or more occurrences

Beginning of the Line %

The % character specifies searching for patterns at the beginning of a string variable.

Tofind al rowsthat have a string variable which begin with the word PROCESS, use:

. WHERE vari abl e LI KE ' %°ROCESS'

SIR/XS SQL 181

This returns only those rows that begin with the string "PROCESS'. It does not return
rows containing "PROCESS" in the middle of the variable such as"END PROCESS" or
"EXIT PROCESS".

End of theLine$
The $ character specifies searching for patterns at the end of a string variable.

To search for al records in which the NAME column endsin "smith" :

SELECT ID NAME FROM EMPLOYEE
WHERE NAME LIKE 'smth$

Match Anything Character ?
The character ? matches any single character. For example,
. WHERE NAME LI KE ' A?e’
finds names containing strings such as.
Aae Abe Ace Axe Aye Aze
and also:
Ate A-e A*e Ae Ae Ae Ale Ae Ae Ae
The match anything character can appear more than once in a pattern. The next example,

selects all records in which the customer identifier begins with the letters AC followed by
any three characters followed by a 9. Notice the use of two symbols, the % and the ?.

SELECT CUSTI D CUSTNAME ADDRESS PHONE
FROM CUSTFI LE
WHERE CUSTID LIKE '%AC???9'

Classes of Characters]...]

Search for aclass or set of characters by enclosing them in square brackets. Some
examples of character classes are:

[12]

match all instances of "1" or "2" or both

SIR/XS SQL 182

[123]

match all possible combinations of "1", "2", and "3"

match lowercase letters
[A-Z]
match uppercase | etters
[0-9]
match decimal digits
[J-Q
match uppercase letters "J' through "Q"
[A Za- z]
match uppercase and lowercase |etters

For example, to locate information on 2005 accounts. The account identifiers for 2005
begin with an uppercase letter followed by the string "2005". The Where clause might be:

. WHERE ACCTID LIKE '9% A Z]2005'
Negated Character Class[!..]
To match all lines except those containing the members of a character class, place the
negation character ! at the beginning of the class inside the square brackets. For
examples:
[112]
match all characters except "1" and "2"
['a-2z]
match all characters except lower case letters
[1A-Z]
match all characters except upper case letters

[10-9]

SIR/XS SQL 183

match all characters except decimal digits
(13-4

match all characters except upper case letters " J" through " Q"
[!A-Za- 7]

match all characters except upper and lower case letters

For example, to search and delete all rows in which the value of DEPTNUM is not
composed entirely of digits.

DELETE FROM TCOVPANY. TAB1 -
WHERE DEPTNUM LIKE '[!0-9]"

Closure Character (Zeroor More Occurrences) *

To search for strings or patterns of characters that occur an indefinite number of times
(known as a closure) specify the closure character "*" after the required pattern.

Some examples of closure patterns are:
a*
zero or more occurrences of lowercase a
[A-2Z]*
Zero or more uppercase letters
[@Bx]*
zero or more occurrences of "Q" or "3" or "x"

[a-zA-Z] *

zero or more letters, upper or lower case
this pattern matches aword of text or anull string

For example, to search for all text that appearsinside apair of parentheses :

VWHERE STRI NG LIKE ' (?*)'

The pattern requests all lines that contain " (* followed by zero or more occurrences of
any character followed by ")".

SIR/XS SQL 184

Similarly, to search for all Illinois accounts. These are identified in the ACCTID when
characters 3and 4 are"IL" and the last two (verification) digitsare "13". The ACCTID
may be 10 to 17 characters long and therefore the last two digits may appear in positions
9-10, 10-11, ..., 16-17. The closure character takes care of this problem.

SELECT * FROM ACCOUNTS
VWHERE ACCTID LIKE '%7?IL?*13%'

Note the beginning and end of line characters. The % character followed by ?2IL makes
surethat "IL" appearsin position 3 and 4. The $ character preceded by 13 makes sure that
"13" appears as the last two digits. The ?* notation means that any number of characters
can appear between "IL" and "13".

Closure Character (Oneor More Occurrences)+

This specifies a search for one or more occurrences of a pattern instead of zero or more
occurrences. For example, the following command:

. WHERE STRING LIKE ' [aehrt]+ '
searches for complete words made up of the letters a,eh,r.t.

The search pattern requests strings containing a blank followed by one or more
occurrences of the letters a,e,h,r,t followed by another blank. The lines listed contain
wordssuch as"a", "are", "at", "here", "rather”, "that", "the", "there", "three", etc.

Escape Character @

The symbols are instructions sent to the pattern matching routine. Occurrences of these
symbols cannot be searched for in the normal way. A search for question marksin afield
cannot be specified as.

. WHERE string LIKE "7
because this command will match every character.
The escape character @ is provided to handle this situation. Precede any symbol
character with @, and the character is treated literally. Thus to search for question marks

enter:

. WHERE string LIKE '@

SIR/XS SQL 185

In addition, symbols lose their meaning when they appear out of context (i.e. the escape
character should not be used) as follows:

%

when not at the beginning of the pattern

when not at the end of the pattern

at the beginning of the pattern

at the beginning of the pattern

not at the beginning of a character class

at the beginning or end of a character class

Symbols do not apply in the specification of a character class except for:

at the beginning of the character class

in the middle of the character class

anywhere in the character class

SIR/XS

I SQL COMMENTS......oviiiiiiirn e, 12
PATTERN SEARCHING...........ccvuiiirnnnn. 181
BCOL v 151
FDBCASE....coiiieeee e 154
FDBDOCcciieeeeiee e 156
FDBSTATS .oiiiiiii s 157
BINDEX .oiiiiviiiiiiin s 160
BINDEXCOL ..ccvvrvvniiniineevieeeessssn 161
PPASSWORD......ouviiiiiiiieiirreeernnn 162
BREC ..o 163
SSECURITY v 164
RS @ i I | PP 166
STAB i 167
STESTATS i 169
STRANGE ... 170
SVALLABEL ..o 171
SVALUE_LABEL ..., 172
SVALVALUE......ciiiiiieeeeeeeeeeeee 173
BVAR ..o, 174
SVARLABEL ... 176
PATTERN SEARCHING...........cevuiiirnnnn. 180
PATTERN SEARCHING...........cceunine. 184
ABORT ..o 73
FUNCTION.....oocviiiiiiiiii e, 141
ABSFUNCTIONoocvviiiiiiniiniieene, 141
FUNCTION.....oocviiiiiiiiii e, 146
AGGREGATION FUNCTIONS......... 16, 146
ALIAS....i, 10, 23
FUNCTION.....oocviiiiiiiiiiinnen, 141
ALL BUT ..o 40
ALL FUNCTIONocovviiiiiiciiineeennan, 141
ALTERNATE INPUTccoiviiiiiiinnnes 53, 54
FUNCTION....ccvuiiiiiiiiiccrrv i, 141
ANY FUNCTIONoovviviiiiiiciiiceenin, 141
AS i 10, 23
SELECT i, 111
ASSELECT v, 111
CREATEVIEW ..oiiiiiiiiiiincrieni e, 111
VIEW oottt 111
SELECT it 18
ATTRIBUTEciiviiiiiiiici i 67
CREATE....ctiiiitiiiiii e 67
AUTO i 65

SQL

186
DISPLAY i 51
SELECT it 53
AUTOSAVE.......coi i 51
STATISTICS....coviiiiviiei e, 146
AVG 16
FUNCTION.....oocviiiiiiiiiininn, 146
SUBTOTAL .., 46
TOTAL. oo, 48
AVG FUNCTION. ..., 146
BA 73
BACKUP TABFILE ..., 137
PATTERN SEARCHING...........cceuninen. 180
BETWEEN OPERATOR.......ccciviiiiiiiiins 36
BIAS .., 122
DISPLAY oottt 44
2 N O 42
BYE ..o 71
CASE....oi 51
I S 51
MODES........oiiiii 51
STRING COMPARISONS.........coeviinnnne 51
CASELIM ..o 51
SELECT i 24
CATEGORICAL ...ooviiiiiiiciiiceicceas 120
CDATE FUNCTION.....ccvviiiiiiiniccen, 142
CENTER.....ciiiiiiii 42
CENY oo 77
CHARACTER ... 120
CLEAR. ...t 50
CMPTRIM ..ocviiiiiiiiiicv e 51
CMPUPPERcoiitiiiiiicii e, 51
COLHEAD.....coiiiiriiie i, 52
DISPLAY it 41
COLUMN DATATYPES....cccooiiviiiri, 120
COLUMN FORMATS ...oviiiviiiirninenaeens 27
COLUMN HEADINGS.......cciviriiiirnnneens 54
VIEW oot 111
COLUMN SEPARATION ...covvvirvniiennnnnns 56
COLUMN WIDTH ..cvvviiviiniiriiniinneennnens 59
COMPILE_ONLY .iovviiiiniiiiininsininernans 103
SELECT it 24
SELECT it 18
DATABASE......ci i 63
CONSTANTS ...t 10

SIR/XS

CONSTRAINTS UNIQUE ...veveeeeeeeenes 119
CONTINUATION CHARACTERcoe..... 52
CONTINUE .ottt eteeeteeseeeeeeeeeeeeenenees 52
COUNT oottt teeeeeeeeeeseeeeeeennees 16, 30
=8 N[o3 5 To | NPT 146
STATISTICS c.eteeeeeeeeeeeeeeeeeee et e eeeeeeees 146
SUBTOTAL wereeeeeeeteeeeeeeeeeeeeseeeeeeneneens 46
TOTAL ettt et e et 48
COUNT FUNCTION .vvvveveeeecsnenenens 146
TABFILE c.vveveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 116
TABLE vttt ettt eeeese e 118
VIEW ittt e e e e e e e eeeraesnne s s e e e eeeees 111
CREATE INDEX .vveveveeeeeeeeeeeeeseseseenens 126
CREATE PATH woveeeeeeeeeeeeeeeeeeeneneneens 108
CREATE TABFILE ..vveveveeeeeeeeeeeeeeeeeens 116
CREATE TABLE w.veveveveeeeeeeeeeeeeeeeenenn 118
ASSELECT w.veteveeeeeeeeseeeeeeeeeenenaneens 111
CHECK OPTION ...vvveveeeeeeeeeeeseeeeeenenn 112
CREATE VIEW w.evveeeeeeeeeeeveeeeeeeneeeae 111
FROM oot eeeeeeeneeneseenenenns 111
GROUPBY ..eveveereeeeeeeeeeeeeeesenenenenenens 111
HAVING wovveveeeeeeeeeeeeeeeee e e, 112
OUTER .ooeteeeeeteeeeeeeeeeeeeee e enenenenenens 112
WHERE ...cvveeeeeeeeeeeeeeeeteeeeeeeeeesesesesnenen 112
FUNCTION c.vvceeeeeeeeeeee et eeeeseeeseeen, 142
CTIME FUNCTION eovveeeeeeeeeeeeeseeeeeees 142
DATA ENTRY voveveeeeeeeeeeeesseeeesesennens 100
CONNECT ettt eeeeeeeeseeeeeeeesenesnsnens 63
DATE e tteeeeeeeeeeeeeeeeeeeeeeeee s, 52, 120
FORMAT ottt et et eeeeseeeeeeesneneens 27
FUNCTION c.vvceeeeeeeeeeee et eeeeseeeseeen, 142
FUNCTION c.vvceeeeeeeeeeee et eeeeseeeseeen, 142
DATEC FUNCTI ON.ovreeeeeeeeeeeeeeeeeseen, 142
5] 75
SELECT wovveeeteeeeeeeeeseeeeeeeeeeeenenessennens 24
DECIMAL ettt eeeeeee e, 120
WORKSPACEveveveeeeeeeeeeeeeeeseseeaeeenens 59
DEFINE_SECURITY wevevveveeeerererenen. 52, 132
COMPILE_ONLY evveveeeeeeeeeeeeeeeeeeseeeeen 101
DELETE FROM ..ovveeeeeeeeeeeeeeeereseeesenen, 101
WHERE ..ottt eeeteeeeeeeeeeeeeesesenesnenes 101
DETAIL weveeeeeeeeeeeeeeeeeeeeeeeseeeeeseeesnenens 52
DETAIL LINES w.veeeeeeeeeeeeeeeeseeseeenennnns 52
DISCONNECT .veveeeeeeeeeeereseeeeeseeeesennnns 69
BREAK «vveeeeeeeeeeeeeeeeeeeeteeeeseesessnnnns 44

SQL

187
DISPLAY i 39
GROUP ..ottt 45
MISSING VALUES........ccooviiiiniiiincnis 55
OFF i 45
ON Lottt 45
OUTLINE ...t 45
DISPLAY JOURNALcvviiiiviniiniieennnn, 139
DISTINCT .oiiviiiiiiiii e 15
SELECT i, 15
DOUBLE......oiiiiiiina 53
DOUBLE PRECISIONcoocvviiiiiiniennnnn, 121
DPLACES........ociiiinnnas 53
FORMAT ..ot 27
DROP.....cciiiiiiinii 70
ECHO ..o 53
JOINS e, 20
CASE ... 29
CASE ..., 20
N I 20
END..oovirrieiirr 71
PATTERN SEARCHING.............ccvvunnnnn. 181
ENTERINTO ..ccoiiiiiiiiiiniciriecvii, 102
LABELS...coiiiiiiii i, 102
EQ OPERATOR....iiivviiiiriiiirnieninnennas 36
SUBTOTAL....iitiiiiirinirrnieni e 47
TOTAL .o, 48
EX it 75
SUBTOTAL .., 47
TOTAL. oo, 48
EXCLUDE.......oiiiiiini 40
EXEC.iiiin 53
EXECUTION PARAMETERS...........ccoeeeus 73
FUNCTION....covuiiiiiiiiinccrri e, 142
EXISTSFUNCTION.....cooviririiiinienniannn, 142
) N 71
EXPONENT ..ottt 53
FORMAT ..ottt 27
) e © 3 134
RECSIZEciiiiiiiiiiiincnir e, 134
EXPRESSIONSocvviiiiiinniinneninnennas 11
SELECT it 18
DEFAULT .o 53
N 1 53
FILENAME. ..o, 65, 116
FIRST oo 16
FUNCTIONiviiiniiiiiieii e, 146

SIR/XS

FIRST FUNCTION «.veeeeeeeeteeeeeeseeeseen, 146
S 4=0 J TR 122
FLOATING POINT weovveeeeeeeeeeeeeseeereen, 121
=Y TSRS 73
FOOTING .. vveveeeeeeeeeeeeeeeeseeeseeenssenens 42
DATE e eeeeeeeeeeeeeeeeeeee e et et eeeeeeeeeeeeeenens 27
DPLACES. ...vveveeeeeeeeeteeeteeseseseeeeseeseenes 27
EXPONENT vttt et eeeeeeeeeeeeennens 27
FORMAT w.vveveeeeeeeeseeeneeeeeneneeneseeneeeens 119
LABEL c.vveveveveteeeeeeee et ee e e e eeeeeeesnens 27
MISSCHAR .eevveeeeeeeeeteeeeeeseeeeeseeesesnenas 27
NAME ..ttt eeeeeeeeeeee e eees 27
NULL +1 ettt senenen e eeeeeeeenenens 27
SELECT wovveeeeeteeeeeeeeseeeeeeeeeeeeseeeeesennans 25
SEPARATOR ...veeeveeeeeeeeeeeeeeeeeeeeeeeesnans 28
TIME ot eteeeeeeeeeee et eeee e e e eeeeeeeene 28
VALLAB c.eeeetteteeeeeeeeee et eeeeeenenaneens 28
WIDTH coveeeetteeeeeeeeeeeeeeeeree e eeeeeeeeeeeeens 28
ZEROS ..ot eeeeeeeen e e e 28
CREATE VIEW w.evveeeeeeeeeeeveeeeeeeneeeae 111
FROM oot eeeeeeeneeneneenenenns 108
JOINS ottt ettt et eee et s 19
SELECT wovveeeeteeeeeeeeeseeeeeeeeeeeeseeesennans 19
GE OPERATOR ..t eteeeeeeeesesesseeesennenennns 36
GET ettt et et eeeeeee e e e e e 72
GPW ettt ettt eenens 76
GRANT ettt et eeeeeeeee e e e e eneeeees 128
DISPLAY oeeeeeeeeeeeeeeeeeeteeeeeeseeeesensens 45
CREATE VIEW weveeeeeeeeeeeeeeeeeeee e 111
SELECT woveeeeeeteeeeeeseseeeseeeenesnnenns 16, 29
CREATE VIEW weeeeeeeeeeeeeeeeeeeeeeeeeens 112
GROUPING ...eeteeeeeteeeeeesessesseeeeeenenens 53
GRP ettt eee e 76
GRPSIZE ...eeeeeeeeeeeeeeeeesesreeseeeseneneens 54
GT OPERATOR .veteeeeeeeeeeseeeeeeesenennnns 36
GROUPBY .eeteteteeeteeeeeesessesseeesnenns 29
HEADING vt eee e e eeenenns 42
HIGHEST vt 123
IDENT BY eveeeeeeeeeeeereeeeeeseseseeseeseneeeneens 65
IDENTIFIED BY wvevveveeeeeeeeeeeeeeseeenenenenns 116
IN73

DATE e eveeeeeeeeeeeeeseeeeeeeeeneseeeeeeeeeeesnas 42
PAGE . veeeeeeeeeeeeeeeeee et et ee e 42
TIME ot eteteeeeeeeeeeeee et ee e 42
1NKo = =27 (o) =T 36
DISPLAY ovvveveeeeeeeeeeeeee et seeeeseeeeeennans 40

SQL

188
INCLUDE......ctoiiiiiniii e, 40
INDEXES, UNIQUE........ccoovviviiiiiiiienn, 126
INNER JOIN ..covviiiiiiiiinicr e, 15
INPUT ., 54
INSERT INTO ..iiiiiiiiiiicrcvennenn, 103
FUNCTION.....oicviiiiiiicriren e, 142
INT FUNCTION ...oovviviiiiviniiiinienineean, 142
JOINS e, 22
FORMAT .. 27
LABEL ..ot 54
FUNCTION.....oocviiiiiiiininnn, 146
LAST 16
LAST FUNCTION ...coiviiiiiiiiniinieena, 146
LE OPERATOR.....cocviiiiiiiniinciienns 36
LEADING ZEROS........ocoviiiiiiiniiineinis 60
LEFT i 42
LEFT OUTER JOIN......occvviiiiiiiiiniiiinis 15
FUNCTION....ccvuiiiiiiiiicirrn e, 142
LEN FUNCTI ON ..ovvviviiniiceni e, 142
LIKE oot 36
PATTERN SEARCHING...........ccvuiiirnnnn. 179
LINE SPACING.......coiviviviniiiniennas 56, 58
LINEWIDTH .coooviiiiiiiiiiias 56
CONTROL COMMANDS........ccvviiiinnne 61
PATTERN SEARCHING...........cceuninnan. 179
LOGICAL OPERATORS.........cooceviiiinnns 35
WHERE........ii 35
FUNCTION.....occviiiiiiici e, 143
LOWER....coooiiiiiiiineni 49, 54
LOWER & UPPER CASE.........ooceviiiiins 54
LOWER FUNCTIONcceiiiiiiniinieeen, 143
LOWEST ..oiiiiiiiiincirri e 123
LT OPERATOR......ccvviieiiirrin s 36
MASTER ...ttt 54
FUNCTION....ccvuiiiiiiiiin e, 146
MAX 16
TOTAL .ot 48
MAX FUNCTION ...ocvviiiiiiinieni e, 146
FUNCTIONiiitiiiiiiiien e, 143
MAXIMUM FUNCTION......covrirrnniennnnn, 143
DEFAULT .o 55
T 55
FUNCTION....ivitiiiiiiiieni e, 146
MIN 16
SUBTOTAL i 46

SIR/XS

MIN FUNCTION ...ovviiiiiiiinicnnneeisennan, 146
FUNCTIONoiitiiiiiiiieri e e, 143
MINIMUM FUNCTIONcoviviirniirnnnn, 143
FUNCTION.....oicviiiiiiieri v, 143
MISS FUNCTIONccviiiiiiiierinncnienan, 143
FORMAT ..t 27
MISSCHAR ... 55
MISSING......covviiiiii e, 122
FUNCTIONS......coiiiiiiins 30
MISSING VALUESDISPLAYcceviiiinnnnns 55
FUNCTION ...t 143
MOD FUNCTIONccoiiiiiiiiiiiiinien, 143
CASE ... 20
PATH oo 20
FROM ..o 19
FORMAT ..t 27
VIEW coiiiiices s 111
NAMES....cooiiiiii e 9
NE OPERATOR......cceviiiiiiirriinn s 36
NODATA .o, 134
NOINDEXESooviviiiiiiirninecnnin 134
NOSECURITY .oviiiiiiiiiiinincrnin e, 134
NOT NULL i, 123
NOTABFILE.....coiiiiiiiiiinci e, 134
FUNCTION....iviiiiiiiiieni e, 143
NOW FUNCTIONccvvviinniiiniinenieennn, 143
NOWORKSPACEcooviviiiieinneniena, 134
FORMAT ..ttt 27
NULL ot 55
FUNCTIONiviviniiiiiieninr e, 143
NUM FUNCTION ...oceviiiiiiinieninncnieenan, 143
NUMERICcoiiiiiiiiiinen e, 120
DISPLAY i 45
DISPLAY i 45
SELECT it 31
CASELIM .ot 24
DBMS. ..o 24
ON et 31
OUTPUT .ot 24
RECLIM .. 24
SAMPLE ... 24
SELLIM i 24
ONLY i 40
HAVING ... 29
ORDERBY ...oiiiiiiiiiiiiiiiiiininin 32
SELECT i 32

SQL

189
OUT ettt et eeeeeee e nenens 73
(o U = = RSO 33
S = o1 LR 33
CREATE VIEW oo 112
OUTER JOIN weeteveeeeeeseeereeeeesennnnns 15, 33
DISPLAY oveeeeeeeeeeeeeeee et et eeeeeeeeesesesens 45
ST = NT Y 1= 55
OUTPUT eeeeeeteeeeeeeeeee e eeeenenas 49, 55
SELECT wovveeeeteeeeeeeeeeseeeeeeeeeeeeneeessnnens 24
P 75

PARAMETERSeveveeeeeeeeeseeeeeeeeeesennns 73
PASSWORDoveeeeeeeteeeeseseeseeseseseeesenans 63
FROM oottt e eeeeeee e seneeeeeesnas 20
MODES ... tveveteeeereeeeeeeet et seeeneeeseesenas 55
= I = 20, 55, 108
PATTERN MATCHING....vevvvvveeeeereeeesennns 36
PCTFREEovvvvtiviiieeeieeieeeeee e e 119, 126
PREFIX vveveveveveeeeseseeesenenesseeeseeeeeesnes 63
PREPAREvcveveeteeeteteeeteeseeeeseeeessnas 73
PRESET .vveveveeeeeeeeeeseneeeeseeeeesesesseseenens 124
PRINT oottt e eeeeeeeeeeeeeeeeeeeeeeeeenens 49
PRINT FILE cvovveveeeeeeeeeeeeeeeeeee e eeeesesnens 55
CALL 1ottt ettt ee e 62
PUBLIC . evsvteeeeeeeeeeeeeeeeeeeeeeeeeseseeeeeeens 129
PV e ere e rra e e e ea e 75
QPROFILE. . ..etetteteeeeseseseeessseseseeeseneens 64
QUALIFYING NAMES ...vovveeeeeeeeeeennnn 10
QUIT eeeeeeeeeee et et et et eeeeeeees e eenens 71
RANGES,MISSING....eeeeeeeeeereerereserenen, 123
READ oottt et eeeeeeeeees e eeeeenenens 65
RECCOUNT FUNCTION «..evevereereeereae. 144
RECLIM oottt eeeeeeseseseeeeeeeeenenenns 55
SELECT weveeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeesnenens 24
RECORD LIMI T EXCEEDED......ccccvunn.. 55
LIMITS coeveeeeeeeeeeeeeeeeeeeeeen e see e eeennens 55
FUNCTION ..ttt e eeeneeeeeeeneeeens 144
RELATIONAL OPERATORS.......ccsvevene.. 35
WHEREeeetteteeeteeeeeeeeseeeneeeeeeeeeeeeeens 35
RENAME VIEW «..veeeeeeeeeeeeeseeeseseeeeenns 113
VIEW i e e e rnvsaaaa s 111
RESTORE TABFILE ...evvvveeeeeeeeeesesereen, 138
REVOKE +.vveeeeeeeeeeeeeeeeeeeeeeeeneeeeseeeeeeen, 132
RIGHT eveeeeeeeeeteeeeee et et et et eeee e enenens 42
RIGHT OUTER JOIN «.eveeveeeeeeeeseeeesennnns 15
FUNCTION .ttt eeeeeeeeeeeee s, 144
RND FUNCTION c.veeeeeeteeseseseeeeeseesens 144

SIR/XS

LIMITS eeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeenesenns 56
RS ittt ettt 75
SELECT wevveeeeeeeeeeeeeeeseeeeeeeeeseeeeeesnenens 24
SAMPLING .e.eeteeeeeteeeeeeeeeseeeeeeeeenenees 24
SAVE c.eeeeeeeeeeeeeeeeee et et eeeeeeeeee e nees 72
WORKSPACEveveeeeeereeeeeeseseseseeaeeenen. 72
=8 N[o3 5 To | NPT 144
SBST FUNCTION ...eveeeeeeeeeeeeeeeeeeneen 144
SCALE w.eeteteeeeeeeeeeeeseeeeere e eeneneeenenens 124
SCIENTIFIC FORMAT wevveveveeeeeeeeeeennans 53
SECURITY etetteeeeeeeeseeeseeeseeeseeeeeeeesenens 64
COMPILE_ONLY evveeeveeeeeeeeeeeeeeeeeennens 24
FORMAT oottt teeee et et eeeeseeeeeeeeeeeesnens 25
FROM ettt eeeeeeeeee e eeenenens 19
GROUPBY .eetteeeeeeeeseeseeeeeeeeenans 16, 29
INSERT INTO cevveeeeeeeeeeeeeeeeeeseeneneneens 103
SELECT wovveeeeteeeeeeeeeseeeeeeeeeeeeseeesesennes 13
SELECT LIM T EXCEEDED......cccoev...... 56
SELECT weveeeeeeeeeeeeeeeeeeeeeeeeeseeeessnenens 24
SELLIM oveeeeeeeeeeeeeeeeeeeeeeeeeeeeesesnenens 56
SELSIZE eeieeeeeeeeeeeeeeseseeeeeeeeeeessnneens 56
SEPARATE «..etteteteeeeeeeeseeseseeeeesnenens 56
FORMAT oottt et eeeneeseeeeeeeeeeeesnens 28
LS L 50, 105
SELECT wovveeeeteeeeeeeeeeeeeeeeeeeeeeneeessenns 24
SHOW ...veeeteteeeeeeeee et eeennans 50
FUNCTION .. vt eeeeeeeeeeen e e, 144
SIGN FUNCTION .vveveeeeeeeeeeeeeeeeeeeenn 144
SINGLE ..vvceeetteeeeeeeeeteeeeeeseseeeseneseens 56
SINGLE PRECISION.......veveveveecerenenenees 121
SKIPPING COLUMNS ..o 42
SORTING ..eetteeeeeeeeeeeeseeeeeeeeeneeenns 32,57
SPACEC ... ceeeteveeeeeeeeeeeeeeeeeeeseeeeesnens 56
SPACEDeceeeteeeteeeeeeeeeeeeeeeeeeseeessnas 57
SPACES ...eceeeteteeeeeeeeeeeeeeeeeeeeseeeeeenns 57
SPACET wevveeteteeeeeeeeeeeeeeeeeeeereeeeessns 57
REPORTeveveeeeeeeeeseveeeeeneeseeneneneens 57,58
SPACING w.eeeeeeeeeeeeseeeeresenenans 56, 57, 58
SUBTOTALS eeeeeeeeeeeeeeseseseeeeeeesennnns 57
SOL COMMENTS weeeeeeeeeeeseeeeeeeeenenenens 12
SRTSIZE eeeeeeeeeeeeeeeeeeeeseeseeeeeeeeeneens 57
FUNCTION .t eeeeeeee e, 141
STATISTICS c.eeeeeeeeeeeeeeeeeeeeeeeeseeeeeeesees 57
STATS weeeeeeeeeeee et et et eeeeeeeeee e eeee e eenees 57
FUNCTION vttt et eee e, 146
STD ettt et et et eeee e e 16

SQL

190
SUBTOTAL ceveeeeeeeeeeeeeeeeneneseneeeenenns 46
TOTAL coteeeeeeeeeeeereeeeeeeeeeeeenen s e 48
STD FUNCTION. ...vveveeseeeeeeeeseeeeenennns 146
STOP ..eeeeeeeeeeetee e ee e e enenene e, 71
STRING ooeveveeeeeeeeeeeeeeee s eeeneneenan 120
SUBQUERIESeoeeveeeeeeeereeeeseneseseeenenn. 37
AVG .oooeeeeeeeeeeeeeeeee et e eres e 46
COUNT et ree e eeeeeeeeeeenenen e 46
ERASE ...ttt seseeeess e enen s 47
MAX ¢t s e s s seeeeneneneeen 46
MIN ottt en s 46
STD i 46
S]= K01 N E 57
S0 Y 46
240 = 1 S 47
SUBTOTALS ..ttt er s, 44
=] N[o) N TR 147
STATISTICS . 147
SUBTOTAL e es e, 46
LS Y 16
TOTAL coeeeeeeeeeeeeee e en s 48
SUM FUNCTION.....coviererereeeercreeeeeene 147
PATH ot seee s 63
S0 = o J TR 75
PATTERN SEARCHING......ceveveerrerenne. 184
SYMMETRIC OUTER JOIN ... 15
CREATE . eeeeeeteveveeeeeeeeeee e eneneneeenenns 68
SYNONYM ooeeeeeereeeeeeereeeeeeneseneeeenns 68
SYNTAX RULES.....cvcveeeeeeeeeeeeeeresesesenenen, 9
SYSTEM DATE MAP ..o, 52
DATE MAP.....eeeeseseeeeeeeeeee s enen s 52
SYSTEM TABLES.....ecvveieeereeeeeeeernens 148
T PRINT POSITIONINGooveeeereeeecerennn 42
TABBING COLUMNS.....c.vrveeeereerecerenen 42
CONNECT ..ottt 65
[2Y==7 YU I S 57
TABFILE et en s 57
V1S 4 =R 58
2= = NS 76
TBL wevteeeeeeeeeeeeeeeseeeeseseseeeeeseeeenenenesenenns 76
21 == NIRRT 76
TFL teetev e eeeeeeeeeneseeeeeeeee e enenenneenenns 76
=TV V. SR 28
TIME woteeeeeeeeeeeeeeeree e eeeeneneneeenenns 58
(3 =1=7Y U ST 58
TIMEMAPS ..ot eeee e, 58

SIR/XS

FUNCTION vt eee e eeee s, 144
TIMEC FUNCTION .eeveteeeeeeeeseseseeeeenenn 144
B O T, 108
=8 N[o3 5 To | NPT 144
TODAY FUNCTION ..eoeveeeeeeesereseeeeeeen 144
AVG ettt eeeeeee e an e 48
COUNT ettt et et et et e eeeeeeee e eeesnens 48
ERASE ..t eeeee et ee et e e eeeeeeenenens 48
EXCEPT coveeeeeeeeeeeeee et eeeeeeseeeeseseeenesens 48
IMAX e eteeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseseeenesnns 48
IMIN 1ottt ee et eeee e eeeeeeeeeeenens 48
STD ettt et et et eeeee et e s 48
SUM eoveeeeeeeeeeee et et et eeeeeeeeseeeeeeeeeenesens 48
TOTALLING vttt eeeeeeeeeeeseeeereseeeens 58
TOTALS ettt eeeee e 44, 58
TRAILING BLANKS....eceeeeteeeeeeseserereeens 51
TRANSFER VALLAB ..ooovteeeereressereen, 58
=8 N[o3 5 To | NPT 144
TRIM FUNCTION ..oeeeeeeeeeeeeseseseseeeeees 144
TRIPLE oo e eeee s 58
TTITLE 1ttt s e 43
UNDERCOL ..vcvveeeeeeeeeeeeseseeeeennesnennnns 58
UNDERLINING ... teveeteteeeeseeeeeeeeeeeennens 58
UNDHEAD .ttt eeeeeeeesee e 58
SELECT wovveeeeteeeeeeeeeseeeeeeeeeeeeseeesesennes 34
UNION 1.ttt ee et e see e e 34
SELECT wovveeeeteeeeeeeeeeeeeeeeeeeeeeseeeesennas 15
UNIQUE v eveveeeeeeeeeeeeee e s, 15, 123
UNIQUE INDEX ...eeeeereeeeseseeeseseenenns 126
SELECT wovveeeetteeeeeeeeseeeeeeeeeeeeseeeesennas 15
UNQ oottt eeeee et ee et e e eeesnens 15
UPDATE oveveveeeeeeeeeeeeeeeeeeeee e e, 105
FUNCTION ..ttt e e e, 145

SQL

191
] 59
UPPER FUNCTI ON....ovvvvniinnnirniceenan, 145
UPPERCASE TRANSLATIONccoeevieens 51
UPW s 76
USER ..ottt 76
USING .ottt 108
VALID oo 124
FORMAT ..ttt 28
FUNCTION.....iiiviiiiiiiieri e, 145
VALLAB .o, 59
VALLAB FUNCTIONcovvvuiiiininiiinnnns 145
VALUE LABELS........coiiiiiiienins 59, 124
VALUES ... 103
VARCHAR .o, 59
SELECT it 18
VARYING ..ot 125
VERIFY i, 136
VIA i, 108
VIEW o, 107
CREATEVIEW ..coiviiiiiiiiiniii e, 112
WHERE........ciii 35
FORMAT ..t 28
WIDTH .o 59
CREATEVIEW ..o, 112
WITH GRANT OPTIONcceviiiiinn, 130
WORK ..o 59, 77
WORKPW ..ot 77
DEFAULT .o 59
WORKSPACE. ... 72
WRITE ..., 49, 65
WSt 75
X PRINT POSITIONING.........covvvniiiiennnne 42
FORMAT ..ttt 28
ZEROS......otviiiiviiii e 60

