
SIR/XS Database 1

SIR/XS Databases... 4
Overview... 5

CASE Structured Databases ... 6
The Common Information Record.. 6
CASELESS Databases.. 7

Keys .. 8
Defining Variables .. 9
Variable Formats... 14

Variable Quality Control... 16
Variable Label... 17
Variable Documentation ... 17
Value Labels ... 17
Decimal Points .. 17

Schema Commands... 18
Overall Commands ... 18
Record Definition.. 19

Modifying Database Definitions... 22
Format of Commands ... 24
Order of Commands.. 25

Example Record Specification.. 27
CREATE DATABASE... 29
CONNECT DATABASE ... 30
DISCONNECT DATABASE... 32
SET DATABASE ... 33
SHOW DATABASE .. 33
LIST DATABASE.. 33
JOURNAL ON|OFF ... 34
PASSWORD... 35
SECURITY... 36
PURGE SIR FILE... 37
DELETE SCHEMA.. 38
DELETE STANDARD SCHEMA ... 38
CASE ID ... 39
COMMON SECURITY.. 40
COMMON VARS .. 41
DATA FILES.. 42
DATABASE LABEL ... 44
DOCUMENT.. 45
ENCRYPT .. 46
MAX INPUT COLS ... 47
MAX KEY SIZE... 48
MAX REC COUNT.. 49
MAX REC TYPES ... 50
N OF CASES .. 51
N OF RECORDS .. 52
READ SECURITY ... 53

SIR/XS Database 2

RECS PER CASE ... 54
RECTYPE COLS.. 55
SYSTEM SECURITY .. 56
SYSTEM SECURITY LEVEL... 56
TEMP VARS .. 57
WRITE SECURITY ... 58
ACCEPT REC IF.. 59
CAT VARS... 60
CHARACTER .. 61
COMPUTE ... 62
CONTROL VARS.. 63
DATA LIST .. 64
DATE VARS .. 66
DOCUMENT.. 67
END SCHEMA... 68
IF ... 69
INPUT FORMAT ... 70
INTEGER ... 72
KEY FIELDS.. 73
MAX REC COUNT.. 74
MISSING VALUES ... 75
OBSERVATION VARS... 77
REAL .. 78
REC SECURITY .. 79
RECODE... 80

Variable Specification... 80
Recode Specification .. 80

RECORD SCHEMA... 83
REJECT REC IF ... 85
SCALED VARS ... 86
STANDARD SCHEMA ... 87
STANDARD VARS ... 88
TIME VARS ... 89
VALID VALUES ... 90
VALUE LABELS... 91
VARIABLE LIST... 92
VAR DOC... 93
VAR LABEL .. 94
VAR RANGES ... 95
VAR SECURITY.. 96
CREATE DBINDEX.. 97
DROP DBINDEX... 98
SIR SCHEMA LIST ... 99
WRITE SCHEMA .. 102

Resubmitting Whole Schema.. 104
Dynamic Restructuring ... 106

SIR/XS Database 3

Database Restructure .. 107
DELETE SCHEMA.. 108

Batch Data Input Utilities ... 109
Batch Data Input Specifications.. 110
ADD REC ... 112
EVICT REC.. 115
READ INPUT DATA... 117
REPLACE REC.. 120
UPDATE REC.. 123
SIR FILE DUMP .. 127
SIR FILE LIST ... 129
SIR SPREADSHEET.. 132

Backup and Recovery ... 134
Journaling.. 135

IMPORT ... 137
EXPORT... 138
SIR SUBSET .. 142
UNLOAD FILE .. 144
UPLOAD .. 146
ITEMIZE FILE ... 148
LIST STATS... 150
JOURNAL RESTORE.. 153
JOURNAL ROLLBACK.. 155
VERIFY FILE... 156
DOWNLOAD... 161
SIR MERGE ... 162
RELOAD FILE... 165

Tabfiles and Tables ... 167
CONNECT TABFILE .. 169
CREATE TABFILE.. 170
CREATE INDEX.. 171
VERIFY TABFILE... 172

Tuning and Efficiency... 173
Disk Space .. 174

CIR Size .. 174
Variable Sizes ... 176

Processing Efficiency.. 179
Efficient On-Line Access.. 179
Efficient Batch Processing.. 180

Database Internal Structure... 181
Block Organisation ... 182

Size Estimating ... 187

SIR/XS Database 4

SIR/XS Databases
This section of the documentation describes how to manage databases using SIR/XS.
Anyone intending to create or change the definitions of a database or act as a database
administrator should be familiar with this material. If you are simply going to access
SIR/XS databases using applications developed by someone else, then the Database
Overview provides a good introduction.

SIR/XS database management is covered under a number of topics:

• Introduction outlines the major database facilities in SIR/XS.
• Database Definition Commands describes the commands to define databases and

records. Use these same commands to modify existing definitions together with
some additional commands that only apply to updating existing definitions.

• File Input describes utilities that load data into a database from text files.
• Writing Data and Backing Up describes utilities that produce copies of a database

and the verification and recovery utilities, including utilities to upload changes
from another database, to merge data from another database and to reload a
database.

• Tabfiles and Tables provides an overview of the various facilities available for the
creation and maintenance of tabfiles and tables.

• Tuning and Efficiency discusses the internals of the SIR/XS database physical
organisation.

Virtually all of the features are available through the menus and dialogs and this is the
normal way to manage a database on a regular basis.

SIR/XS provides a concurrent environment if multiple people need to update a database
at the same time across a network.

SIR/XS Database 5

Overview

There can be any number of different databases for different applications. A SIR/XS
session can have any number of databases connected at any one time and one of these is
the current or default database. Any database operations happen on the default database.
SQL, Forms, PQLForms and VisualPQL can access multiple databases.

A database is made up of one or more record types. Each record type contains variables.
Each record type may have one or more variables defined as keys. Keys are used to
identify each individual record.

A record may have secondary indexes allowing access by VisualPQL and PQLForms
through values in non-key variables.

The definition of the database consists of overall information about the database plus
definitions for each record type with definitions of each variable and any secondary
indexes. This is collectively known as the Schema.

Names

All of the various SIR/XS entities such as records and variables have names that must
conform to the same set of rules. A name can be a standard name that is up to 32
characters long, does not begin with a number and contains only letters, numbers and four
characters (dollar sign $, hash sign #, at sign @, underscore _). Letters in standard names
are translated to uppercase. A non-standard name can be used that does not conform to
these rules, for example it might contain lower case characters or have embedded spaces.
Non-standard names can be up to 30 characters and must be enclosed in curly brackets
{...}. Non-standard names can contain any character (except curly brackets) and, where
entities are listed by name, non-standard names are in the appropriate sort sequence
position in the list.

Records and variables are retrieved by name and applications do not need to know
anything about the physical organisation of data. i.e. Applications are independent of the
physical structure of data.

Operating system files used by SIR/XS applications are assigned an internal name known
as an Attribute. This is used in place of the full filename. If specifying full operating
system filenames, it is best to enclose these in quotes.

Every application that accesses data from a database uses the schema, which means that
the information is always verified and conforms to the schema definition. An application
can access any record type within a database and can access multiple record types for
complex processing. The schema can be defined through interactive dialogs or by

SIR/XS Database 6

creating a set of commands and running them in a similar way to a running a program.
The resulting database is exactly the same regardless of the way that it is defined.

The database definition can be modified even after the data has been loaded without, in
many cases, having to UNLOAD and RELOAD data.

There is a second method to store data known as Tables. A table holds a single record
type and is independent of any database. Tables are held on tabfiles. A tabfile can hold
many tables. An application can operate on many tables and many tabfiles.

CASE Structured Databases

SIR/XS is a true relational database and databases can be created that are simply sets of
record types. However SIR/XS also allows databases that can take advantage of structure
in the data:

Some databases have a natural structure known as a Case structure. For example, a
medical database with information about patients could have a number of record types
such as patient demographics, visits, procedures, followups, etc., most with multiple
occurrences but all of the information about a single individual makes up a case. i.e. A
case is a set of records that all refer to one single entity.

A case structure can be easier to use. Queries are simpler to write and less error prone
within a case. A case structure can be faster. Since all of the information for any given
case is available with a minimum of searching, access is very fast.

A case structure can be found in many applications. The following guidelines may help
determine whether a particular set of data has a case structure.

• If most of the information belongs to some given single entity. For example; is the
information all about Employees, or Prisoners, or Drill Holes, or Patients, or
Samples ...?

• Is the information entered from forms and stored in a number of record types that
all apply to a single entity? For example, with questionnaire data, the
questionnaire number may be a case identifier.

• Is there some basic reporting unit in the application? If so, this unit might well be
the case. Are results all about a given site or a particular experiment?

• Do most or all of the records have a hierarchical structure branching down from a
single record.

• Is there a key variable in common across all record types that would qualify as a
case identifier?

The Common Information Record

 In a case structured database some information is maintained about each case. This is
held in the Common Information Record or CIR. The CIR is a summary of data about

SIR/XS Database 7

the case. It holds the case identifier, counts of records belonging to the case and other
specified common variables. It typically holds values that only occur once in the case
although it can hold a copy of the last value entered for variables that occur multiple
times in the case.

CASELESS Databases

 Records in a caseless database have no single common element that relates them. If a
single database has various records types that are each independent from the other (e.g.
Parts, Customers, Employees), then it might be a caseless database or perhaps the various
entities might be held in individual case structured databases.

SIR/XS Database 8

Keys

 Each record in a SIR/XS database is unique and that uniqueness is defined in terms of
the values of keys. A record may have one or more variables that make up the key. No
two records in the database can have the same combination of record type and key values.

The main index that SIR/XS maintains to locate the records is built from the key and the
key determines how the record is physically stored in the database.

Because the keys go into the index, they are relatively more "expensive" to maintain than
non-key variables. Do not declare more keyfields than needed to make records unique or
to define relationships. Whenever choosing variables to use for a key, use variables that
are short and well defined. Use numeric codes wherever possible, particularly in place of
long alphabetic strings. Using strings as keys leads to misspellings and possible
confusions as well as being inefficient. Avoid floating point numbers as key fields.

Secondary indexes can be used to retrieve data in other sequences.

Order of Variables in Keys

In keys made up of multiple variables, the order in which the variables are specified in
the key is important.

Specifying the complete key in a retrieval is the most efficient way to retrieve a single
record. This can use the main index and directly retrieve the record.

A retrieval can locate records using just part of the key providing that it specifies the
higher level key variables. Make higher level keys the ones more likely to be used to
retrieve by.

 Joining Records with Keyfields

Data from two record types can be joined by using a keyfield that is common to both
record types. If keyfields in different record types have the same name and are in the
same order, these record types are implicitly joined. A record type with one extra keyfield
defines a hierarchy. For example, one record type may have CUSTNO as the key, a second
record type CUSTNO and ORDERNO, a third record type CUSTNO, ORDERNO, LINENO, etc.
These can go down through many levels of record types if needed, and the implicit joins
make retrievals simpler and more efficient.

SIR/XS Database 9

Defining Variables

 Every variable in a database has a name and a structured definition. Whenever a variable
is entered into the database, it is checked to ensure that it conforms to the definition.
Variables are always referred to by their name. Descriptive names are usually best. For
example, a variable called 'PHONE' is easier to remember than one called 'VAR112'.

Within a record type, variable names must be unique. Variables in different record types
may have the same name. Beware of using the same name for different things in different
record types in the same database. For example, it would be a mistake to use the name
'DATE' for variables when they are different dates, such as Birth Date, Visit Date, etc.

Variable Data Types

Every variable is one of three basic data types:

INTEGER
Integers are the set of natural numbers both positive and negative including zero.

FLOATING POINT
Floating point or real numbers, are numbers that may have decimal characters.
They may be either single or double precision.

STRING
String or character variables are variables whose values are alphanumeric.

Variable Extended Data Types

 Although every variable is stored as one of the three basic types, there are several
extended data types that translate information as they are entered or retrieved. These are:

CATEGORICAL
Categorical variables offer an efficient way to store predefined strings.

A categorical variable is a character string that has a limited number of values
specified as an ordered list. When the variable is input as a string, it is compared
to the list and the number that corresponds to the matching position in the list is
stored instead of the value. This has the advantage that only valid entries are held
and considerable space is saved. In programs and reports, the full string is
displayed and retrieved.

For example, a categorical variable might be a list of the names of American
states. If 'Alabama' were the first entry in the list, a variable entered as 'Alabama'
results in '1' being stored.

SIR/XS Database 10

The list is held in the data dictionary and is searched sequentially. It is a very
simple and easy to use facility for short lists that are not updated very often. If
there are hundreds or thousands of entries, or there is more information about
each entry than just the name, or users need to modify the entries, use tables or
record types with indexes to store this type of reference data.

DATE
A date variable is typically entered as a character string which is converted to an
integer that is the number of days since the start of the Gregorian calendar. Day 1
is October 15, 1582. A date has a format such as 'MM/DD/YYYY' that is used to
interpret the input and to format the output. Within PQL programs, dates can be
used as numbers for calculations or as character strings for display or input
purposes. As dates are stored as the number of days since a predetermined point
in the past, it is very simple to perform date based calculations and there are no
potential problems at the end of centuries or millennia. There is currently an upper
limit of Feb 28 3000 (day 517686) on the conversion of numeric days to/from the
calendar.

The date format is a string, up to 32 characters, in quotes and describes both an
input and an output format. The input format is used when data is read during
batch data entry, or when a string value is assigned to the variable. The format is
used to interpret the input data (see below). The output format is used as a default
when the variable is written and the output date corresponds exactly to the format
specified (this can be overridden by other date specifications at that point).

The date format consists of a combination of letters with special meanings and
other characters used as separators. The letters M(month), D(day), Y(year),
W(day of week/week number) and I (default separator) are special characters
(upper/lower case can be used); all other characters in the format are treated as
separators. The 'I' separator results in a blank separator on output. Like characters
must be kept together, e.g. a format such as 'MYYYM' is invalid.

Date formats can be partial formats, without a day, month or year component. If
the year is omitted, it is taken to be the current year. If the decade is omitted, it is
taken to be the current decade. If the day or the month is omitted, they are taken
to be 1. If there are more than two month characters, then English month names
are used to the length specified. Names on output are in upper/lower case to
match the case of the format. There are two special formats which do not have a
month component. A date can be a year/day format (in either sequence) which
must allow at least three characters for days (1-365). A date can be a year /week
format (in either sequence) which should allow at least two characters for week
numbers (1-53). (Week numbers follow the ISO standard; a week always begins
on a Monday, and ends on a Sunday. The first week of a year is that week which
contains the first Thursday of the year, or, equivalently, contains Jan-4.) The 'W'
character, if not in a week number format, represents the English name for days of
the week to the length specified. Names on output are in upper/lower case to
match the case of the format. If month names or days of the week names are

SIR/XS Database 11

specified, on output all dates have the same length name. If the specific name is
shorter than the format it is padded with blanks.

On input, if a date format has no separators and the input value has no separators,
the input must correspond exactly to the format. e.g. format 'DDMMYYYY' input
must have leading zeroes when necessary such as '05062006'. If the input has
separators, each component is taken to be variable length up to the separator or to
the end of the input field regardless as to the specification of separators in the
format. e.g. for format 'DD/MM/YYYY' or format 'DDMMYYYY' input could be
'5/6/6'. Separators do not have to match specific characters. e.g. A '/' can be
specified in the format and the input could contain a blank.

Months can be input as names (or partial names) or as month numbers regardless
as to the format. Days of the week have no relevance on input and any text is
skipped.

If the full four digits of the year are not entered, the input is tested against the
century split parameter CENY. This is 1930 by default and can be set by the
application. An input year greater than the century split is set to the specified
century; years less than this are set to the next century. e.g. 99 becomes 1999; 7
becomes 2007. This calculation is not dependent on the current date in the system
and therefore does not alter at any particular point in time.

For example, various date maps allow a sample of possible inputs and how the
date is displayed as follows:

Format Possible Inputs Displayed
Date
------------------ ---------------- -----------

'mmddyyyy' 05312006 05312006
'mmddyyyy' 5 31 2006 05312006
'MMIDDIYY' 5/31/6 or 5 31 2006 05 31 06
'MM/DD/YYYY' 5-31-6 or 5 31 06 05/31/2006
'DD-MM-YY' 31/5/2006 or 31 May 6 31-05-06
'YYYY' 2006 or 6 2006
'MMM DD, YY' As per other M/D/Y formats MAY 31, 06
'WWW, DD MMM YYYY' 31/05/06 or xxx 31/5/2006 FRI, 31 MAY
2006
'Mmm/DD/YYYY' As per other M/D/Y formats May/31/2006
'Www, Mmm dddd' xxxx 05/31 Fri, May
31st
'yyyy/ww 6/13 2006/13
(week number)
'ddd/yy' 85/2006 085/06
(day number)
 If a datemap starts with the letter "E" then this is an exact date map and the value
input into the date variable must match the map exactly. The E flag is not a part of
the map but indicates that the following format is mandatory: digits must be

SIR/XS Database 12

entered for each M,D and Y in the map and their positions map exactly to the
column positions in the datemap. Leading zeros must be entered. Numbers cannot
be entered in columns that are not mapped to M, D or Y.

Format Input Value
------------------ -------------- ----------------
'Emmddyyyy' 05312006 accepted
 5312006 rejected (needs leading
zero)
 05 31 2006 rejected (misaligned
columns)
'EMMIDDIYY' 05/31/06 accepted
 05031/06 rejected (number out of
place)
'EMMMIDDIYYYY' MAR 31 2006 rejected (numbers required)
 05 31 2006 rejected (need all leading
zeros)
 005 31 2006 accepted

TIME
A time variable is typically entered as a character string and stored as an integer
that is the number of seconds since midnight. A time has a time format such as
'HHMMSS' that is used to interpret the input and format the output.

The time format is a string, up to 32 characters, in quotes and describes both an
input and an output format. The input format is used when data is read during
batch data entry, or when a string value is assigned to the variable. The format is
used to interpret the input data (see below). The output format is used as a default
when the variable is written and the output time corresponds exactly to the format
specified (this can be overridden by other time specifications at that point).

The time format consists of a combination of letters with special meanings and
other characters used as separators. The letters H(hour), M(minute), S(second),
I(default separator) and P or A (AM/PM) (upper/lower case can be used); all other
characters in the format are treated as separators. The 'I' separator results in a
colon : separator on output. Like characters must be kept together, e.g. a format
such as 'HMMH' is invalid.

A time is normally taken to be a 24 hour time format. Specify 'PP' ('A' is a
synonym for 'P') for a 12 hour format. On output 'AM' or 'PM' are written as
appropriate. On input, a 'P' in the data indicates a 12 hour time after midday (a 24
hour time is still valid on input).

On input, if a time format has no separators and the input has no separators, the
input must correspond exactly to the format. e.g. format 'HHMM' input must have
leading zeroes when necessary such as '0805'. If the input has separators, each
component is taken to be variable length up to the separator or to the end of the
input field. e.g. for format 'HH:MM' or 'HHMM' input could be '8:5'. Separators do
not have to match specific characters. e.g. A : can be specified in the format and
the input could contain a blank.

SIR/XS Database 13

For example, various time maps allow a sample of possible inputs and how the
time is displayed as follows:

Format Possible Inputs Displayed
Time
------------------ ---------------- -----------

'hhmm' 2330 23-30 2330
'hhImm' 23 30 23-30 23:30
'HH:MM:SS' 23 30 23:30:00
'HH MM PP' 23 30 11:30 P 11 30 PM

SCALED
A scaled integer represent numbers multiplied by a power of ten (the power is the
scale factor). These can include a decimal component (a negative scale factor) or
can be a number with a set number of trailing zeros (a positive scale factor). This
is efficient for data that has this characteristic of a fixed scale. For example,
Money in dollars and cents would be scaled at -2.

The software handles any scaling issues involved. For example, if a scaled integer
has a scaling factor of 2 (hundreds), and it is computed equal to 50 x 4, the
database stores a 2. If the variable is printed, 200 is output. If used in another
calculation, it would be 200. For all practical purposes it has the value 200, except
it saves storage space.

The major limitation on scaled integers is that the maximum integer value is
2,147,483,643. If scaled to a negative power, this may not be large enough. For
example, scaling to -2 for money, gives a maximum value of 21,474,836.43. (For
larger money values, use whole cents in a double precision floating point
variable:R*8)

SIR/XS Database 14

Variable Formats

 Variables can be defined in terms of an external format. These formats are:

Aw
A string w long. Strings are stored up to this length with trailing blanks
compressed so very long fields (up to 4094) can be defined with little overhead. If
using strings as key fields or as fields used in secondary indexes, make them as
short as possible. If the variable is a categorical variable, the variable is stored as
a number that varies in internal size depending on how many entries are in the list
of allowed values.

Iw
An integer w long. For integers, the number of external digits (or the maximum
size if specified as a range) determines the internal size. For example two digits
holds up to 99, but this can be stored in one byte internally. Numbers with one or
two external positions are stored in one byte, numbers with three or four external
positions are stored in two bytes and numbers with five and over external
positions are stored in 4 bytes.
Scaled integers with decimal places (negatively scaled) have external formats
identical to floating point, although the internal storage is as an integer.

Date 'format'
A date. The external format is a string and the internal format is a 4 byte integer.
See date formats for a complete description of external date formats.

Time 'format'
A time. The external format is a string and the internal format is a 4 byte integer.
See time formats for a complete description of external time formats.

Fw.n
A single precision floating point number w long with an assumed n decimal
places. Floating point numbers can be defined as single precision regardless of
their external format. For example a floating point number might take 15 columns
and be single-precision and it would be stored in 4 bytes at single precision
accuracy.

Dw.n
A double precision floating point number w long with an assumed n decimal
places.

When defining the external format of floating point numbers, specify the number
of digits after the decimal point. This sets the format for printing and the default
for input. If a physical decimal point is present in the input, this overrides the
format i.e. the default is only used if there is no explicit decimal point.

 Floating point numbers can be input in scientific notation, that is +n.nnnE+nnn
where n.nnn is the number, E indicates exponentiation and +nnn is the power. For
example, if the variable has four decimal places specify D(12) to hold the 12
columns of input required (+1.3456E+009).

SIR/XS Database 15

Variable Size

The size of a variable is defined by either the external format or internal storage type:

• A variable can be defined in terms of the external characters or format it is input
in or displayed as. For example, a date variable with a date format of
'dd/mm/yyyy' takes ten external characters.

• A variable can be defined in terms of the internal storage it takes. A date variable,
regardless of date format, is stored as a four byte integer.

For most data definition purposes, specify how the variable looks externally and the
appropriate internal format is created automatically. However it is as well to understand
these transformations.

Variable Internal Formats

 Variables are stored as:

I* 1 | 2 | 4
Integers of 1, 2 or 4 bytes.
I*1 have a range of -128 to +123;
I*2 have a range of -32,768 to +32,763;
I*4 have a range of -2,147,483,648 to 2,147,483,643.

R* 4 | 8
Floating Point of 4 bytes for single-precision; 8 bytes for double-precision.

To input a negative number (whether integer or floating point), simply precede
the number with a minus sign (-).

STRING*n
Character Strings of up to 4094 bytes.

SIR/XS Database 16

Variable Quality Control

 Whenever variables are entered, they are checked to make sure that the input conforms
to the defined data type, size and format. Several checks may be specified:

Valid Values
Valid Values are a list of values that are allowable for a given variable. Input that
does not match the valid value list for a variable is rejected.

Variable Ranges
Variable Ranges are ranges of values that are allowable for a variable. Input that
is outside the ranges is rejected.

Missing Values
Missing values define values that are held in the database but excluded in any
calculations. Up to 3 missing values can be specified per variable.

For example, a variable might have two valid values such as 'Y', and 'N' meaning
'Yes' and 'No'. A further three missing values might be defined such as 'X' for 'Not
relevant', 'R' for 'Refused to Answer' and 'Z' for 'Invalid Answer'. When producing
statistics on that variable, only the Y and N answers are included as the others are
defined as missing values.

Blanks may be declared as a missing value. If a numeric field is blank on input
and blank has been defined as a missing value, the variable is stored as missing. If
blanks are not declared as a missing value for the variable, zero is stored when a
numeric field is blank on input.

Batch Data Input
Certain checks may be specified that are applied by the Batch Data Input utilities.
Consistency checks between variables in a record type can be specified. The
values of data items can be computed before being stored in the database.

SIR/XS Database 17

Variable Label

 Variables on screen displays and printed output can be displayed with the variable
name or with an optional, 78 character label.

Variable Documentation

The schema can hold documentation about a variable. There can be as many lines of
documentation about a variable as necessary. This is simply stored with the rest of the
definition of the variable and is listed as required.

Value Labels

Labels can be defined for specific values of variables. For instance, for a variable Gender,
the value 1 may have the label 'Male' and the value 2 may have the label 'Female'. These
labels may be used in reports, etc. but generally, internally within programs, the numeric
values are used.

Decimal Points

When reading numbers from external files or specifying numbers in definitions or
programs, an actual decimal point "." can be present in the number. In definitions and
programs, if the decimal point is omitted, it is assumed at the right of the number. For
example:
COMPUTE A = 1.2
COMPUTE B = 100

Some existing computer files may not have explicit decimal points but may have an
implied decimal point at a given position. For example, a format of F4.1 or a scale of (-1)
means that the number in these four positions has one decimal place if an explicit
decimal point is not quoted. If this field contained "0012", it is read as "1.2", however if
it contained 1.234, then 1.234 is the value that would be stored.

The decimal positions describe an implicit input format and an implicit output format.
They do not describe the maximum number of decimal positions that can be stored in a
field. If a number is defined as D10.0, it can still be computed equal to "0.12345" and
.12345 is stored.

On some schema definition commands (VALUE LABELS, VAR RANGES, MISSING
VALUES etc.), numbers can be specified. If the number has a decimal component, specify
an explicit decimal point and the actual value regardless of any input definition of
implied decimals. For example:
MISSING VALUES RESULT (99.99)

SIR/XS Database 18

Schema Commands
There are commands to create a new database or to connect an existing database.
Passwords can be supplied with the PASSWORD command. Attaching a database and
supplying passwords is normally done through menus or with the Execution Parameters.

There are numerous commands to define the specific features of a database. A set of
commands that corresponds to the definition of the attached database can be written to a
file using WRITE SCHEMA and edited. The schema definition can then be executed as any
other SIR/XS procedure.

A report on the definition of the attached database can be produced with the SCHEMA
LIST command.

The complete database can be deleted. Individual record definitions can be deleted
provided that there is no data for that record.

The format of schema commands is the same as other SIR/XS commands, that is new
commands must begin at the start of a line and continuation lines for a command must
have blanks at the start of the line. Individual clauses within a command may be
separated by slashes for readability.

All changes to a database, including schema changes, are recorded on the journal file
provided that journaling is on. Initial schema definition before any data is added to a
database is not journaled. Once there is data in the database, each schema modification
run increments the update level of the database.

Overall database commands precede record definition commands. There may be many
sets of record definition commands (one set for each record type) and, within a record
definition, there is an order for the various types of commands.

Secondary index definitions may follow a record definition. A secondary index is defined
with a single CREATE DBINDEX command. These can be done before or after any initial
data loading. Defining an index builds the index automatically if there is existing data in
the record.

Overall Commands

The overall database commands specify whether there is a case structure, size estimates,
security, and any documentary text. The commands are:

[NO] CASE ID

SIR/XS Database 19

Defines whether this database has a case structure or is a caseless database. This
is the only required command to define a database.

DATA FILES
Specifies a data file that is non-standard. This may have a different name, be in a
different directory or may be split across multiple files.

DATABASE LABEL
Specifies a descriptive label of up to 78 characters for the database.

DOCUMENT
Stores text about the database in the data dictionary.

ENCRYPT [ON|OFF}
Defines whether data in this database is encrypted or not.

MAX INPUT COLS
Specifies the longest batch input record length.

MAX KEY SIZE
Specifies the maximum key size.

MAX REC COUNT
Specifies maximum number of records of one type.

MAX REC TYPES
Specifies maximum number of record types.

N OF CASES
Specifies maximum number of cases for case structured databases.

N OF RECORDS
Specifies maximum number of records for caseless databases.

READ SECURITY
Sets security passwords for read access levels.

RECS PER CASE
Specifies the average number of records per case.

RECTYPE COLS
Specifies the columns that contain the record type for Batch Data Input.

SYSTEM SECURITY
Sets security passwords for specific DBA utilities.

SYSTEM SECURITY LEVEL
Sets the security level for specific DBA utilities.

TEMP VARS
Specifies temporary variables used during Batch Data Input.

WRITE SECURITY
Sets security passwords for write access levels.

Record Definition

The record definition commands specify the name and number of the record, the key
fields and any documentary text together with the name, type, and size of each variable.
A further set of information may be specified that relates to the Batch Data Input utilities.
This specifies how data is loaded from serial files, including any computations and
logical accept/reject clauses.

Sometimes the same data with the same coding scheme appears on multiple record types.
For example standard drug codes or states in a country. Rather than repeating definitions
in multiple record types, a standard schema can be defined that contains all of the

SIR/XS Database 20

descriptions and codes for the variable and it can then simply be included as a standard
var in records as necessary.

In a case structured database, a set of variables can be held at the case level in the CIR.
Specify variables that are in the CIR with a RECORD SCHEMA 0 CIR record definition.

Within a record definition, there is an order for commands. The example record
definition shows some of the most commonly used record definition commands.

The following commands are used to specify records.

ACCEPT REC IF
Specifies acceptance tests for batch data input.

CAT VARS
Specifies variables are categorical.

CHARACTER*n
Defines new character variables and their length. n may be from 1 to 4094.

COMPUTE
Specifies computations in batch data input.

CONTROL VARS
Specifies that numeric variables are control variables not observation variables.
By default, numeric variables defined with a set of VALID VALUES or VALUE
LABELS are control variables. To specify other numeric variables as control
variables, define a VAR RANGE for them.

DATA LIST
Defines the complete set of variables in the record with any appropriate external
formats and positions for batch data input.

DATE VARS
Specifies variables are date variables and defines the external date format.

DOCUMENT
Stores text about the record in the data dictionary.

END SCHEMA
Specifies the end of this record definition.

IF
Computes values conditionally in batch data input.

INPUT FORMAT
Specifies the external format of variables defined by the VARIABLE LIST.

INTEGER*n
Defines new integer variables with an internal length of 1, 2 or 4.

KEY FIELDS
Specifies the variables that are keys for a record.

MAX REC COUNT
Specifies the number of records of this type that can be held.

MISSING VALUES
Specifies missing values for variables.

OBSERVATION VARS
Specifies that numeric variables which have valid values or value labels are
observation variables instead of control variables.

REAL*n

SIR/XS Database 21

Defines new floating point variables with an internal length of 4 or 8.
REC SECURITY

Sets default security levels for variables in this record.
RECODE

Specifies recodes performed by batch data input.
RECORD SCHEMA

Begins the record definition and names the record. It can include a record label.
REJECT REC IF

Specifies acceptance criteria for batch data input.
SCALED VARS

Specifies integer variables are scaled and defines the scaling factor.
TIME VARS

Specifies variables are time variables and defines their external format.
VALID VALUES

Defines valid values for variables.
VALUE LABELS

Defines value labels for variables.
VARIABLE LIST

Defines variables. Used with INPUT FORMAT as alternative to DATA LIST.
VAR DOC

Defines documentation for variables.
VAR LABEL

Defines a label for variables.
VAR RANGES

Defines ranges of valid values for variables.
VAR SECURITY

Defines read and write security levels for individual variables.

SIR/XS Database 22

Modifying Database Definitions
 The database definition can be modified through the menus. If using commands to
modify the schema, you use the normal RECORD SCHEMA command to make specific
changes. If a definition exists for a record and you do not submit a new DATA LIST
command, then you are modifying the schema. If you do submit a new DATA LIST then
you must re-submit the entire schema.

The ADD VARS, MODIFY VARS and DELETE VARS are equivalent to a DATA LIST when
modifying a schema and have the same syntax.

If the STANDARD SCHEMA is modified, then all record types that have any STANDARD VARS
are updated to reflect the changes. If a standard variable definition has been deleted, then
standard variables that referenced that deleted variable are no longer standard variables.

There are a number of commands that are only applicable when modifying an existing
record definition. Except as documented below, commands completely replace any
existing definition.

ADD VARS
Adds new variables to the variable list.

CLEAR BOOLEANS
Clears all ACCEPT/REJECT conditions.

CLEAR COMPUTES varname1,... | ALL
Clears all computes for the specified variable(s).

CLEAR RECODES varname1,... | ALL
Clears all recodes of the specified variable(s).

CLEAR VALUE LABELS varname1,... | ALL
Clears all value labels for the specified variables.

CLEAR VAR DOC varname1,... | ALL
Clears all the lines of documentation for the specified variables.

CLEAR VAR LABEL varname1,... | ALL
Clears the label for the specified variables.

COMPUTE
Defines new compute definitions. These are added to the old definitions. Use the
CLEAR COMPUTES command to delete old COMPUTE definitions.

DELETE VARS
Deletes variables from the variable list.

EDIT LABELS
Edits the value label list for the specified variables. This command has the same
format as the VALUE LABELS command. Any new values are added to the list, any
existing values that are referenced are updated. Existing value labels that are not
referenced are not altered.

MODIFY VARS

SIR/XS Database 23

Modifies the type, external format or batch data input position of existing
variables.

RENAME VARS existing_variable_list {AS new_variable_list | PREFIX
'text' | SUFFIX 'text'}

Renames one or more variables while keeping all existing definitions of the
renamed variable(s). The variables to be renamed are specified as a list and this
can use the ALL or TO keywords. The new names can be specified individually as a
list (which can also use the TO keyword), in which case there must be the same
number of variable names in both lists. Alternatively the new names can be
constructed by appending a prefix or suffix. If a prefix or suffix is specified,
enclose the text in quotes. Note that this text is used exactly as specified so ensure
that the correct case is used. Appending a prefix or suffix can result in non-
standard names. The resulting names must fit within the 32 character limit on
names.

Examples:

RECORD SCHEMA 1
EDIT LABELS JOBCODE (21) Salesperson
 (22) Senior Salesperson
 (23) Sales Manager/
VAR RANGES JOBCODE (1 23)
The following example adds two variables to the Employee record type.

RECORD SCHEMA 1, EMPLOYEE
ADD VARS ETYPE 70 (I)/
 PHONE 71 - 80 (A)
VAR RANGES ETYPE (1 3)
VAR LABEL ETYPE 'Employee Type'/
 PHONE 'Home Phone Number'/
END SCHEMA
The following example modifies the variable label for Position and the variable
label for value 5 of Rating in the Review record type.

RECORD SCHEMA 3, REVIEW
VAR LABEL POSITION 'Job Code'
EDIT LABELS RATING (5) 'Excellent'
END SCHEMA

SIR/XS Database 24

Format of Commands

Start new schema commands in column 1. Continue commands by leaving
column 1 blank. Comments and general listing control statements can appear
between any commands but not between the clauses of a single command.

When the same command applies to several variables, you can specify multiple
variables and definitions on a single command. You can optionally delimit the
specifications for each variable with a slash for readability. For example,

VALID VALUES CODE1 (1 2 3)
 CODE2 (1 2)
VALUE LABELS CODE1 (1) 'Tested'
 (2) 'Preliminary'
 (3) 'Passed'
 CODE2 (1) 'Domestic'
 (2) 'Overseas'

TO Lists

When defining variables, you can define a set of variables by using a pair of
identical variable names with a numeric suffix in ascending sequence separated
by the keyword word TO. For example, to define ten variables named VAR01,
VAR02, ... VAR10:

VARIABLE LIST VAR01 TO VAR10

Once variables have been defined, they can be referenced as a list in other
commands by using a pair of variable names separated by the word TO, regardless
of the format of the variable names. The sequence of the variables included in the
list is determined by the sequence in which the variables were defined. The TO list
is inclusive and backwards references are not allowed. For example, suppose the
following variables were defined on a variable list:

VARIABLE LIST ID EMPNO NAME STATUS1 TO STATUS3 GENDER

A reference on another command (such as MISSING VALUES) might be ID TO
GENDER to include all the variables, or NAME TO STATUS3 to include NAME and the
three STATUS fields. For example:

MISSING VALUES EMPNO TO GENDER (BLANK) The keyword ALL can be used to
reference all of the variables in a record type.

SIR/XS Database 25

Order of Commands

Record definition commands follow database definition commands. The record
definition commands of each record occur together. You do not have to define
records in any particular order however define any standard schema as part of the
database definition, immediately followed by RECORD SCHEMA 0 CIR for the
common vars on a case structured database.

The KEY FIELDS command and the DATA LIST or INPUT FORMAT / VARIABLE
LIST can only occur once per record. Other commands may occur multiple times.

Within each record, there is a general order that must be followed. The commands
to do with the overall record structure come first, then the definition of the
variables and then additional specifications referring back to the defined
variables. It is normal for the definition of all variables to precede the optional
specifications for all variables, but this is not required. It is required that the
definition of a particular variable precedes the specification for that variable.

Group Commands

1 RECORD SCHEMA *
DOCUMENT
KEYFIELDS/SORT IDS
MAX REC COUNT
REC SECURITY

2 DATA LIST or
VARIABLE LIST/
INPUT FORMAT*
INTEGER VARS
REAL VARS
CHARACTER VARS

3 CAT VARS
CONTROL VARS
DATE VARS
MISSING VALUES
OBSERVATION VARS
TIME VARS
SCALED VARS
STANDARD VARS
VALID VALUES
VALUE LABELS
VAR DOC
VAR LABEL

SIR/XS Database 26

VAR RANGES
VAR SECURITY

4 ACCEPT REC IF
COMPUTE
IF
RECODE
REJECT REC IF

5 END SCHEMA

The * commands (RECORD SCHEMA and either DATA LIST or VARIABLE
LIST/INPUT FORMAT) are mandatory and must be supplied. All other commands
are optional.

• Group 1 commands are concerned with the overall record.
• Group 2 are data definition commands and create new variable names in

the database.
• Group 3 further specify the variables created in group 2.
• Group 4 is concerned only with batch data input processing. Note that new

variables can be created with COMPUTE, IF and RECODE commands or
these commands can use previously defined variables. If the batch data
input utilities are not relevant, this group of commands can be ignored.

• Group 5 is simply the end of the command set.

SIR/XS Database 27

Example Record Specification

The typical definition of a record with no batch data input processing consists of :

RECORD SCHEMA
KEY FIELDS
DATA LIST or VARIABLE LIST/INPUT FORMAT
DATE VARS & TIME VARS
MISSING VALUES
VALID VALUES
VALUE LABELS
VAR LABEL
END SCHEMA.

For example:

RECORD SCHEMA 1,PATIENT
KEY FIELDS ID
VARIABLE LIST ID,LNAME,FNAME,DOB,SEX,STATUS
INPUT FORMAT (I4,A40,A40,DATE'MM/DD/YYYY',I1,I1)
MISSING VALUES LNAME to STATUS (BLANK)
VALID VALUES SEX (1,2)
 STATUS (1,2,3)
VALUE LABELS SEX (1) 'Male'
 (2) 'Female'
 STATUS (1) 'Inpatient'
 (2) 'Outpatient'
 (3) 'No Longer Attending'
VAR LABEL ID 'Patient Id'
 LNAME 'Last Name'
 FNAME 'First Name'
 DOB 'Date of Birth'
 STATUS 'Current Status'
END SCHEMA

In the above example the following commands were used:

RECORD SCHEMA
Specifies the record number and name, and begins the specification of a record
type.
KEY FIELDS
Specifies the key field variables for the record type in order from major to minor
key. This immediately follows the RECORD SCHEMA command.
VARIABLE LIST
INPUT FORMAT
The VARIABLE LIST names the variables; the INPUT FORMAT defines the data
type, size and format. The variable names are simply listed in the order they are to

SIR/XS Database 28

appear in the database, separated by blanks or commas. Variables are held in the
order they are defined. The format specification is enclosed in parentheses and
commas are used as separators. "I" specifies integers, "A" specifies alphanumeric.
Date formats consist of the word DATE followed by a date format. See date
formats for a complete description. Time formats consist of the word TIME
followed by a time format. See time formats for a complete description.
MISSING VALUES
Up to three missing values may be specified for any variable. The keyword BLANK
specifies that blank input is treated as missing. When the same value is to be
assigned to a set of variables the variable list format can be used. This consists of
the two variable names that define the start and end of the list and the word "to".
VALID VALUES
Valid values or ranges of valid values may be specified for variables. Values that
do not match these and are not a valid missing value can never appear in the data.
Attempts to store an invalid value result in the system missing value (undefined).
VAR LABEL
A variable label may be up to 78 characters and can be used instead of the name
of the variable on screens, column headings on reports, etc.
VALUE LABELS
Value labels associate a label with a given value. The label can be displayed in
place of the value. Value labels are up to 78 characters long. The specification for
each variable may be separated by a slash for readability.
END SCHEMA
Ends a record schema definition set of commands.

SIR/XS Database 29

CREATE DATABASE

CREATE DATABASE database_name
 [JOURNAL = {ON | OFF}]
 [PASSWORD = database_password]
 [PREFIX = database_directory]

Creates a new database. (NEW FILE is a synonym.) A database name must be a
valid SIR/XS a name. To connect to an existing database, use the CONNECT
DATABASE command.

JOURNAL
Controls whether journaling is performed for the new database. The default is ON.
Journaling can be turned on or off with the JOURNAL command
PASSWORD
Defines the database password for the new database. The password must be a
valid SIR/XS name. Specifying this keyword lists the password in the output
listing. The database password can be supplied with the PASSWORD command that
does not list the password in the output listing. If a password is not defined for a
database, the password is set to blank. If a database has no password, future
connections to the database need not specify a password. The UNLOAD FILE utility
can change the database name and password.
PREFIX
Specifies the database directory. If not specified, the database is created in the
current directory.

SIR/XS Database 30

CONNECT DATABASE

CONNECT DATABASE database_name
 [JOURNAL = {ON | OFF}]
 [PASSWORD = db_password]
 [PREFIX = database_directory]
 [SECURITY = {read_pw | *} [{write_pw | *}]]
 [CREATE]

Connects the specified existing database. (OLD FILE is a synonym.) A database
must be connected before it can be used. The last connected database is the
default database. Al processes and utilities run on the default database.

A pre-compiled VisualPQL program can connect a database when it runs, but, if
you need to compile a VisualPQL program that references a database, the
database must be connected first.

JOURNAL
Turns journaling on or off. Journaling is a database characteristic and remains as
it was last set and need not be re-specified.

PASSWORD
Specifies the password that is required to access to the database. This is not
required if the database has no password. This option shows the password in the
output listing.

The database password can be supplied with the PASSWORD command that does
not list the password in the output listing.

PREFIX
Specifies the database directory. This is not required if the database is in the
current directory.

SECURITY
Specifies the read and write security passwords.

It is only necessary to specify the write security password when updating the
database. To specify a write password when the read password is null, specify the
read password as an asterisk (*).

If the read password matches the highest (30) level of security, then the user has
Data Base Administrator (DBA) level access to the database and can run all
utilities. If the database does not have any read passwords assigned, then any
connected user has DBA access. See READ SECURITY

SIR/XS Database 31

CREATE .
Creates a new database when used with the CONNECT DATABASE command.
CREATE makes CONNECT DATABASE act identically to the CREATE DATABASE
command.

SIR/XS Database 32

DISCONNECT DATABASE

DISCONNECT DATABASE database_name

Disconnects a database. If this is the default database, the procedure file is set to
SYSPROC.

SIR/XS Database 33

SET DATABASE

SET DATABASE database_name

Sets a previously connected database as the default.

SHOW DATABASE
SHOW DATABASE

Writes a viewable list of connected databases.

LIST DATABASE

LIST DATABASE

Sends a list of connected databases to the OutputHandler callback routine in SirAPI when
running in that mode.

SIR/XS Database 34

JOURNAL ON|OFF
 JOURNAL ON|OFF

Turns journaling on or off. Journaling is a database characteristic and it is recommended
that journaling is left on under normal circumstances.

SIR/XS Database 35

PASSWORD
 PASSWORD database_password

Supplies the database password.

If this command immediately follows either the CREATE DATABASE (NEW FILE...) or
CONNECT DATABASE (OLD FILE...) command. This means that the if the PASSWORD is
to be specified then it MUST be on the next physical command line.

When used with CREATE DATABASE, this command defines the new database password.

When used with CONNECT DATABASE, this command supplies the password needed to
connect the database. If the database has no password, this command need not be
specified. If an incorrect password is specified, access to the database is denied.

If the PASSWORD command is used at any other time when a database is connected
then it will change the database password.

This command does not print the password in the output listing.

SIR/XS Database 36

SECURITY
 SECURITY read_pw , write_pw

SECURITY supplies the read and write passwords. If an incorrect password is specified,
level 0 (zero) security is assigned.

This command does not print the passwords in the output listing.

SIR/XS Database 37

PURGE SIR FILE

 Deletes the database. Use this utility to delete the current database before restoring it for
recovery or restructuring. The database files are completely deleted from the disk.

PURGE SIR FILE
 [JOURNAL = KEEP | PURGE]
 [PROC = KEEP | PURGE]
JOURNAL

KEEP specifies that the journal file is not deleted and is the default. PURGE
specifies that the journal file is deleted when the database is deleted.

PURGE SIR FILE JOURNAL = PURGE

PROC
KEEP specifies that the procedures are not deleted. When a new database is created
or a database is reloaded, the old procedure file can be used as part of that
database. This keeps the procedures from a corrupt database when a restore
cannot be accomplished. PURGE specifies that the Procedure File is deleted and is
the default.

PURGE SIR FILE PROC = KEEP

SIR/XS Database 38

DELETE SCHEMA

 Deletes the schema of a record that has no data. Select the appropriate record.

DELETE SCHEMA recname | recnum

Deletes the record schema name or number from the database definition. DELETE SCHEMA
only operates if there are no records for this record type. This is a DBA security level
command.

When defining and redefining a record type, it is sometimes simpler to DELETE SCHEMA
and redefine it through a complete new RECORD SCHEMA than to modify it over and over
again.

When defining and testing a new database and wish to delete all of the test data for record
type n prior to delete schema the following simple VisualPQL program does this (omit
the case commands if it is a caseless database):

RETRIEVAL UPDATE
PROCESS CASE
PROCESS REC n
DELETE REC
END PROCESS REC
END PROCESS CASE
END RETRIEVAL

DELETE STANDARD SCHEMA

 Deletes the entire standard schema. This modifies any records referencing the standard
schema so that they no longer reference the standard. It is strongly advised that the
database is rebuilt using export/import or unload/reload as soon as possible if this is done
and multiple record definitions are affected.

SIR/XS Database 39

CASE ID
 CASE ID varname [(A)|(D)] |
[NO] CASE ID

CASE ID varname establishes the database with a case structure and specifies the name
of the variable used on every record as the case identifier.

NO CASE ID establishes the database without a case structure.

Either CASE ID or NO CASE ID is required to set up the database and this command must
be used prior to any other definition. Once the case specification and case id have been
defined, these cannot be modified.

The case variable may be any data type. Avoid REAL for keys due to the difficulty of
specifying exact numbers in floating point.

D specifies descending sort order for cases. If order is not specified, ascending is
assumed. When all cases are processed sequentially, they are retrieved in this sequence.

SIR/XS Database 40

COMMON SECURITY
 COMMON SECURITY rlevel, wlevel

Specifies the default minimum security levels for all common variables.

Rlevel (read level) and wlevel (write level) are integers between 0 (zero) the lowest, and
30, the highest. If no security levels are defined, level 0, the lowest, is assigned. Further
security restrictions for individual common variables can be specified at the record level
using the VAR SECURITY command. See READ SECURITY for an explanation of security
levels.

Common security levels can be changed. Note, this affects only the security levels for
new common variables that are defined or redefined. It does not affect the security levels
of currently defined common variables.

SIR/XS Database 41

COMMON VARS
 RECORD SCHEMA 0 CIR

Specifies variables in the Common Information Record or CIR. A CIR exists for every
case in a case structured database and holds counts plus the case identifier. It can hold
Common variables that are typically those that are used repeatedly in retrieving data from
the database. These variables can be referenced at any time regardless of the record type
being processed. CIR entries can be updated directly when processing a case, or can take
the value of the last entry in a given record type.

Note that common vars, except for the case id on a case structured database, cannot be
used as key variables in a secondary index in a record as they are not stored as part of a
record.

Specify the format here and then, when this variable is referenced on a subsequent record
definition, there is no need to respecify formats except input-output columns and any
batch data specifications (e.g. RECODE) for that record.

The specification of the CIR is identical to any other record except that the batch data
input specification clauses (ACCEPT REC,REJECT REC,COMPUTE,IF and RECODE) are
meaningless. Follow the RECORD SCHEMA 0 CIR with a DATA LIST to completely
respecify the common vars or use ADD VARS or DELETE VARS to update the common vars.

Use any of the normal record variable definition commands such as VALUE LABELS as
required.

The RECORD SCHEMA 0 CIR set of commands follows any STANDARD SCHEMA set of
commands and precedes normal record definitions.

(Note: The older format of COMMON VARS is still supported for compatibility with earlier
versions of SIR.)

SIR/XS Database 42

DATA FILES

DATA FILES 'filename'
 [FROM (key,...) 'filename']
 [FROM (key,...) 'filename']

Specifies that the data file for this database is not a standard data file. It may have a
different name, be in a different directory or may be split across multiple data files.

Specify the command at the end of the schema definition - it cannot be processed before
the type of the Case variable has been specified for a case structured database. If a record
type is specified as a FROM key, then that record type must have been defined. When
SIR/XS writes a schema, this command follows any secondary indexes.

If the command does not have any FROM clause, it specifies the name and location of the
data file. This can be in a different directory from the other database files and named
something other than the database name with a .sr3 extension.

The first specification names the original data file that holds all records up to the value
specified on the first FROM key. The last specification names the final data file that holds
all records from to the value specified on the last FROM key.

On a case structured database, the first key specified is the case id. If any further
specification is required, the next key specified is a record number. On a caseless
database, the first key specified is a record number. Subsequent keys can be specified up
to the maximum number of keys on the record type.

The filenames must either be fully qualified filenames or simple filenames without any
directory specification. If the files are not fully qualified then the data file is placed in the
same directory as the other database files.

For example:

DATA FILES 'company.s31'
 FROM (500) 'company.s32'
 FROM (1000) 'company.s33'

SIR/XS Database 43

A DATA FILES command with no other specifications removes any previous data file
definition and sets the database to have a standard data file.

SIR/XS Database 44

DATABASE LABEL
 DATABASE LABEL 'text'

Specifies a label for the database. This text can be up to 78 characters and is enclosed in
quotes. The label can be retrieved in VisualPQL using the RECDOC(0,0) function.

SIR/XS Database 45

DOCUMENT
 DOCUMENT text

Specifies that the text following the command is commentary. This text is stored in the
dictionary describing the overall database.

The text cannot be partially modified. To alter the text, run the DOCUMENT command with
new text. The new document text completely replaces the old.

SIR/XS Database 46

ENCRYPT
 ENCRYPT [ON |OFF]

ENCRYPT turns on data encryption for this database. This means that all data records in the
database are encrypted on disk and are thus protected against scrutiny from software
other than SIR/XS. The encryption method used is a version of the publicly available
Blowfish algorithm using a 256 bit key.

All data records are encrypted, however keys in index blocks are held in unencrypted
format. Do not use names or other recognisable strings as keys if this data is sensitive and
requires protection. Unloads and journals for encrypted databases are themselves
encrypted. Text files are all unencrypted. Schemas and procedures are unencrypted.

ENCRYPT OFF turns encryption off for a database. Encryption can be turned on and off
without ill effect. Records are written according to the current setting; records are read
and recognized as to whether they require decryption.

Passwords and security levels are encrypted on all databases. There are
encryption/decryption functions in VisualPQL if users need to encrypt data for
themselves but these use a user specified key - the SIR/XS system key is used for
database encryption.

SIR/XS Database 47

MAX INPUT COLS
 MAX INPUT COLS n

Specifies the length of the largest input line for any record type in the database. N is
rounded up to a number evenly divisible by eight. This command is necessary when there
is any record type with a batch input format longer than 80. The MAX INPUT COLS can be
increased at any time, but cannot be decreased once any record types have been defined.

SIR/XS Database 48

MAX KEY SIZE
 MAX KEY SIZE n

Specifies the maximum key size required for any record type in the database. The default
is the size of the largest key currently defined for any record type in a database and is
calculated automatically.

Only specify an explicit key size if you expect to define a new record type with a larger
key than the current largest key after loading data into the database. If MAX KEY SIZE is
set to the largest expected key, it avoids having to UNLOAD and RELOAD the database.

The keys for a record are: the Case Id, the record number and the key fields. The current
MAX KEY SIZE can be obtained from the database statistics.

The absolute maximum key size possible, whether defined through this command or
calculated from the keys specified, is 320 characters.

SIR/XS Database 49

MAX REC COUNT
 MAX REC COUNT n

For case structured databases, this specifies the default MAX REC COUNT for individual
record definitions. The overall MAX REC COUNT sets the default maximum of a record
type for any one case in the database. The number specified for an individual record type
may be larger than specified here. The default value is 100.

For caseless databases, use the command N OF RECORDS to specify the maximum number
of records that the database can hold.

SIR/XS Database 50

MAX REC TYPES
 MAX REC TYPES n

Specifies the maximum number of different record types that can be defined in the
database. The default value is 30.

No record type number can exceed the value specified on the MAX REC TYPES command.
For example, if MAX REC TYPES is 10, a record type 11 is not allowed, even if there are
fewer than ten record types defined.

This number affects the size of the CIR. Space is reserved in the CIR for counts for as
many record types as defined in MAX REC TYPES. The case level MAX REC COUNT
determines how much space is held for the count of any record type as yet unspecified.
For example, if there is a MAX REC TYPES of 30 and a MAX REC COUNT of 100, 30 bytes
are reserved for record counts in each CIR. With a MAX REC TYPES of 100 and a MAX
REC COUNT of 1,000,000, 400 bytes are reserved.

Changing this number requires a database UNLOAD / RELOAD once data has been loaded.

SIR/XS Database 51

N OF CASES
 N OF CASES n

Specifies the maximum number of cases, n, that can be entered in the database. The
maximum number of cases is an integrity constraint that limits the number of cases that
can be held in the database

The N OF CASES is an absolute value; it cannot be increased without doing an UNLOAD /
RELOAD and so specify the value carefully to allow for the maximum number of cases
ever wanted in the database.

N OF CASES is multiplied by the RECS PER CASE to establish the total number of records
the database can handle. This limit cannot be exceeded and can only be changed with an
UNLOAD / RELOAD.

There is no overhead with specifying a large value, the only constraint is that total
number of records is a number that can be stored in one integer. This number is
2,147,483,648.

The default N OF CASES is 1000.

Not valid for caseless databases.

SIR/XS Database 52

N OF RECORDS
 N OF RECORDS n

Specifies the maximum number of records, n, that can be entered in a caseless database.

The N OF RECORDS is an absolute value; it cannot be exceeded and so specify the value
carefully to allow for the maximum number of records ever wanted in the database. This
limit can only be changed with an UNLOAD / RELOAD.

There is no overhead with specifying a large value, the only constraint is that total
number of records is a number that can be stored in one integer. This number is
2,147,483,648.

The default N OF RECORDS is 1,023,000.

Not valid for case structured databases.

SIR/XS Database 53

READ SECURITY
 READ SECURITY (leveln) password

Establishes the read security levels and associated passwords. There are 31 levels of
security, from 0 (zero), the lowest, to 30, the highest. Repeat the complete specification
for each password. Database passwords are a SIR/XS name and must conform to the
name format. That is, names are no longer than 8 characters, begin with an alphabetic
character and can contain alphanumeric characters and the four characters # $ @ _. For
example
READ SECURITY (1) CLERK (2) SUPER (3) MANAGER

When a user logs in to the database, they specify a Read Security Password. If this
matches a password in this list, then they are assigned that security level. If they do not
login with a valid read security password, they are assigned level zero.

If security passwords are not defined, anyone who logs on to the database is assigned
level 30 (database administrator) read permission.

One level is associated with one password. That is, there may be a password for level 1, a
password for level 2, and so on. There cannot be two passwords for the same level. Read
access at a particular level grants read access for all lesser levels.

A security level and associated password must be defined before that security level can
be specified on a record type or variable.

SIR/XS Database 54

RECS PER CASE
 RECS PER CASE n

Specifies an average number of records per case. The default is 1023.

This is used to calculate the total number of records in the database. The product of N OF
CASES multiplied by RECS PER CASE forms an upper bound on the total number of
records (not including CIRs) that can be stored in the database.

The default N OF CASES is 1000 that means that 1,023,000 is the default total number of
records for a database.

This can be updated once records have been entered without an UNLOAD / RELOAD.

This command has no meaning for caseless databases.

SIR/XS Database 55

RECTYPE COLS
 RECTYPE COLS n[,m]

When using Batch Data Input utilities, the input file can contain records of different types
and an input record type is identified by its record type number. The record type number
is an integer and must appear in the same position on all input records regardless of
record type.

RECTYPE COLS specifies the columns that contain the record type number. 'n' specifies the
start column 'm' specifies the last column. If the record type is in one column, i.e. MAX
REC TYPES is less than 10, just specify the start column.

The columns specified must be within the range specified on the MAX INPUT COLS
command. The record type number must be on the first line of any multi-line input
records. (If records on input files are all of one type, the RECTYPE= clause can be used for
the batch data input run and the record type number omitted.)

Make the number of columns large enough to hold the value of the maximum record
number. For example, if up to 99 record types are allowed, specify two columns.

The default is columns 79 and 80.

SIR/XS Database 56

SYSTEM SECURITY
 SYSTEM SECURITY readpw, writepw

Specifies the passwords associated with the SYSTEM SECURITY LEVEL, if specified. Log
on to the database with these passwords to access the system utilities. Currently, only
UNLOAD FILE is restricted by the SYSTEM SECURITY LEVEL and therefore this command
is not usually specified.

Logging on with a password that is associated with the system security level gives access
to all functions.

SYSTEM SECURITY LEVEL
SYSTEM SECURITY LEVEL n

N specifies the security level at which a user can perform a set of DBA-only commands.
Log on to the database with the write password associated with this level to access the
system utilities. The default system security level is 30.

Currently, only UNLOAD FILE is restricted by the SYSTEM SECURITY LEVEL and therefore
this command is not usually specified.

SIR/XS Database 57

TEMP VARS
 TEMP VARS varlist

Names temporary variables for use in computations during entry of data with the Batch
Data Input utilities. Computations include COMPUTE, RECODE, IF, ACCEPT REC and REJECT
REC commands.

Temporary variables are not stored in the database.

SIR/XS Database 58

WRITE SECURITY
 WRITE SECURITY (leveln) password

Establishes the write security levels and associated passwords. There are 31 levels of
security, from 0 (zero), the lowest, to 30, the highest. Repeat the complete specification
for each password. Database passwords are a SIR/XS name and must conform to the
name format. That is: names are no longer than 8 characters, begin with an alphabetic
character and can contain alphanumeric characters and the four characters # $ @ _. For
example:

WRITE SECURITY (1) CLERK (2) SUPER (3) MANAGER

When a user logs in to the database, they specify a Write Security Password. If this
matches a password in this list, then they are assigned that security level. If they do not
login with a valid write security password, they are assigned level zero.

If security passwords are not defined, anyone who logs on to the database is assigned
level 30 (database administrator) write permission.

One level is associated with one password. That is, there may be a password for level 1, a
password for level 2, and so on. There cannot be two passwords for the same level. Write
access at a particular level grants write access for all lesser levels.

SIR/XS Database 59

ACCEPT REC IF
 ACCEPT REC IF (logical expression)

Only applies to batch data input

Specifies the criteria for accepting records using the Batch Data Input utilities. When the
logical expression is TRUE, the record is entered into the database. Multiple ACCEPT REC
IF commands can be defined to specify multiple acceptance criteria. If a record passes
any one test, it is accepted. If ACCEPT REC IF is specified, all records that do not pass a
test are rejected.

ACCEPT REC IF (AGE GE 16 AND LE 65)

Note: ACCEPT RECORD IF cannot be specified in a CIR definition. If an ACCEPT RECORD
IF refers to a common variable then it must appear in the record schema where that
common variable is referenced rather than at the CIR level.

SIR/XS Database 60

CAT VARS
 CAT VARS varname ('value') varname ('value')

Specifies string variables that are held as categorical integers and defines the set of string
values that can be input for the variable.

The values in the value list are each enclosed in single quote marks (') and the list for a
variable is enclosed in parentheses. Specifications for multiple variables may be
separated with a slash (/) for readability.

Within the database, categorical variables are held as integers that are the position of the
string in the value list. For example:

CAT VARS SEX ('MALE' 'FEMALE')
 STATE ('AL' 'AK''WY')

Specifies that the variable SEX is categorical. On input 'MALE' is converted to a 1,
'FEMALE' to a 2.

The variable STATE definition illustrates a list of abbreviations of American states. On
input 'AL' is converted to a 1, 'AK' to a 2, etc.

When entering data into a CAT VARS, the string value is input, not the code. Note the
difference to value labels, where a code is input and a string is associated with the code.

SIR/XS Database 61

CHARACTER
 CHARACTER*n varname

Specifies variables as character. n may be from 1 to 4094.

Example:

CHARACTER*40 NAME

SIR/XS Database 62

COMPUTE
 COMPUTE variable = expression

Only applies to batch data input

COMPUTE performs arithmetic or string transformations on common, record or temporary
variables in Batch Data Input as each record is read. If the computed variable has not
been defined, a new database variable is created at the end of the record. It is
recommended that computed variables are defined with the appropriate command.

Note: COMPUTE cannot be specified in a CIR definition. If a COMPUTE refers to a common
variable then it must appear in the record schema where that common variable is
referenced rather than at the CIR level.

Case and Key variables cannot be computed.

SIR/XS Database 63

CONTROL VARS
 CONTROL VARS variable

Declares a list of variables that are Control variables for the TABULATE procedure. These
variables must be numeric and must have either Valid Values or Variable Ranges
defined. By default, variables that have Valid Values or Value Labels are Control
Variables. All other numeric variables are Observation Variables, that is variables with
continuous values.

SIR/XS Database 64

DATA LIST

DATA LIST [(num-lines)]
 [line-no] varname from-column [- to-column] [(type)]
 [line-no] varlist from-column [- to-column] [(type)]....

Defines the variables and input format for a record. You can either use the DATA LIST or
the VARIABLE LIST / INPUT FORMAT to define the record.

The definition consists of the name, batch data input column locations and data type for
each variable. The sequence of the variables determines the order in TO lists and the
sequence of the variables wherever they are referenced, regardless of the physical order
on the batch data input record.

If the batch data input record requires more than one physical record or line, then the
num-lines defines the number of lines which make up the complete record and the line-no
defines which line each variable is on. When the input record is only one line, omit the
number of lines and line number. The line-no can be omitted for any subsequent variables
on the same physical input record.

The from-column determines the start position of the variable.

The to-column specifies the ending position for variables that are longer than one
column.

Define the data type of each variable as follows:

A
String.

I
Integer.

Fn
Single precision floating point. On batch data input, n columns at the right of the
input field comprise the decimal component of the number. An explicit decimal
point on input overrides the format specification.

Dn
Double precision floating point. On batch data input, n columns at the right of the
input field comprise the decimal component of the number. An explicit decimal
point on input overrides the format specification.

 DATE

SIR/XS Database 65

Date variable in the given date format. The specification consists of the word
DATE and the date format, all enclosed in parentheses. See date formats for a
complete description.

 TIME
Time variable in the given format. The specification consists of the word TIME
and the time format, all enclosed in parentheses. See time formats for a complete
description.

If the type is omitted, the default is floating point with zero decimal portion.

Example:

DATA LIST (2)
 1 ID 1 - 4 (I)
 POSITION 6 - 7 (I)
 STARTDAT 8 - 15 (DATE,'MMIDDIYY')
 STARTSAL 17 - 20 (F2)
 DIVISION 21 (I)
 2 NAME 6 - 30 (A)
 GENDER 31 (I)
 MARSTAT 32 (I)
 SSN 33 - 43 (A)

If a varlist is specified, (that is either a list of variable names or a list in the form varname
to varname), multiple variables, all of the same size and type, can be defined. The
columns specified to contain these variables must be evenly divisible by the number of
variables in the list.

SIR/XS Database 66

DATE VARS
 DATE VARS varname ('date_format') varname ('date_format')
....

Specifies that previously defined character variables are date integers with a given date
format.

Date formats may be specified directly on the DATA LIST or INPUT FORMAT commands.
If using DATE VARS, the variable is specified as a character string on the DATA LIST or
INPUT FORMAT commands.

Multiple variables in the same format can be defined with one format specification;
additional specifications may be separated by slashes for readability.

See date formats for a complete description of date formats.

SIR/XS Database 67

DOCUMENT
 DOCUMENT text

Specifies that the text following the command is commentary. This text is stored within
the database and can be printed using the utility LIST SCHEMA.

When DOCUMENT is placed within record definition commands, it becomes part of the
definition for that record type.

DOCUMENT text cannot be partially modified. To update the text, run the command with
new text. The new document text completely replaces the old.

SIR/XS Database 68

END SCHEMA
END SCHEMA

Specifies the end of the commands for a record set. If it is not specified, the end of the
commands, START TASK or END TASK or the start of a new RECORD SCHEMA terminates
definition of the record type. Any other commands are treated as record definition
commands.

SIR/XS Database 69

IF
 IF (logical-condition) varname = expression;

Only applies to batch data input

Assigns the result of an expression to a variable if the logical condition is true. Multiple
variables can be assigned values on a single condition. Variables referenced must be
within this record or must be common vars. If the computed variable has not been
previously defined, it is added to the defined database variables. For example:

IF (JOBCODE = 1) REVDATE = TODAY(0) + 365

Note: IF cannot be specified in a CIR definition. If an IF refers to a common variable
then it must appear in the record schema where that common variable is referenced rather
than at the CIR level.

SIR/XS Database 70

INPUT FORMAT
 INPUT FORMAT (format specifications)

INPUT FORMAT is associated with, and immediately follows, the VARIABLE LIST
command.

Specify a data type, size and format for each variable on the VARIABLE LIST.

An input file may have multiple lines of data for each database record. Lines in an input
record may be any length up to the length specified on MAX INPUT COLS. Specify a slash
(/) to indicate the start of the second and subsequent lines of data. The slash can be used
to skip one or more lines of an input record.

Separate each format specification by a comma or a space. If the format specifications
require more than one line, continue the specification on the next line leaving column one
blank.

Specify a single format and a repetition factor for multiple variables with the same format
or groups of variables with the same format. To repeat a format, specify the number of
times to repeat it, followed by either a single format or a group of formats enclosed in
parentheses. For example:

VARIABLE LIST VAR01 TO VAR50
INPUT FORMAT (10I2, 20(I1,I4))

The VARIABLE LIST with the TO format defines 50 integer variables named VAR01,
VAR02, ... VAR50.

The first repeating format (10I2) defines the first 10 variables that results in VAR01 to
VAR10 as two digit integers.
The repeating group of formats, 20(I1,I4), defines 20 sets of two alternate variables. This
results in VAR11, VAR13 and subsequent odd numbered variables as one digit integers
(I1) and VAR12, VAR14 and subsequent even numbered variables as four digit integers
(I4).

Enclose the whole format specification in parentheses. The individual format
specifications are as follows:

Fw.d or Dw.d
A floating point variable. "F" is single precision, "D" is double precision. On
batch data input the variable occupies "w" positions on the input file with the
rightmost "d" positions as the decimal component. A decimal component must be
specified; zero is valid. If Batch Data Input is not used the decimal component has

SIR/XS Database 71

no effect. Specifying a physical decimal point on input overrides any
specification. For example:
VARIABLE LIST TEMP SALARY
INPUT FORMAT (F5.3, D8.2)

Iw
An integer variable occupying "w" positions on batch data input. For example:

VARIABLE LIST STATUS, AGE
INPUT FORMAT (I1 , I2)

Aw
A character (alphanumeric) variable occupying "w" positions. For example:

VARIABLE LIST NAME ADDRESS
INPUT FORMAT (A25 , A40)

nX
A positioning operator for Batch Data Input utilities. It skips "n" columns of an
input data record. For example:

VARIABLE LIST NAME ADDRESS
INPUT FORMAT (A25 , 4X , A40)

This defines two alphanumeric variables. NAME occupies positions 1 through 25 of
the input record. 4X skips the next 4 columns (after NAME). ADDRESS is 40
characters long beginning in position 30.

Tn
A positioning operator for Batch Data Input utilities. It tabs to a specific column
"n". The next variable begins in column "n". The "T" specification can be used to
move forward or backward over the current input line and can be used to reread a
particular field. For example

VARIABLE LIST NAME ADDRESS PHONE AREACODE
INPUT FORMAT (T3,A20,T25,A40,T72,A12,T72,A3)
This defines four string variables using the T operator to locate the beginning of
each variable. Note that the variables PHONE and AREACODE both begin in column
72.

DATE 'date format'
Describes an input character variable as a date according to the specified date
format. See date formats for a complete description of date formats.

TIME'time format'
Describes an input character variable as a time according to the specified time
format. See time formats for a complete description of time formats. For example:

VARIABLE LIST NAME BIRTHDAY BIRTHTIM
FORMAT (A25, DATE 'MM/DD/YYYY', TIME 'HH:MM')

This example defines three variables for a record type. NAME is in the first 25
positions; BIRTHDAY is in the next ten positions and is a date variable; BIRTTIM is
a time variable. The first two characters are Hours (24 hour clock), the third
character is a separator and the last two are minutes.

SIR/XS Database 72

INTEGER
 INTEGER*n varname

Specifies variables as integer that can hold positive or negative numbers. n may be 1, 2 or
4 and refers to the internal storage size in bytes. 1 byte holds numbers up to 123; 2 bytes
holds numbers up to 32,763; 4 bytes holds numbers up to 2,147,438,643.

If this is subsequently defined as a SCALED VAR, the internal integer must be able to store
the significant digits needed for the number. For example if Scale (-2) is specified, the
largest number that can be held in I*4 is 21,474,386.43

Example:
INTEGER*4 SALES VAR1 to VAR5

SIR/XS Database 73

KEY FIELDS
 KEY FIELD[S] varname [(A|D|I)]

Defines the keys for the record. Any record type that has more than one single physical
record per case on a case structured database and every record type with more than one
single physical record in a caseless database must have a key.

The KEY FIELD command must be before the DATA LIST or VARIABLE LIST.

The key fields must appear in the DATA LIST or VARIABLE LIST

Key field variables cannot be created or modified by COMPUTE, IF or RECODE commands.

The sort specification applies to each variable individually.

• (A) specifies ascending sort order - this is the default.
• (D) specifies descending sort order.
• (I) specifies this is an Auto Increment key. When records with an auto increment

key are created, the value of the specified key is tested. If the creation process sets
this key value to zero, then the system automatically finds the last occurrence of
the record type in the case and takes the value from that record, increments this by
1 and uses this value as the key. If a record of this type does not exist, the value 1
is used as the key. Auto increment keys must be integer variables. If a key is an
auto increment key, it must be the final key in a record type.

Example:

CASE ID ID
RECORD SCHEMA 3 REVIEW
KEY FIELDS POSITION REVDATE (D)
VARIABLE LIST ID POSITION REVDATE RATING NEWSAL IDSUPER
INPUT FORMAT (I4 I2 DATE('MMIDDIYY') I2 F8.2 I4)

SIR/XS Database 74

MAX REC COUNT
 MAX REC COUNT n

For a case structured database this command specifies the maximum occurrences of a
record type for any one case in the database. If a value is not specified for a record type,
the MAX REC COUNT from the database specification is used. The number specified for a
record type may be larger or smaller than specified at the database level. The default
value is 100.

Counts are kept for each record type in a case in the CIR for that case. They are stored as
1, 2, or 4 byte integers depending on the count specified. A count of less than 124 takes 1
byte, less than 32,763 takes 2, and larger numbers take 4. If MAX REC COUNT is modified
after data for that record type has been loaded, and the new number takes the same size
integer, restructuring is unnecessary. If a larger size integer is needed, the database must
be restructured.

For caseless databases, MAX REC COUNT specifies the maximum number of records of
this type that the database can hold. The default value is 1,023,000. This limit cannot be
exceeded but can be changed without a database restructure. There is no overhead with
specifying a large value, the only constraint is that total number of records is a number
that can be stored in one integer. The total number of records allowed is 2,147,483,648.

SIR/XS Database 75

MISSING VALUES

MISSING VALUES varname (value1 [value2 [,value3]])
 varlist (value1 [,value2 [,value3]])

Specifies up to three values that are missing values for the variable(s). Missing values are
excluded from statistical procedures and functions. When the variable is input or
modified, and one of the specified values is input, the appropriate missing value is set.

The value can be a numeric constant, a string constant, or the keyword BLANK. If BLANK
is specified as a missing value for a numeric variable, then a blank field on input results
in a missing value, otherwise a blank numeric field is translated to zero.

Any variable can be missing and has a system missing value. When a record is written to
the database, a variable is assigned the system missing value when it cannot be assigned a
legal value or a specified missing value. This happens when:

• no value has been assigned to a given variable;
• it is set equal to another variable containing missing values;
• an assigned value does not meet the schema specification (not a valid value,

outside var ranges, too large to store in an integer).

 Specify any missing values for string, categorical, date and time variables as strings. If
the variable is longer than the missing value, then the variable is set to missing values if
the leftmost characters match the specified missing value.

If a string is read into a date or time, that string is first checked to see if it is a missing
value string for the target variable. If it is then a missing value is stored. Any string can
be defined as missing - it need not be a valid date. If the missing value is a valid date
string then assigning that string to the variable naturally results in a missing being stored.
However assigning the numeric date value corresponding to the missing string stores a
valid date.

Specify any missing values for scaled variables as the unscaled value with the decimal
point specified where necessary.

Example:

MISSING VALUES ID POSITION DIVISION (BLANK)

SIR/XS Database 76

 STARTDAT ('01/01/01')

SIR/XS Database 77

OBSERVATION VARS
 OBSERVATION VARS varname

Specifies variables that the TABULATE procedure uses as observation variables. An
observation variable is one that is aggregated rather than treated as a control. By default,
variables that have VALID VALUES or VALUE LABELS are Control Variables.
OBSERVATION VARS makes these observation variables.

SIR/XS Database 78

REAL

REAL*4 varname
REAL*8 varname

Specifies variables as real. n may be 4 or 8.

Example:
REAL*8 SALARY

SIR/XS Database 79

REC SECURITY
 REC SECURITY rlevel , wlevel

Defines the default minimum security levels required for reading (rlevel), or writing
(wlevel), any variable in the record. The read and write levels are integers between 0
(zero), the lowest and 30, the highest.

This command sets the minimum VAR SECURITY for each variable in the record type.
Individual variables within a record type can be assigned higher security levels using the
VAR SECURITY command.

The default is 0 level security.

Example:

REC SECURITY 10,30

The variables in this record type can be read by anyone logged in with a read security
password that has level 10 security or higher. Write access is restricted to personnel
logged in with a write security password that has level 30 security.

SIR/XS Database 80

RECODE
 RECODE variable specification (recode specification)

Only applies to batch data input

RECODE changes the values of a string or numeric variable into new values. A variable can
be recoded into itself or the content of the original variable can be left unchanged and a
value assigned to another variable.

The RECODE has two parts the Variable specification and the Recode specification.

Variable Specification

The variable specification takes four forms:

• variable (recode specification) - recodes a variable into itself.
• varlist (recode specification) - recodes a list of variables into themselves.

Old values not specified in the recode specification are not affected when
recoding variables into themselves.

• newvariable = oldvariable (recode specification) - recodes a variable into a new
variable.

• newvarlist = oldvarlist (recode specification) - recodes a list of variables into new
variables.

Old numeric variables can be recoded into new string variables, or vice versa.
When recoding into new variables, if the data types of an old variable and new
variable are the same, unrecoded old values are stored unchanged in the new
variable after data editing checks are performed. If the data types of the old and
new variable are different, unrecoded old values are stored as missing values in
the new variable.

Recode Specification

A recode specification follows the variable specification and consists of a number of
clauses, one per new value to assign. Enclose each clause in parentheses. These can take
a number of forms:

• (oldvalue = newvalue) - recodes a single value to a new value.
• (oldvaluelist = newvalue) - recodes several values to a single new value.
• (oldvalue1 THRU oldvalue2 = newvalue) - recodes a range of values to a single

new value. The keyword LO can be used as oldvalue1. This selects the lowest

SIR/XS Database 81

possible value as the start of the range. The keyword HI can be used as oldvalue2.
This selects the highest possible value as the end of the range.

• (MISSING = newvalue) - Specifies that all missing values are recoded.
• (MISSING(0 | 1 | 2 | 3) = newvalue) - Specifies that the first, second or third

missing value is recoded. Zero (0) recodes undefined values.
• (UNDEFINED = newvalue) - Specifies that undefined is recoded. This is the same

as MISSING (0).
• (BLANK = newvalue) - Specifies that BLANK values are recoded. This can only be

specified for numeric variables that have missing values specified as blank.
• (ELSE = newvalue) - Specifies a value used to recode if the variable is not

recoded in any other category.

Note the sequence of the variables in the variable specification and the sequence of
values in the recode specification:

• The variable specification to recode into a new variable, has the new variable on
the left of the equal (=) sign and the old variable on the right.

• The recode specification has the old value on the left of the equal sign (=) and the
new value on the right. viz:

•
Newvariable = Oldvariable (Oldvalue = Newvalue)

Recode Examples:

RECODE A (1,3,5,7,9=1)(2,4,6,8=2)

This sets A to 1 if it is odd, 2 if it is even, and leaves zero and missing values as is.

RECODE B = A (1,3,5,7,9=1)(2,4,6,8=2)

This sets B to 1 if A is odd, 2 if A is even and zero if A is zero. If A is missing, B is set to
the value of A (whether this is a missing value for B or not). A is unchanged.

RECODE B = A (1,3,5,7,9='O')(2,4,6,8='E')

This sets B (a string variable) to 'O' for odd values of A, 'E' for even values of A and to
the value of A if A is missing or has any other values.

RECODE STATUS = AGE (LO THRU 18 = 1) (19 THRU 21 = 2)
 (22 THRU 65 = 3) (66 THRU HI =4)

This sets STATUS depending on the AGE of the subject. STATUS is 1 for ages 18 or under, 2
for ages 19 thru 21, 3 for 22 to 65 and 4 for over 65.

SIR/XS Database 82

RECODE STATUS1 to STATUS10 = TEST1 to TEST10(1 THRU 49=1)
 (50 thru 99=2)

This sets up ten status fields depending on the result of 10 tests.

Note: RECODE cannot be specified in a CIR definition. If a RECODE refers to a common
variable then it must appear in the record schema where that common variable is
referenced rather than at the CIR level.

SIR/XS Database 83

RECORD SCHEMA

RECORD SCHEMA rectype [,name] 'label'
 [LOCK]
 [NOOLD]
 [NONEW]

This is a DBA only command.

Begins the set of commands to define a database record. This defines the name and
number of the record and is a required command to define a record type. Name is
optional for existing record types; if specified and different to the existing name, the
record name is changed. The label is optional. Specify up to 78 characters enclosed in
quotes. e.g.

RECORD SCHEMA 3 OCCUP 'Position Details'
 LOCK

Specifies that the record type can be locked if the record redefinition requires it.
Schema modifications are not done if the LOCK keyword is omitted and a lock
condition occurs. If the record type is locked, an UNLOAD / RELOAD is required.
Lock conditions occur when:

• the list of key fields is changed
• any of the key variables are modified
• a record is defined that is larger than the current data block
• a set of keys is defined that is larger than the current key size

If the LOCK parameter is omitted and changes are specified that would cause a
locked record type, a warning is issued and the schema changes do not take place.
This means that a restructure is only done when expected.

It is good practice not to specify lock on the record schema statements except
when the change is expected to lock the record and you are prepared to do a
restructure.

 NOOLD
Specifies that existing variables cannot be modified.

 NONEW
Specifies that no new variables can be created.

 LOCK

SIR/XS Database 84

Specifies that the record type may be locked if the changes to the record definition
would need a database restructure. Most changes to a record definition do not
require a restructure.

A restructure may be required when modifying the key structure definition of a
record type that already has data loaded into it. I

SIR/XS Database 85

REJECT REC IF
 REJECT REC IF (logical condition)

Only applies to batch data input

Defines criteria for rejection of records during Batch Data Input. When the condition is
true, the record is rejected and not entered into the database. Multiple REJECT REC IF
commands can be specified.

The alternative method of specifying consistency criteria is with ACCEPT REC IF.

The record must pass all specified tests before being added to the database.

Note: REJECT RECORD IF cannot be specified in a CIR definition. If a REJECT RECORD
IF refers to a common variable then it must appear in the record schema where that
common variable is referenced rather than at the CIR level.

SIR/XS Database 86

SCALED VARS
 SCALED VARS varname (power)

Specifies that the previously defined integer variables are scaled. SCALED VARS are stored
in the database as integers. This saves space and can be more accurate for fixed format
numbers since it avoids the inherent inaccuracies of floating point representation.

POWER is a positive or negative number representing the power of ten used to scale the
values.

The full, unscaled number, including the decimal point where necessary, is specified
whenever the number is input by the user.

The scaled number is expected on batch data input.

Examples:

DATA LIST VAR1 1-3 (I)
 VAR2 4-11 (I)
SCALED VARS VAR1 (6)
 VAR2 (-2)

This declares two variables as scaled variables. When used in a program:

COMPUTE VAR2 = 345.67 |(34567 is stored)
COMPUTE VAR1 = 1000000 |(1 is stored)
COMPUTE VAR3 = VAR1 * 3
WRITE VAR3 |(3000000 is printed)

If a batch data input record has 123 in positions 1 to 3 and 00001234 in positions 4 to 11,
then VAR1 equates to 123,000,000 and VAR2 to 12.34.

SIR/XS Database 87

STANDARD SCHEMA

 The schema command STANDARD SCHEMA is similar to a RECORD SCHEMA command in
that it signifies the start of a set of variable definitions. The set is ended with an END
SCHEMA command. Variables are defined using a DATA LIST command together with any
of the normal variable definition commands such as MISSING VALUES, VALUE LABELS or
VAR RANGES. e.g.

STANDARD SCHEMA
DATA LIST
 POSITION * (I1)
 SALARY * (I2)
 SALDATE *
(DATE'MMIDDIYY')
VAR RANGES POSITION (1 18)
 SALARY (600 9000)
VAR SECURITY SALARY (30,30)
MISSING VALUES POSITION TO
 SALDATE (BLANK)
VALUE LABELS POSITION (1)'Clerk'
 (2)'Secretary'

VAR LABEL POSITION 'Position'
 SALARY 'Salary'
 SALDATE 'Date Salary Set'
END SCHEMA

Once a variable has been defined in the standard schema it can be referenced in any
normal record definition with the STANDARD VARS command. The benefit of this is that
coding does not have to be repeated for the variable when it occurs in multiple records.
Further, if the standard definition details are updated (such as value labels), the change is
reflected in all records referencing the standard.
Note that the extended batch data input processing definitions of ACCEPT REC,REJECT
REC,COMPUTE,IF and RECODE are not specific to a variable and thus cannot be specified as
standard and copied in.

SIR/XS Database 88

STANDARD VARS

 STANDARD VARS varname [AS stdvarname] The STANDARD VARS command names a
variable or list of variables that have previously been defined as part of this record (on the
DATA LIST). This includes all the standard definitions for the variable as part of this
record without the need to respecify these definitions. If these definitions are changed for
the standard variable, all derived record definitions are updated.

Certain definitions can be supplied locally. The VAR SECURITY, VAR LABEL and VAR DOC
can be specific to the variable in this record type and override any specified as standard.
All other definitions such as MISSING VALUES, VALUE LABELS etc, are taken from the
standard definition.

Optionally the record variable can have one name and can refer to a standard variable
with the AS keyword. e.g.

RECORD SCHEMA 1 EMPLOYEE
DATA LIST
 ID 1 - 4 (I2)
 NAME 6 - 30 (A25)
 GENDER 31 (I1)
 MARSTAT 32 (I1)
 SSN 33 - 43 (A11)
 BIRTHDAY 44 - 51
(DATE'MMIDDIYY')
 EDUC 52 (I1)
 NDEPENDS 53 - 54 (I1)
 CURRPOS 55 - 56 (I1)

STANDARD VARS CURRPOS AS POSITION

If an existing variable is modified to be a standard variable, any local definitions are
overwritten. Submitting local definitions for components of the schema that are derived
from the standard is treated as an error. To change a variable from a standard definition to
be a normally defined variable is not possible; delete the standard variable and add a new
variable (with the same name if necessary).

SIR/XS Database 89

TIME VARS
 TIME VARS varname (time format) varname (time format)

Declares string variables as times. See time formats for a complete description of time
formats.

Example:

TIME VARS ELAPSED ('HH:MM')
 MIN1 to MIN10 ('MM:SS')

SIR/XS Database 90

VALID VALUES

VALID VALUES varname (value,)
 varlist (value,)

Defines the set of valid values for a variable. Valid values can only be specified for
numeric variables. (Use the CAT VARS command to create a list of valid values for string
variables.)

The specified valid values are checked whenever a variable is input or modified.

If a value is assigned to the variable that is not in the VALID VALUES list or in the
MISSING VALUES list, the value is not stored and the variable is set to undefined.

The varlist may be a specific list of variables or may be in the format VARA to VARX that
specifies all the numeric variables between the named variables (listed in sequential
order) in the record schema.

Example:

VALID VALUES JOBCODE (1,3,4,5)
 TEST1 to TEST9 (1,2,3,4,5,9)
 TYPE KIND REASON (1,2,3,9)

SIR/XS Database 91

VALUE LABELS

VALUE LABELS varname1 (value1) 'label1'
 (value2) 'label2'
 varlist (value1) 'label1'

Specifies labels for particular values of a variable.

Enclose each value for a variable in parentheses. The value may be numeric or character
depending on the variable type. Enclose character strings in quotes. The keywords
UNDEFINED and BLANK can be used as a value to assign labels to the system missing value
(undefined) or blank missing values.

The label is up to 78 characters long. It is good practice to enclose the label in quotes as
this is a character string. If the label contains slashes or brackets then the label must be
enclosed in quotes.

The varlist may be a specific list of variables or may be in the format VARA to VARX that
specifies all the numeric variables between the named variables (listed in sequential
order) in the record schema.

Example:

VALUE LABELS GENDER (1) 'Male'
 (2) 'Female'
 MARRIED ('Y') 'Married'
 ('N') 'Not Married'
 TEST1 to TEST9 (1) 'Passed'
 (2) 'Failed'

SIR/XS Database 92

VARIABLE LIST
 VARIABLE LIST varname1 varname2

Names the variables on the input record for a given record type. Together with the INPUT
FORMAT, this describes the input record. There is a one-to-one correspondence between
the variables on the VARIABLE LIST and the format specifications on the INPUT FORMAT.

The sequence of the variables on the VARIABLE LIST determines the order in TO lists and
the sequence of the variables wherever they are referenced, regardless of the physical
order on the batch data input record.

Separate variable names by spaces or commas. To continue the list on multiple lines,
leave column one blank on each subsequent line.

Example:

VARIABLE LIST ID JOBCODE REVDATE SALARY

SIR/XS Database 93

VAR DOC

VAR DOC varname text
 text line 2
 text line

Specifies documentation for a single variable.

The documentation can extend over multiple lines, each up to 254 characters. There are
no restrictions on characters and the format of lines is maintained. Each continuation line
must leave the first column blank. Note that because documentation can contain any
characters, the command must be specified separately for each variable - it cannot be
continued for multiple variables.

Example:

VAR DOC ID This is the main identification for participants in the
study.
 The code is in two parts separated by slash '/' - the first part
identifies the institution, the second the individual.
VAR DOC DOB
 ...
VAR DOC VAR1

SIR/XS Database 94

VAR LABEL

VAR LABEL
 varname1 'label'
 varname2 'label'

Specifies a label for variables. The label is a string up to 78 characters. It is good practice
to enclose the string in quotes. This is used by SIR/XS instead of the variable name
wherever it is appropriate, for example, on report headings, screen layouts, etc.

Example:

VAR LABEL ID 'Identification Number'
 POSITION 'Position Level'
 STARTDAT 'Starting date'
 STARTSAL 'Starting salary'
 DIVISION 'Division'

In this example, "Starting date" is printed or displayed instead of "STARTDAT" and
"Starting salary" instead of "STARTSAL".

SIR/XS Database 95

VAR RANGES
 VAR RANGES varname (min,max)

Specifies the range of values for a variable. The ranges defined for a variable are checked
whenever that variable is input or modified. Input values outside the specified range are
set to undefined.

Example:

VAR RANGES POSITION (1 18)
 STARTSAL (10000 90000)
 DIVISION (1 3)
 STARTDAT ('01/01/00', '01/01/06'

If both VAR RANGES and VALID VALUES are specified, both specifications apply. Only
values consistent with both specifications are allowed into the database. Normally,
specify only one of these.

SIR/XS Database 96

VAR SECURITY
 VAR SECURITY varname (rlevel, wlevel)

Defines security level values for reading and writing individual variables.

Rlevel and wlevel are integers between 0 (zero) the lowest, to 30 the highest. The VAR
SECURITY assigned to an individual variable must be higher than the security level
assigned to the record through REC SECURITY. (Assigning a lower level is possible but
has no effect.)

Example:

RECORD SCHEMA
REC SECURITY 0 5
 .
VAR SECURITY SALARY (6 10)

In this example, anyone can read the data in this record type, but only users logged in
with passwords at level 5 or above for write security can write data. The variable SALARY
is made more secure, since it requires that read access is at level 6 or above and write
security at least at level 10.

SIR/XS Database 97

CREATE DBINDEX

CREATE [UNIQUE] DBINDEX index_name
 ON [database.]recname
 (var_name [ASC|DESC] [UPPER] [, ...])

CREATE DBINDEX creates the index structure. If the command is part of a schema
definition, it must follow the complete definition for the record type referenced. There
may be multiple indexes for a given record type.

If the record type already contains data, the index is automatically built from the values
of any existing records. As records are added, deleted or modified through any of the
SIR/XS modules including VisualPQL, batch data input, Forms and SQL, the index is
automatically maintained. VisualPQL and PQLForms are the only modules that process
database records using secondary indexes.

Indexes are maintained across cases in a case-structured database and, if a record is
retrieved using a secondary index, the appropriate case is automatically found. Index
variables can be any record variable plus the case id. Common vars cannot be used in an
index.

Indexes are rebuilt whenever the database is recovered i.e. from an Import or a Reload.
The backups contain only the index definition not the index data.

UNIQUE
Specifies the index can only contain unique values. If data already exists and a
non-unique value is found, the index cannot be built. If an attempt is made to add
or modify a data record such that a non-unique value would result, the update is
rejected.

index_name
The index name must follow the rules for SIR/XS names and must be unique
within the database.

ON recname
Specify the record name or number, qualified by a database name if this is not the
default database. The database must be connected.

var_name
Specify the name(s) of the variable(s) used for this index. These must be variables
in the named record (not common vars except for the case id).

SIR/XS Database 98

Specify the keyword DESC to maintain the index in descending sequence of the
variable.

Specify the keyword UPPER to use an uppercase representation of a character
variable in the index.

DROP DBINDEX

DROP DBINDEX index_name ON [database.]recname | ALL

DROP DBINDEX deletes either a specific index or all indexes for a database.

SIR/XS Database 99

SIR SCHEMA LIST

SIR SCHEMA LIST
 [FILENAME= 'fileid']
 [DETAILED|LABELS|REGULAR]
 [LONG|SHORT]
 [STRUCTURED]
 [CIR]
 [RECTYPES={recname|recnum} [(variable list)]...]

Produces a listing of the current data definitions. The FILENAME specifies the output
file. If this is omitted, the output is displayed in the scrolled output window.

By default, all record types in the database are listed. By default, all variables in the
record type are listed. Each variable has a label that describes the variable and its position
within the record. Positions are shown as Cnnn, Rnnn, or Tnnn where C stands for
common variable, R for record variable and T for temporary variable. The nnn denotes
the position of the variable within the record.

The exact format of the report depends on the options specified:

• DETAILED lists all the information in the REGULAR listing, plus the value labels for
each variable.

LABELS lists just the variables and the variable label. This is the shortest form of
the report.

REGULAR lists the following information for each variable:

o variable name and label
o variable type and size
o read and write security levels
o position and format on the input record
o range
o valid values
o missing value designators

This is the default.

• SHORT specifies that just the variable label (up to 78 characters) is printed and no
headings or document text.

SIR/XS Database 100

LONG specifies labels and all document text. This is the default.

• STRUCTURED lists just case id, key fields and document text for each record type.
• CIR lists all variable in the CIR. If CIR is specified, only the CIR is listed.

Specify individual RECTYPES if these are required.
• RECTYPES specifies the name or number of individual record types to list and

individual variables to list for each record type.

Examples: To list the name and labels of all the variables in record type 1 and the
specified variables in record 3.

SIR SCHEMA LIST LABELS
 RECTYPES = 1 , 3 (POSITION REVDATE RATING)

To list all the variables in all record types without value labels.

SIR SCHEMA LIST

Example Output:

1.1 LIST SCHEMA LONG 07/09/05 10:05:57
 *** RECORD 1 (EMPLOYEE) DEFINITION ***
 Record Type 1 contains demographic information.
 There is one record per employee. The record contains
 current position level and salary and the date
 on which the salary was last changed.

MAXIMUM NUMBER OF RECORDS/CASE 1
NUMBER OF THIS TYPE IN FILE 20
LINES IN EACH INPUT RECORD 1
ENTRY USE COUNT 1
CASE IDENTIFIER: ID (A)

 *** INPUT VARIABLE DEFINITIONS ***
C1. ID, Identification Number
 INPUT ON LINE: 1
 COLUMNS: 1 - 4
 FORMAT: I4
 DATA TYPE: I*2
 MISSING VALUE: (BLANK)

R1. NAME, Name
 INPUT ON LINE: 1
 COLUMNS: 6 - 30
 FORMAT: A25
 DATA TYPE: A*27
 MISSING VALUE: (BLANK)

R2. GENDER, Gender
 INPUT ON LINE: 1

SIR/XS Database 101

 COLUMN: 31
 FORMAT: I1
 DATA TYPE: I*1
 RANGE: 1/2
 MISSING VALUE: (BLANK)
 VALUE LABELS: (1) Male
 (2) Female

SIR/XS Database 102

WRITE SCHEMA

WRITE SCHEMA
 [FILENAME= fileid]
 [RECTYPES= rectype list]
 [CIR]
 [COMMON]
 [FORMS]
 [BOOLEANS]
 [COMPUTES]
 [MASKPW]
 [NOMAXKEY]
 [NOTO]
 [NOTXS]
 [PASSWORD]
 [PQLFORM]
 [NOUPDATE]
 [SUBROUTINE]
 [SECURITY]
 [VARLIST]
 [VARSEQ]

Writes a text file containing the schema definition. This might be used to recreate the
database without data or procedures or, if it is the schema for a single record type, as the
starting point to update that record definition. If mass changes are required to a database
definition, it is sometimes easier to create a schema file and use a text editor to do global
changes rather than modifying individual records through menus.

With the PQLFORMS parameter, this utility creates a default PQLForm.

With the FORMS parameter, this utility creates a default old Form.

If no record types are specified, the database definition and all record definitions are
written excluding passwords.

FILENAME
Specifies the output file. If this is omitted, the output is displayed in the scrolled
output window.

RECTYPES
Specifies the record types selected to generate a record or form definition.

SIR/XS Database 103

CIR
Specifies that a record definition is written for the CIR. This is done anyway
when all record types are selected, so this is only needed when selecting record
types. If just CIR is specified, then just the CIR is written.

COMMON
The record definition for the CIR includes definitions for all the common
variables and so these do not need to be repeated on subsequent record types that
include a common variable. Specify COMMON if commands are to be produced for
each common variable on every record where it occurs.

FORMS
Creates a default old style form. Unless otherwise specified, the CIR (Common
Information Record) is not included in the form definition. Specify the keyword
BOOLEANS to use any ACCEPT REC IF or REJECT REC IF specifications to
generate appropriate commands in the output form. Specify the keyword
COMPUTES to use any COMPUTE and IF commands to generate appropriate
commands in the output form.

MASKPW
Specifies that an asterisk (*) is written instead of passwords.

NOMAXKEY
Suppresses the writing of a specific MAX KEY command to the output file.
Specify this option whenever schema modifications are being made to allow the
system to recalculate the maximum key size unless a larger key is required for
future expansion.

NOTO
Where contiguous record variables share the same specification, a shorthand
specification is written using the keyword TO. e.g.

MISSING VALUES NAME
 TO NDEPENDS (BLANK)
Specify the NOTO keyword to suppress this shorthand and to list all variables
individually.

NOTXS
Specifies that the schema is as compatible as possible for use by earlier versions
of SIR. New features such as STANDARD VARS and RECORD SCHEMA 0 are not
written and slashes are generated as separators.

PASSWORD
Specifies that the database password is written to the file.

PQLForms
Creates a default PQLForm. Unless otherwise specified, the CIR (Common
Information Record) is not included in the PQLForm definition. Specify the
keyword NOUPDATE for a read-only PQLForm. Specify the keyword SUBROUTINE
for a PQLForm that compiles and saves as a sub-routine.

SECURITY
Specifies that the database security level passwords are written to the file.

VARLIST
The standard style of schema output is to write variable names and input
definitions as a DATA LIST. VARLIST specifies that variable names are written as a
VARIABLE LIST command followed by input definitions as an INPUT FORMAT
command. e.g.

SIR/XS Database 104

VARIABLE LIST ID NAME GENDER MARSTAT ...
INPUT FORMAT (I4,T6,A25,I1,I1,...

VARSEQ
The standard style of schema output is to write each definition command once and
to list variables within the command. The VARSEQ keyword specifies that the
output is in variable sequence and that all commands that apply to a single
variable are grouped together. e.g.

VAR LABEL NAME 'Name'
MISSING VALUES NAME (BLANK)

VAR LABEL GENDER 'Gender'
VAR RANGES GENDER (1 2)
MISSING VALUES GENDER (BLANK)
VALUE LABELS GENDER (1)'Male'
 (2)'Female'

VAR LABEL MARSTAT 'Marital status'
VAR RANGES MARSTAT (1 2)
MISSING VALUES MARSTAT (BLANK)
VALUE LABELS MARSTAT (1)'Married'
 (2)'Not married'

Resubmitting Whole Schema

If you specify a DATA LIST for a record schema that is already defined, then all
existing definitions are ignored and the record is defined according to the new
schema. Otherwise, RECORD SCHEMA modifies the definition. Modifications
include labels and codes. You can add new variables and delete existing variables.
You can modify a variable's data type, external format or position for batch data
input.

 When modifying data types for variables that already have data stored in the
database, the data must be reformatted. Be careful if modifying a variable's data
type. The following table indicates the result of changing data types.

To T - Transfer value
C - Convert to new type
X - Convert to numeric
if string is a valid
number
U - Convert to undefined

String
Cat

Var
Date Time Integer Real

String T C C C X X

Catvar C T U U T C

Date C U T U T C

From

Time C U U T T C

SIR/XS Database 105

Integer C T T T T C

Real C C C C C T

When transferring values, ranges, missing values, valid values and all schema
definitions are checked and appropriately handled. Strings are truncated if they
cannot fit in the new definition. Floating point numbers are truncated if they are
converted to unscaled integers.

SIR/XS Database 106

Dynamic Restructuring

 Some changes to the schema affect the way existing data is treated. These
changes include changes to the size or type of variables, additions or deletions of
variables. This necessitates a restructure of existing data records that is done
dynamically wherever possible. All changes except changes to the keyfields are
dynamically restructured. Other changes such as changes in variable labels, value
labels and security do not affect data storage at all.

Only changes that affect the index require the restructuring of the entire database.
Dynamic restructuring means that the restructuring takes place as the data is used.
Once the schema modification is made, the data is always seen as it is currently
defined. Data that was stored under the old format is transformed into the new
format every time that it is read. The record is physically restructured only when a
write operation is performed. There is a small overhead involved in restructuring
records dynamically each time they are read. If a series of changes had been made
a simple VisualPQL program that reads and writes every record of that type,
forces a physical restructure. For example:

RETRIEVAL UPDATE
. PROCESS RECORD employee
. COMPUTE name = name
. END PROCESS REC
END RETRIEVAL
When a record schema is changed, internal tables are saved, indicating what
changes have occurred and at what update levels. When a data record is accessed
for a record type that has been changed, transformations are applied to bring it up
to the current schema level. If the record is rewritten to the database, the
restructured version is made permanent.

SIR/XS Database 107

Database Restructure

Changes that affect the index require the restructuring of the entire database. This
occurs if keys are redefined, a new record is defined with a key length greater
than MAX KEY SIZE or the overall database constraints are respecified. Such a
change does not take effect unless the LOCK parameter is specified on the record
schema. This is because once a change has been made, the record is locked and
the database must be restructured. The absence of the LOCK parameter prevents
this happening unexpectedly.

A database restructure is done in steps;
make the schema modification;
run the UNLOAD utility to copy the database to an unload file;
delete the database using the PURGE SIR FILE utility;
reload the database with the RELOAD utility.

The database restructuring that takes place in an unload/reload restructures the
data dictionary, the index and all of the data.

SIR/XS Database 108

DELETE SCHEMA
 DELETE SCHEMA n

Deletes the Record Schema 'n' from the database definition. DELETE SCHEMA only
operates if there are no records for this record type. This is a DBA security level
command.

When defining and redefining a record type, it is sometimes simpler to DELETE
SCHEMA and redefine it through a complete new RECORD SCHEMA than to modify it
over and over again.

When defining and testing a new database, delete all of the test data for a record
type prior to deleting the schema. The following simple VisualPQL program does
this.

RETRIEVAL UPDATE
PROCESS REC n
DELETE REC
END PROCESS REC
END RETRIEVAL

SIR/XS Database 109

Batch Data Input Utilities
There are five batch data input utilities that provide a quick and efficient way to
add or update data in the database from external text files.

The normal way to run these interactively is from the Data - File Input menu.
These can also be run as commands. The batch data input utilities are :

• ADD REC that adds new records if they do not exist;
• EVICT REC that deletes existing records;
• REPLACE REC that replaces existing records;
• UPDATE REC that replaces selected variables on existing records;
• INPUT DATA that adds or replaces records.

The batch data input utilities use any COMPUTE,IF,RECODE,ACCEPT or REJECT
RECORD IF clauses defined in the schema for a given record type. While you can
use the utilities to input data directly into the CIR (record type zero), these clauses
can only be specified at the normal record level even if they refer to common
variables.

The FILE DUMP utility writes data from a database to a text file in a format that
can be used by the data input utilities.

The FILE LIST utility writes a report showing the data from a database. Naturally
this can be fairly voluminous.

You can also display and edit data through the SIR/XS SPREADSHEET utility that
selects a set of data, displays it in a familiar spreadsheet style manner and allows
you to update the data if necessary.

SIR/XS Database 110

Batch Data Input Specifications

The utilities all have a very similar specification.
ADD REC, READ INPUT DATA and REPLACE REC have identical specifications.
EVICT REC has fewer options plus one particular keyword.
UPDATE REC has all the standard options plus four additional parameters.

They all have the same possible five files:

Input data
Contains the input data. The format of the data file is specified in the description
of the record schema. A file in this format can be produced from an existing
database by the SIR FILE DUMP utility or by the VisualPQL procedure WRITE
RECORDS.
If variables on the record schema do not have input/output columns specified,
these utilities automatically assign default columns at the end of any manually
specified columns. If the input file is produced by SIR FILE DUMP, this allows
database maintenance without having to assign columns manually. If you are
processing a specific input file and want only to process variables with assigned
input/output columns, the NOAUTO keyword suppresses this automatic assignment.
If the CSV keyword is specified, then the input file is in Comma Separated
Variable (CSV) format. The input file is a text file with values for each record in a
valid CSV format. The fields must be in the correct sequence that matches the
sequence of fields on the database record. A file may either contain records for a
single record type, in which case the record type is specified on the utility
command or may contain multiple record types, in which case the first field on
each input record is the record type.
A file in this format can be produced from an existing database by the SIR FILE
DUMP utility with the CSV keyword or by the VisualPQL procedure CSV SAVE
FILE.
Error Listing
A report of any errors.
Error Records
A copy of any data records with errors in the same format as the input file. (This
could be reinput with an ACCEPT or other option.)
Summary
Update summary report.
Log
A fixed format that describes any errors. Each record contains the following:

COL DESCRIPTION

1-4 record number
5-6 message number
 1 record number error

SIR/XS Database 111

 2 variable format error
 3 variable/compute error
 4 variable/recode error
 5 ACCEPT REC failed
 6 REJECT REC failed
 7 record accepted with errors
 8 record rejected
7-18 date of run
19-26 time of run
27-30 ordinal of record on this file
31-34 DBMS error number
35-42 variable name, if variable error
43-46 ACCEPT/REJECT REC num, line num
47-50 field starting column
51-54 field ending column

SIR/XS Database 112

ADD REC

 ADD REC adds new records to the database. The keys of incoming records are
matched against those already in the database. If an input record matches an
existing record, the incoming record is rejected with an error message.

ADD REC INPUT = filename
 [LISTFILE = filename]
 [ERRFILE = filename]
 [LOGFILE = filename]
 [SUMFILE = filename]
 [ACCEPT]
 [ALL]
 [BLANKUND]
 [CSV]
 [LOGALL]
 [NOAUTO]
 [NONEW]
 [NOSEQ]
 [ALIMIT = n]
 [BLIP = n]
 [LOADING = n]
 [RECTYPE = rectype]
 [RLIMIT = n]
 [SKIP = n]
 [STOP = n]
There are three groups of parameters. The first group specifies files, the next
group specifies keywords and the last group specifies limits or other conditions.
Optionally separate multiple parameters on a command with a slash "/".

FILES

INPUT
Specifies the input data file and must be specified.
LISTFILE
Specifies the file where error messages are written. If not specified, the current
output file is used for error messages.
ERRFILE
Specifies the file where data records with errors are written. If not specified, no
error file is produced, however errors messages are produced on the LISTFILE.
LOGFILE
Specifies the log file. A record is written to the log file in fixed format that
describes each error.
SUMFILE
Specifies the file where the update summary report is written. If this is not
specified the current output file is used. SUMFILE and LISTFILE can be the same
file in which case the summary report is written after any error listing.

SIR/XS Database 113

Keywords - Use these to specify the particular processing option(s) required:

ACCEPT
Specifies that records with erroneous values are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous
values are rejected.
ALL
Specifies that input records with errors are written to the ERRFILE regardless of
whether or not they are accepted into the database.
BLANKUND
Specifies that blank numeric fields on the input file result in UNDEFINED on the
record. If this option is not specified, then blanks on input for a numeric field
either result in a missing value, if a BLANK missing value is defined in the schema,
or in a zero value.
CSV
Specifies that the input file is in CSV format.
LOGALL
Specifies that input records with errors are written with the log record to the
LOGFILE.
NOAUTO
Specifies that only variables with specified input/output columns are processed.
NONEW
Specifies that no new cases are created.

Limits and Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

ALIMIT = n
Sets a limit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing
errors.
BLIP = n
Specifies that an indication of progress is required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this
number. Statistics of records added are displayed.
LOADING = .n
Specifies how data blocks are split as they become full. "N" is a number between
0.01 and 0.99. When data is reloaded or imported, blocks are filled. The normal
value is 0.5, that means that a full data block is split in half. A value of .99 splits a
data block with n records into one data block containing n-1 records and one data
block containing 1 record. This is useful if records are added in keyfield order to
keep the database file as compact as possible.
RECTYPE = n | name
Specifies that all the records in this run are of the given type. Rectype may be a
record name or number. This is used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the

SIR/XS Database 114

record number in the columns specified in the schema (or by the first field on a
CSV file).
RLIMIT = n
Specifies that the run stops if "n" number of records are rejected due to errors.
SKIP = n
Specifies that the first "n" lines on the data input file are skipped before starting to
process the data. Processing begins at line "n" + 1.
STOP = n
Stops the run after processing "n" lines from the data input file. If the data is in
multi-line records, the entire record is always processed.

Example:

ADD REC INPUT = 'INPUT.DAT'
 ERRFILE = 'ERR.DAT'
 LOGFILE = 'LOG.LST'
 LISTFILE = 'OUT.LST'
 SUMFILE = 'SUM.LST'
 ACCEPT
 RECTYPE = 1

SIR/XS Database 115

EVICT REC

EVICT REC INPUT = filename
 [LISTFILE = filename]
 [ERRFILE = filename]
 [LOGFILE = filename]
 [SUMFILE = filename]
 [CSV]
 [EVICTCIR]
 [LOGALL]
 [NOAUTO]
 [BLIP = n]
 [RECTYPE = rectype]
 [RLIMIT = n]
 [SKIP = n]
 [STOP = n]
Deletes records. The keys of input records are matched against those already in
the database. If an input record matches an existing record, the existing record is
deleted. If an input record does not match an existing record, an error message is
written.

There are three groups of parameters. The first group specifies files, the next
group specifies keywords and the last group set limits or other conditions.
Optionally separate multiple parameters on a command with a slash "/".

FILES

INPUT
Specifies the input data file. Must be specified.
LISTFILE
Specifies the file where error messages are written. If not specified, the current
output file is used for error messages.
ERRFILE
Specifies the file where data records with errors are written. If not specified, no
error file is produced, however errors messages are produced on the LISTFILE.
LOGFILE
Specifies the log file. A record is written to the log file in fixed format that
describes each error.
SUMFILE
Specifies the file where the update summary report is written. If this is not
specified the current output file is used. SUMFILE and LISTFILE can be the same
file in which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

CSV

SIR/XS Database 116

Specifies that the input file is in CSV format.
EVICTCIR
Specifies that cases are deleted if all records in the case are deleted. This only
applies to case structured databases.
LOGALL
Specifies that input records with errors are written with the log record to the
LOGFILE.
NOAUTO
Specifies that only variables with specified input/output columns are processed.

Limits and Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

BLIP
Specifies that an indication of progress is required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this
number. Statistics of records added are displayed.
RECTYPE
Specifies that all the records in this run are of the given type. Rectype may be a
record name or number. This is used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= can be specified. If omitted, data records are identified by the record
number in the columns specified in the schema (or by the first field on a CSV
file).
RLIMIT
Specifies that the run stops if "n" number of records are rejected due to errors.
SKIP
Specifies that the first "n" lines on the data input file are skipped before starting to
process the data. Processing begins at line "n" + 1.
STOP
Stops the run after processing "n" lines from the data input file. If the data is in
multi-line records, the entire record is always processed.

Example:

EVICT REC INPUT = 'INPUT.DAT'
 ERRFILE = 'ERR.DAT'
 LOGFILE = 'LOG.LST'
 LISTFILE = 'OUT.LST'
 SUMFILE = 'SUM.LST'
 RECTYPE = 1

SIR/XS Database 117

READ INPUT DATA

READ INPUT DATA INPUT = filename
 [LISTFILE = filename]
 [ERRFILE = filename]
 [LOGFILE = filename]
 [SUMFILE = filename]
 [ACCEPT]
 [ALL]
 [CSV]
 [LOGALL]
 [NOAUTO]
 [NONEW]
 [NOSEQ]
 [ALIMIT = n]
 [BLIP = n]
 [LOADING = n]
 [RECTYPE = rectype]
 [RLIMIT = n]
 [SKIP = n]
 [STOP = n]
Adds new records and replaces existing records. The keys of incoming records are
matched against those already in the database. If an input record matches an
existing record, the existing record is replaced; if the keys do not match, a new
record is added.

There are three groups of parameters. The first group specifies files, the second
group specifies keywords and the last group set limits or other conditions.
Optionally separate multiple parameters on a command with a slash "/".

FILES

INPUT
Specifies the input data file. Must be specified.
LISTFILE
Specifies the file where error messages are written. If not specified, the current
output file is used for error messages.
ERRFILE
Specifies the file where data records with errors are written. If not specified, no
error file is produced, however error messages are produced on the LISTFILE.
LOGFILE
Specifies the log file. A record is written to the log file in fixed format that
describes each error.
SUMFILE

SIR/XS Database 118

Specifies the file where the update summary report is written. If this is not
specified the current output file is used. SUMFILE and LISTFILE can be the same
file in which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

ACCEPT
Specifies that records with erroneous values are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous
values are rejected.
ALL
Specifies that input records with errors are written to the ERRFILE regardless of
whether or not they are accepted into the database.
CSV
Specifies that the input file is in CSV format.
BLANKUND
Specifies that blank numeric fields on the input file result in UNDEFINED on the
record. If this option is not specified, then blanks on input for a numeric field
either result in a missing value if a BLANK missing value is defined in the schema
or in a zero value.
LOGALL
Specifies that input records with errors are written with the log record to the
LOGFILE.
NOAUTO
Specifies that only variables with specified input/output columns are processed.
NONEW
Specifies that no new cases are created.

Limits and Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

ALIMIT
Sets a limit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing
errors.
BLIP
Specifies that an indication of progress is required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this
number. Statistics of records added are displayed.
LOADING
Specifies when data blocks are split as they become full.

"N" is a number between 0.01 and 0.99. When data is reloaded or imported,
blocks are filled. On subsequent update runs, the normal value is 0.5, that means
that a full data block is split in half. A value of .99 splits a data block with n
records into one data block containing n-1 records and one data block containing
1 record. This is useful if records are added in keyfield order to keep the database
file as compact as possible.

SIR/XS Database 119

RECTYPE
Specifies that all the records in this run are of the given type. Rectype may be a
record name or number. This is used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the
record number in the columns specified in the schema (or by the first field on a
CSV file).
RLIMIT
Specifies that the run stops if "n" number of records are rejected due to errors.
SKIP
Specifies that the first "n" lines on the data input file are skipped before starting to
process the data. Processing begins at line "n" + 1.
STOP
Stops the run after processing "n" lines from the data input file. If the data is in
multi-line records, the entire record is always processed.

Example:

READ INPUT DATA INPUT = 'INPUT.DAT'
 ERRFILE = 'ERR.DAT'
 LOGFILE = 'LOG.LST'
 LISTFILE = 'OUT.LST'
 SUMFILE = 'SUM.LST'
 ACCEPT
 RECTYPE = 1

SIR/XS Database 120

REPLACE REC

REPLACE REC INPUT = filename
 [LISTFILE = filename]
 [ERRFILE = filename]
 [LOGFILE = filename]
 [SUMFILE = filename]
 [ACCEPT]
 [ALL]
 [CSV]
 [LOGALL]
 [NOAUTO]
 [NONEW]
 [NOSEQ]
 [ALIMIT = n]
 [BLIP = n]
 [LOADING = n]
 [RECTYPE = rectype]
 [RLIMIT = n]
 [SKIP = n]
 [STOP = n]
Replaces existing records. The keys of input records are matched against those
already in the database. If an input record does not match an existing record, it is
rejected with an error message. If a match is found, the existing record is replaced
by the input record.

There are three groups of parameters. The first group specifies files, the next
group specifies keywords and the last group sets limits or other conditions.
Optionally separate multiple parameters on a command with a slash "/".

FILES

INPUT
Specifies the input data file. Must be specified.
LISTFILE
Specifies the file where error messages are written. If not specified, the current
output file is used for error messages.
ERRFILE
Specifies the file where data records with errors are written. If not specified, no
error file is produced, however errors messages are produced on the LISTFILE.
LOGFILE
Specifies the log file. A record is written to the log file in fixed format that
describes each error.
SUMFILE

SIR/XS Database 121

Specifies the file where the update summary report is written. If this is not
specified the current output file is used. SUMFILE and LISTFILE can be the same
file in which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

ACCEPT
Specifies that records with erroneous values are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous
values are rejected.
ALL
Specifies that input records with errors are written to the ERRFILE regardless of
whether or not they are accepted into the database.
CSV
Specifies that the input file is in CSV format.
BLANKUND
Specifies that blank numeric fields on the input file result in UNDEFINED on the
record. If this option is not specified, then blanks on input for a numeric field
either result in a missing value if a BLANK missing value is defined in the schema
or in a zero value.
LOGALL
Specifies that input records with errors are written with the log record to the
LOGFILE.
NOAUTO
Specifies that only variables with specified input/output columns are processed.
NONEW
Specifies that no new cases are created.

Limits and Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

ALIMIT
Sets a limit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing
errors.
BLIP
Specifies that an indication of progress is required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this
number. Statistics of records added are displayed.
LOADING
Specifies how data blocks are split as they become full. "N" is a number between
0.01 and 0.99. When data is reloaded or imported, blocks are filled. The normal
value is 0.5, that means that a full data block is split in half. A value of .99 splits a
data block with n records into one data block containing n-1 records and one data
block containing 1 record. This is useful if records are added in keyfield order to
keep the data as compact as possible.
RECTYPE

SIR/XS Database 122

Specifies that all the records in this run are of the given type. Rectype may be a
record name or number. This is used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the
record number in the columns specified in the schema (or by the first field on a
CSV file).
RLIMIT
Specifies that the run stops if "n" number of records are rejected due to errors.
SKIP
Specifies that the first "n" lines on the data input file are skipped before starting to
process the data. Processing begins at line "n" + 1.
STOP
Stops the run after processing "n" lines from the data input file. If the data is in
multi-line records, the entire record is always processed.

Example:

REPLACE REC INPUT = 'INPUT.DAT'
 ERRFILE = 'ERR.DAT'
 LOGFILE = 'LOG.LST'
 LISTFILE = 'OUT.LST'
 SUMFILE = 'SUM.LST'
 ACCEPT
 RECTYPE = 1

SIR/XS Database 123

UPDATE REC

UPDATE REC INPUT = filename
 [LISTFILE = filename]
 [ERRFILE = filename]
 [LOGFILE = filename]
 [SUMFILE = filename]
 [ACCEPT]
 [ADD]
 [ALL]
 [COMPUTE]
 [CSV]
 [LOGALL]
 [NOAUTO]
 [NOBOOL]
 [NONEW]
 [NOSEQ]
 [ALIMIT = n]
 [BLIP = n]
 [LOADING = n]
 [MISSCHAR = a]
 [RECTYPE = rectype]
 [RLIMIT = n]
 [SKIP = n]
 [STOP = n]

Replaces individual variables in existing records. The keys of input records are
matched against those already in the database. If a match is found, the variables in
the existing record are replaced by non-blank fields in the input. If a match is not
found, the input record is rejected with an error message, or, if the ADD keyword
is specified, a new record is created.

There are four additional parameters for UPDATE RECORD:

ADD
Specify to add new records. By default, input records must match existing records
in the database.
COMPUTE
 Specify to re-execute schema COMPUTE statements. By default, COMPUTE
statements from the Schema are not re-executed.
NOBOOL
 Specify to stop the re-execution of consistency checks from the Schema. By
default, consistency checks (ACCEPT REC IF and REJECT REC IF) are performed.
Any temporary variables referenced in the consistency check must be respecified
on the input record to assure that the intent of the check is satisfied.
MISSCHAR

SIR/XS Database 124

Specify a single character to indicate that an existing variable is set to undefined.
In order to set an existing value to UNDEFINED, include this character on the input
record in the leftmost column of the variable. A blank does not indicate a missing
value and may not be used as the character. There is no default.

There are three groups of parameters. The first group specifies files, the next
group comprises keywords and the last group sets limits or other conditions.
Optionally separate multiple parameters with a slash "/".

FILES

INPUT
Specifies the input data file. Must be specified.
LISTFILE
Specifies the file where error messages are written. If not specified, the current
output file is used for error messages.
ERRFILE
Specifies the file where data records with errors are written. If not specified, no
error file is produced, however errors messages are produced on the LISTFILE.
LOGFILE
Specifies the log file. A record is written to the log file in fixed format that
describes each error.
SUMFILE
Specifies the file where the update summary report is written. If this is not
specified the current output file is used. SUMFILE and LISTFILE can be the same
file in which case the summary report is written after any error listing.

Keywords - Use these to specify the particular processing option(s) required.

ACCEPT
Specifies that records with erroneous values are accepted and variables with
erroneous values are set to undefined. If not specified, records with erroneous
values are rejected.
ADD
Specifies that input records that do not match existing records are added to the
database. Schema defined consistency checks and compute specifications are
applied to the added records.
ALL
Specifies that input records with errors are written to the ERRFILE regardless of
whether or not they are accepted into the database.
COMPUTE
Specifies that any COMPUTE specifications in the schema are re-executed.
CSV
Specifies that the input file is in CSV format.
LOGALL
Specifies that input records with errors are written with the log record to the
LOGFILE.
NOAUTO

SIR/XS Database 125

Specifies that only variables with specified input/output columns are processed.
NOBOOL
Specifies that any ACCEPT REC IF or REJECT REC IF specifications in the
schema are bypassed.
NONEW
Specifies that no new cases are created.

Limits and Settings - Specify the keyword followed by an equals sign, "=" ,
followed by the value for these limits and settings.

ALIMIT
Sets a limit on the number of input records with errors. Terminates the procedure
when "n" number of records have been processed with undefined values replacing
errors.
BLIP
Specifies that an indication of progress is required and the approximate number of
records expected on the input file. Progress is shown as a percentage of this
number. Statistics of records added are displayed.
LOADING
Specifies how data blocks are split as they become full. "N" is a number between
0.01 and 0.99. When data is reloaded or imported, blocks are filled. The normal
value is 0.5, that means that a full data block is split in half. A value of .99 splits a
data block with n records into one data block containing n-1 records and one data
block containing 1 record. This is useful if records are added in keyfield order to
keep the database file as compact as possible.
MISSCHAR
Specifies a character to indicate that the field is set to UNDEFINED. When this
character is in the leftmost position of a variable on input, the variable on the
database is set to undefined. Specify a single character, do not enclose it in
quotes.
RECTYPE
Specifies that all the records in this run are of the given type. Rectype may be a
record name or number. This is used when the data record does not contain a
record type number or to override the number on the input record. Only one
RECTYPE= keyword may be specified. If omitted, data records are identified by the
record number in the columns specified in the schema (or by the first field on a
CSV file).
RLIMIT
Specifies that the run stops if "n" number of records are rejected due to errors.
SKIP
Specifies that the first "n" lines on the data input file are skipped before starting to
process the data. Processing begins at line "n" + 1.
STOP
Stops the run after processing "n" lines from the data input file. If the data is in
multi-line records, the entire record is always processed.

Example:

SIR/XS Database 126

UPDATE REC INPUT = 'INPUT.DAT'
 ERRFILE = 'ERR.DAT'
 LOGFILE = 'LOG.LST'
 LISTFILE = 'OUT.LST'
 SUMFILE = 'SUM.LST'
 ACCEPT
 RECTYPE = 1
 MISSCHAR = *

SIR/XS Database 127

SIR FILE DUMP

SIR FILE DUMP [FILENAME = fileid]
 RECTYPES = {ALL | rectype (log_expr),...}
 [BOOLEAN = (log_expr)]
 [CIR]
 [COUNT = total [,increment[,start]]]
 [CSV]
 [DPOINT]
 [LIST = case id list]
 [NOAUTO]
 [SAMPLE = fraction [,seed]]
 [UNDEFINED = char]
Creates a text file in a form suitable for processing by the batch data input
utilities. DBA read security clearance is needed to use this utility.

Optionally separate multiple parameters on the command with slashes.

FILENAME
Specifies the name of the output file. If this clause is not specified, the output is
written to the default output file (normally the scrolled output buffer in interactive
sessions).
RECTYPES
Specifies the record types to dump. This clause is required. The keyword ALL
specifies all record types are dumped. A logical expression can be specified to
restrict the data records selected. The expression can reference common variables
or variables from the listed record type and can include PQL functions.
BOOLEAN
Defines a logical condition applied to common variables. This clause only applies
to case structured databases. If the logical condition is true, records for that case
are dumped. BOOLEAN is applied after any SAMPLE, COUNT or LIST.
CIR
Specify CIR to output common variables as a separate record (record type 0).
COUNT
Outputs data from a specified number of cases from the database. This clause only
applies to case structured databases and cannot be used with SAMPLE or LIST.
Total specifies the number of cases to retrieve. Increment specifies the "skipping
factor" for retrieving cases. Start specifies the first case to select. For example, a
start value of 3 begins the processing at the third case.

SIR FILE DUMP FILENAME = 'OUTPUT.DAT'
 RECTYPES = ALL COUNT = 10
CSV
Specifies that the file is written in CSV format.
DPOINT

SIR/XS Database 128

Specifies that, when writing a fixed format file, any numeric fields that have a
decimal component, have the decimal point included. This is automatically done
when in CSV format.
LIST
Retrieves the specified cases for case structured databases. Enclose case
identifiers that are character strings in quotes. LIST cannot be used with SAMPLE
or COUNT. For example:

SIR FILE DUMP FILENAME = 'OUTPUT.DAT'
 RECTYPES = ALL LIST = 1,3,5 thru 10
NOAUTO
Specifies that only variables with specified input/output columns are processed.
SAMPLE
Outputs data from a random sample of cases from the database. This clause only
applies to case structured databases. Fraction specifies the sample size for
selection. Seed specifies the starting seed for the random number generator. If
seed is not specified, the default is used.
UNDEFINED
Specifies the character used to fill fields on output that are undefined on the
database. Blanks are the default. For example:

SIR FILE DUMP FILENAME = 'OUTPUT.DAT'
 RECTYPES = 1 (SALARY GT 2000)
 UNDEFINED = *

SIR/XS Database 129

SIR FILE LIST

SIR FILE LIST FILENAME=filename
 [BOOLEAN= (log-expr)]
 [LIST= caseid list]
 [RECTYPES= rectype [(log-expr)] ...| ALL]
 [ORDER= ALPHA | VARNUM]
 [SAMPLE= fraction [,seed]]
 [COUNT= total [,incr[,start]]]
 [CIR= varlist | NOCIR]
 [VARIABLES = rectype (var-list)]
Writes all or part of the data to a file for subsequent printing. Use the filename
CONSOL to write to the screen or STDOUT to write to the default output file.

DBA read security is required to use this utility.

BOOLEAN
Specifies cases to include in the list. If the test fails, no records for that case are
listed. The test may only use common variables. If LIST, COUNT or SAMPLE is
used, the BOOLEAN clause is applied after that selection process. For example:

BOOLEAN = (ID GT 5)
LIST
Specifies cases to select. Separate entries with blanks or commas. Use the "TO"
format to specify a range. Enclose case ids that are strings in quotes. LIST cannot
be used with SAMPLE or COUNT. For example:
LIST= 1,3,5,7 to 10
RECTYPES
Specifies the record types to select. RECTYPES= ALL specifies all record types. If
RECTYPES is omitted from the command, only the common variables are listed. A
logical expression may be defined to select particular data records within a record
type. If the test is TRUE, the record is listed. The expression may use common or
record variables from the record type. For example:
RECTYPES= 1 (GENDER=2)
ORDER
Specifies the sequence of the listing of variables. This can be alphabetic order
(ALPHA) of the variable name or the order the variables are defined in the record
(VARNUM). VARNUM is the default. For example:
SIR FILE LIST FILENAME='DATA.LIS' ORDER= ALPHA
SAMPLE
Retrieves a random sample of cases from case-structured databases. Fraction
specifies the sample size for selection. Seed specifies the starting seed for the
random number generator. If seed is not specified, one is assigned by default.
SAMPLE cannot be used with COUNT or LIST. For example:
SIR FILE LIST FILENAME='DATA.LIS' SAMPLE= .5
COUNT

SIR/XS Database 130

Retrieves a subset of cases from the database. Total specifies the number of cases
to retrieve. Incr is the increment to apply to locate the next case to process. The
default is 1 and processes every case. An increment of 2 processes every other
case, 3 every third case, etc. Start specifies the ordinal of the first case to process.
For example, a start value of 3 and an Incr of 3 starts the processing with the third
case, skips cases 4 and 5 and processes 6. COUNT cannot be used with SAMPLE or
LIST. For example:
SIR FILE LIST FILENAME='DATA.LIS' COUNT= 50,3,3
CIR
Specifies the common variables to list. If the CIR clause is omitted, all common
variables are listed. For example:
SIR FILE LIST FILENAME='DATA.LIS' CIR= ID
NOCIR
Suppresses output of CIR variables. For example:
SIR FILE LIST FILENAME='DATA.LIS' NOCIR
VARIABLES
 Specifies the variables to list for a record type. All variables are listed for
selected record types as the default. For example:

SIR FILE LIST FILENAME='DATA.LIS' RECTYPE = 3
 VARIABLES = 3 (position,revdate)
Sample Output:

SIR/XS FILE LIST Jan 05, 2006
10:53:36 Page 1

***CASE ID 1

REVIEW POSITION
4
REVDATE 04 05 03
POSITION 4

REVIEW POSITION
4
REVDATE 06 05 03
POSITION 4

REVIEW POSITION
5
REVDATE 12 09 04
POSITION 5

REVIEW POSITION
5
REVDATE 02 04 05
POSITION 5

***CASE ID 2

REVIEW POSITION
6
REVDATE 03 16 03
POSITION 6

SIR/XS Database 131

REVIEW POSITION
6
REVDATE 04 27 03
POSITION 6

SIR/XS Database 132

SIR SPREADSHEET

SIR SPREADSHEET
 {RECTYPE = recname [BOOLEAN = (log-expr)] |
TABLE=tabfile.table}
 [INDEXED BY indexname]
 [VARIABLES = (var1,var2,... | ALL)]
 [LABELS|UPDATE]
Selects data from a single database record type or from a tabfile table and displays
it in a graphical form similar to a spreadsheet display. The user can insert, delete
or update if allowed, and can print or export the data in a CSV format for input to
other packages.

RECTYPE =
Specifies the record name or number to display. Specify BOOLEAN to select
records. The specified test can use common variables and record variables.

TABLE =
Specifies the tabfile name and table name to display.

INDEXED BY (USING is a synonym)
Specifies the record or table is accessed via the named index. When using an
index with a record, all the variables used in the index must be included in the
displayed variables.
VARIABLES
Specifies the variables to list. ALL is the default.
LABELS (VALLAB is a synonym)
Specifies that value labels are displayed where these exist as opposed to actual
values. This precludes UPDATE
UPDATE
Specifies that updates to the database or table are allowed. This allows the user to
add, delete or modify the data in the record or table. For update, the selected
variables must included all key fields.

For example:

SIR SPREADSHEET RECTYPE=EMPLOYEE UPDATE
The record data is displayed as a spreadsheet that looks something like:

SIR/XS Database 133

SIR/XS Database 134

Backup and Recovery
SIR/XS provides utilities to write all or part of the database to external files in
either machine dependent or machine independent formats and to re-input these
files back to a SIR/XS database. These utilities can be used for restructuring the
database, backing up the database, porting all or part of the database to another
database on the same operating system or creating a machine independent version
of the database to move to a different operating system.

Note: If transferring export or other text (machine independent) files between
machines using ftp, you must use ftp in ACSII mode (not BINARY)

There are various procedures and the utilities to assist in protecting a database and
recovering it in the case of problems.

The key to a successful recovery operation is being prepared. Do not assume that
the computer, disk drives or power supply are always 100% trouble free. Be
prepared for unexpected problems by taking regular backups, saving journals and,
in general, take reasonable precautions against losing much time or work.

The procedure for restructuring a database is the same as for backing up and
recovery.

There are utilities that are designed to work in pairs with one providing input in a
suitable format for the other.

Some utilities create or use binary files that are specific to an operating system.
These files are created in "append" mode; that is they are added to the end of any
existing unload or subset file with the same name. However, if you run these
through the menu system, you are given the choice of deleting the old file first.

Other utilities create text files that are machine independent and can be viewed
and updated by any text editor. These are produced independently and overwrite
existing files.

• EXPORT creates a file containing a text copy of the database, including the data
dictionary, procedures and data. This can be used by IMPORT to create a new
database on a different machine.

• WRITE SCHEMA writes just the database definition in a similar format to export.

SIR/XS Database 135

• SUBSET writes a subset of the database to an unload binary file. This includes
the schema and data for selected record types. This can be used by MERGE to
combine with an existing database or RELOAD to create a new database that is a
subset of the original.

• UNLOAD writes a copy of the database to an unload binary file including the
schema and the procedures.

• UPLOAD creates a text copy from the journal of all updates that have been done.
This can be used by DOWNLOAD to apply those changes to a second copy of the
database. An example of this might be a central database with subsets on various
PCs in remote locations. Updates might be done on the PCs and UPLOADed to the
center, or updates might be done in the center and UPLOAD to the PCs to avoid re-
transmitting the whole of the database.

There are two utilities that check on the contents of the system.

• VERIFY checks on the contents of the structure of the database and gives
details of any problems discovered. This utility has a PATCH option that
recovers from many types of corruptions. If some type of problem has
occurred, a SIR/XS process may warn that a corruption has occurred. If
this happens, use the VERIFY FILE utility to find out more about the
problem, and attempt to correct it.

• ITEMIZE reports on the contents of either the journal file or files produced
by UNLOAD or SUBSET.

LIST STATS reports on the current status of the database giving the number of
records, data size and update level.

Journaling

Journaling can be turned "ON" for a database. This means that, each time that the
database is updated (i.e. the update level increases), an entry is written to the
journal file. The entry contains details of all of the updates done to take the
database from one update level to the next. Each entry on the journal file consists
of images of all of the data records that were updated during the update run. The
images can be both before and after images of the records depending on the
update. For a new record, there is an after image; for an updated record there is a
before and after image; for a deleted record, there is a before image.

The journal can be used to recover in the case of an unexpected interruption in an
update run and allows updates to be re-applied quickly and easily if a backup has
to be restored. The journal can be used in VisualPQL to produce reports on
updates or other audit trails.

SIR/XS Database 136

If updates were incomplete or unsuccessful in some way, they can be 'undone'
with a JOURNAL ROLLBACK that takes a database back to a previous update level.
When a database is connected, its status is checked to see if it was not closed
properly when being updated e.g. the system 'crashed' while the database was
open for update. If this is found to be the case, you are asked if you wish to
automatically recover. If you choose to try to recover, a journal rollback is done.
If a database has to be recovered from backups, restore the database from the
backup and then use JOURNAL RESTORE to bring that version of the database up to
the level of the journal file.

Binary Files

Binary files are machine dependant and are NOT suitable for transferring between
operating systems or different hardware. These are NOT suitable for long term
archival storage. Subsequent versions of SIR may have updated file formats that
are incompatible. The following utilities create binary files

.

• A full database is created by UNLOAD FILE and read by RELOAD FILE
• A partial database is created by SIR SUBSET and read by MERGE
• Database changes are created by JOURNAL and read by JOURNAL RESTORE
• A binary file can contain multiple sets of data. These are listed by

ITEMIZE.

Text Files

Text files are suitable for transferring between machines and can be viewed with a
normal editor. The following utilities create text files.

• A full or partial database is created by EXPORT and read by IMPORT. This is
the recommended format for storing all long term SIR archives. It is
machine and operating system independent and subsequent versions of
SIR are always compatible with previous EXPORT formats.

• Database definitions are written by WRITE SCHEMA
• Database changes are created by UPLOAD and read by DOWNLOAD

SIR/XS Database 137

IMPORT

 To import and recreate a complete database, simply tell SIR/XS to read the
export file generated by a previous EXPORT utility. This file is a text copy of a
database consisting of commands to recreate the database and data to load into it.

This can be done in a number of ways:

• From the Database\Recover\Import menu
• By running the system in batch with the import file named as the IN =

parameter
• By "running" the import file from the Procedures - File menu

There is a command "IMPORT" that indicates that data, in a suitable format for
importing, follows the command. eg:

IMPORT
0/1/1/2/4/1/12/John D Jones1/1/11/772-21-
1321129754/1/M1/5/2150/145851/2/4/
145120/1500/1/2/5/145733/2000/1/3/4/145241/5/1650/2/3/4/145180/4/
1600/2/3/5/
145851/5/2150/2/3/5/145794/4/2100/2/0/2/1/1/3/1/25/James A
Arblaster 1/1/
...

SIR/XS Database 138

EXPORT

EXPORT FILENAME = fileid
 [BOOLEAN = (logical_expr)]
 [COUNT = total [,increment [,start]]]
 [LIST = caseid, ...]
 [RECTYPES = ALL | rectype(logical_expr) ...]
 [SAMPLE = fraction [,seed]]
 [DATABASE = new database name]
 [PASSWORD = new database password]
 [COMMON]
 [NODATA]
 [NOINDEX]
 [NOMAXKEY]
 [NOPASSWORDS]
 [NOPROCS]
 [NOTO]
 [NOTXS]
 [VARLIST]
 [VARSEQ]

Creates a file of text records containing the data dictionary, procedures and data
from the database. Exports all non-compiled procedures, i.e members with a :T,
:M or :P suffix (text, menu and picture (template) members). Compiled
procedures (:E, :O and :V) are not machine independent and cannot be exported.
Compiled procedures must be re-compiled after an IMPORT.

Database administrator security is required to use EXPORT. If the export does not
run because record types in the database are locked (due to schema modifications)
then restructure the database before rerunning the export.

Optionally separate multiple parameters on the command with slashes.

FILENAME
Specifies the name of the file to contain the exported database. This is required.
BOOLEAN
Specifies tests applied to cases before the case is written to the export file. A case
is only written if the expression is TRUE. Only use common variables in the
expression and only use for databases with a case structure. The test is applied

SIR/XS Database 139

after any SAMPLE, COUNT or LIST. If the case id is a categorical, date or time
variable, specify either a string or numeric test and the equivalent variable value is
used. VisualPQL functions can be used. For example:
BOOLEAN = (ID GT 5)
LIST
Exports only the specified cases. Specify the keyword THRU to select a range. For
example:
LIST = 12 THRU 29, 33, 37
RECTYPES
Selects the data records written to the export file. Schema definitions are written
for all record types, regardless of which rectypes are selected on the RECTYPES
clause. If this clause is omitted, data for all record types in the database are
exported.

Specify a logical expression to select records. Records that meet the criteria of the
logical expression are selected. For example:

RECTYPES = EMPLOYEE (SALARY GT 2000)
SAMPLE
Exports a random sample of cases from the database. Fraction specifies the
sample size (a decimal number) for selection. Seed specifies the starting seed for
the random number generator. If seed is not specified, a default seed is used. For
example, SAMPLE = .25 exports 25% of the cases from the database using a
default seed.
COUNT
Exports a subset of cases from the database. Total is the number of cases to
retrieve. Increment is a number that specifies the "skipping factor" for retrieving
cases. For example, an increment of 3 produces every third case. Start specifies
the first case processed. For example, a start of 3 starts with the third case.
DATABASE
Specifies a new name for the database on the export file. If this clause is omitted,
the current database name is used.
PASSWORD
Changes the database password on the export file. If this clause is omitted, the
current password is used.
COMMON
The record definition for the CIR includes definitions for all the common
variables and so these do not need to be repeated on subsequent record types that
include a common variable. Specify COMMON if commands are to be produced for
each common variable on every record where it occurs.
NODATA
Specifies that no data records are written to the export file.
NOINDEX
Specifies that no specifications for secondary indexes are written to the export file
if transferring from SIR/XS or later to earlier versions that did not support
indexes.
NOMAXKEY

SIR/XS Database 140

Suppresses the writing of a specific MAX KEY command to the output file.
Specify this option whenever schema modifications are being made to allow the
system to recalculate the maximum key size unless a larger key is required for
future expansion.
NOPASSWORDS
Specifies that the database password, security passwords and member passwords
are not written to the export file. This has the effect of removing all password
protection from the new database. New passwords can be assigned once the new
database has been imported to its new location and recreated.
NOPROCS
Specifies that the procedures are not written to the export file.
NOTO
Where contiguous record variables share the same specification, a shorthand
specification is written using the keyword TO. e.g.

MISSING VALUES NAME
 TO NDEPENDS (BLANK)
The NOTO keyword suppresses this shorthand and all variables are individually
listed within the specification.
NOTXS
Specifies that the export is as compatible as possible for use by earlier versions of
SIR (2002). New features such as STANDARD VARS and RECORD SCHEMA 0 are not
written and slashes are generated as separators.
VARLIST
The standard style of schema output is to write variable names and input
definitions as a DATA LIST. VARLIST specifies that variable names are written as a
VARIABLE LIST command followed by input definitions as an INPUT FORMAT
command. e.g.

VARIABLE LIST ID NAME GENDER MARSTAT ...
INPUT FORMAT (I4,T6,A25,I1,I1,...
VARSEQ
The standard style of schema output is to write each definition command once and
to list variables within the command. The VARSEQ keyword specifies that the
output is in variable sequence and that all commands that apply to a single
variable are grouped together. e.g.

VAR LABEL NAME 'Name'
MISSING VALUES NAME (BLANK)

VAR LABEL GENDER 'Gender'
VAR RANGES GENDER (1 2)
MISSING VALUES GENDER (BLANK)
VALUE LABELS GENDER (1)'Male'
 (2)'Female'

VAR LABEL MARSTAT 'Marital status'
VAR RANGES MARSTAT (1 2)
MISSING VALUES MARSTAT (BLANK)
VALUE LABELS MARSTAT (1)'Married'
 (2)'Not married'

SIR/XS Database 141

Examples:
To export the entire database:

EXPORT FILENAME = 'COMPANY.EXP'

To export record types 5, 6, and 8 of the first 1000 cases:

EXPORT FILENAME= 'SUBSET.EXP'
 RECTYPES= 5 6 8
 COUNT= 1000

The export procedure writes out a number of messages. These note the beginning
and end of various stages of the export (Begin export of schema/Export of schema
complete, Begin export of procedures/etc.).

Export writes a summary of the data records exported. This lists the number of
cases, each record type exported and the number exported.

SIR/XS Database 142

SIR SUBSET

SIR SUBSET FILENAME = filename
 [BOOLEAN = (logical expression)]
 [LIST = caseid list]
 [RECTYPES = rectype [(logical expression)] ...]
 [SAMPLE = fraction [,seed]]
 [COUNT = total [,increment [,start]]]
 [DATABASE = newdbname]

Creates a subset of a database. The subset file is a binary file in identical format to
an unload. The schema and procedures are written in their entirety. Only the data
that meets the criteria is subset. Database administrator security is required to use
this utility.

FILENAME
Specifies the name of the output file. If this file already exists, the new subset is
appended to the end of the file provided that the file is a valid unload/subset file
for this database. If the file has multiple database copies, use the ITEMIZE FILE
utility to determine the copies that are there.
BOOLEAN
Specifies conditions based on the values of common variables. BOOLEAN is applied
after SAMPLE and COUNT. For example:

SIR SUBSET FILENAME = 'SUBSET.UNL'
 BOOLEAN = (ID GT 5)
LIST
Subsets the specified cases. Enclose case ids that are character strings in quotes.
Cannot be used with SAMPLE or COUNT. For example:
SIR SUBSET FILENAME = 'SUBSET.UNL'
 LIST= 1,3,5 thru 10
RECTYPES
Specifies the set of record types to copy. Specify a logical expression to select on
data values. The expression may use common variables and variables in the
rectype specified. For example:

SIR SUBSET FILENAME = 'SUBSET.UNL'
 RECTYPES = 1 (SALARY GT 2000),3
SAMPLE
Selects a random sample of cases from the database. Fraction specifies the sample
size for selection. Seed specifies the starting seed for the random number

SIR/XS Database 143

generator. If seed is not specified, the default is used. Cannot be used with COUNT
or LIST.
COUNT
Selects a specified number of cases from the database. Total specifies the number
of cases to retrieve. Increment specifies the "skipping factor" for retrieving cases.
For example, an increment of 3 produces every third case. Start specifies the
ordinal of the first case processed. For example, a start value of 3 begins the
processing at the third case. Cannot be used with SAMPLE or LIST
DATABASE
Specifies the name of the new subset database. The subset database password is
the same as the password for the original database. For example:

SIR SUBSET FILENAME = 'SUBSET.UNL'
 DATABASE = TESTDBMS

SIR/XS Database 144

UNLOAD FILE

UNLOAD FILE FILENAME = filename
 [JOURNAL = KEEP | PURGE]
 [NEWDB = newname]
 [NEWPW = newpassword]

Creates a machine dependent copy of the database. UNLOAD is used for backup and
restructuring. Database administrator security is required to use this utility.

Use the UNLOAD FILE utility to back up the database. The old journal file can be
deleted once an unload file is produced. A database may be recovered from an
unload file plus any journals from the point the unload was done. Make sure that
there is either a journal file that covers the entire history of the database, or an
unload file and a journal file that covers modifications made to the database since
the unload. The suggested procedure is:

• Always have journaling ON for the database.
• Backup the database with UNLOAD FILE on a regular basis.
• It is good practice to run a complete VERIFY FILE before doing an unload)
• After a successful backup has been made, copy the backup file to secure

external media.

At this point, previous unload files and journal files can be renamed or deleted.

The options and keywords are:

FILENAME
Specifies the name of the output file. If the output file already exists as an unload
file for this database, the utility adds the latest output to the end of the file. Use
ITEMIZE FILE to see what is on the output file. If multiple copies of a database
are on one physical file, specify the file number or update level to restore the
correct copy of the database. For example:
UNLOAD FILE FILENAME = 'COMPANY.UNL'
JOURNAL
KEEP is the default and specifies that the current journal file is retained.
PURGE specifies that the current journal file is deleted when the unload run is
completed. Journaling then starts on a new file.
NEWDB

SIR/XS Database 145

Specifies a database name for the database copy. By default, the name of the
database is used.
NEWPW
Specifies a new database password for the database copy. By default, the current
password is used. For example
UNLOAD FILE FILENAME = 'COMPANY.UNL'
 NEWDB = TESTDBMS
 NEWPW = TESTPASS

SIR/XS Database 146

UPLOAD

UPLOAD FILENAME= filename
 [JOURNAL = filename]
 [UPDATE = update level [THRU update_level]]
 [RECTYPES = ALL | rectype (variable_list), ...]
 [TITLE = 'upload_file_title']

Reads a journal file and outputs all the journaled changes to a file. This file is a
text file so that it can be transferred to another machine. The DOWNLOAD utility
reads the file produced by UPLOAD and applies the changes to the new database.
Database administrator security is required to use this utility.

FILENAME
Specifies the name of the output file. This is required.
JOURNAL
Specifies the journal file. If the journal file has a different name, specify the name
used. The current journal file, (database file 5), is the default.
UPDATE
Specifies update levels or date/time stamps to upload from the journal file.
Specify a specific update level, update date, a range of update levels or a range of
update dates. The default is the most recent, single set of updates on the journal
file.

If this is specified, a report is produced showing each update level that is written
to the upload file. For example:

UPLOAD FILENAME = 'JOURNAL.UPL'
 UPDATE= 10 THRU 30
RECTYPES
Selects rectypes to upload. A variable list specifies individual variables. If the
variable list is omitted, all variables are processed. The keyword CIR selects the
common information record variables. ALL selects all record types, including CIR
and is the default. For example:

UPLOAD FILENAME = 'JOURNAL.UPL'
 RECTYPES= 1,3
TITLE

SIR/XS Database 147

Specifies the title of the upload file. This is written as the first line of the file and
is used to identify the file. DOWNLOAD prints this title in the summary report. This
title may be up to 45 characters and is enclosed in quotes. For example:

UPLOAD FILENAME = 'JOURNAL.UPL'
 TITLE= 'Department 3 Changes'

SIR/XS Database 148

ITEMIZE FILE

ITEMIZE FILE [FILENAME= fileid]

Reports on the contents of a unload and journal files. An unload file may contain
multiple unloads taken at different update levels. A journal file typically has
journals from multiple update levels. This information is necessary when
restoring a database or applying journals.

The options on the command are:

FILENAME
Specifies the name of the binary file. The default is the journal (fifth database
file).

The report produced is similar to the following:

Itemize File 'C:\sir2004\alpha\COMPANY.sr5' is a JOURNAL file for
database COMPANY
Update level: 1 - 2 Dec 08, 2005/10:46:13 Journal data
to Dec 08, 2005/10:47:07
Update level: 2 - 3 Dec 08, 2005/10:48:07 Journal data
to Dec 08, 2005/10:49:03

Itemize File 'C:\sir2004\alpha\COMPANY.unl' is an UNLOAD file for
database COMPANY
Update level: 2 Dec 02, 2005/13:08:17 Unload schema
Record: 1
Update level: 2 Dec 02, 2005/13:08:17 Unload data
Record: 2
Update level: 3 Dec 08, 2005/10:49:03 Unload schema
Record: 3
Update level: 3 Dec 08, 2005/10:49:03 Unload data
Record: 4

The information reported is the name of the file, the type of file and the database
that the file refers to. This is then followed by a list of the records on the file.
Each entry has the following information:

SIR/XS Database 149

UPDATE LEVEL
The update level is a sequential number incremented each time the database is
updated. On a journal, it is the update level from - to where these are always one
different and the 'to' is the update level that resulted after the update run. Journals
are expected to be contiguous and a warning is given if any update levels are
missing. On an Unload, it is the current update level at the time of the unload.
DATE & TIME
The date that the update was done followed by the time the update was done. On
an unload, this is not when the unload was done but rather the date and time of the
last update that resulted in that update level on the database.
TYPE OF RECORD
The record may by a journal of a schema or a data update or may be an unload for
schema or for data.
Record Number
Each record on the journal or unload is assigned a sequential number. When
specifying processing on the file, the unload/journal to be processed can be
selected with either the update level or the record number.

SIR/XS Database 150

LIST STATS

LIST STATS

Provides a status report about the database similar to the following:

Statistics for COMPANY
Database name COMPANY

Creation Date/Time Dec 06, 2005 10:46:12
Last update Date/Time Dec 08, 2005 10:49:03
Update level 3

Average Records per Case 1023
Max/Current Number of Cases 1000/20
Max/Current Number of Records 1023000/114

Max/Current Number of Record Types 30/3
Maximum Input Columns/Lines 80/1
Rectype Column 5
Journal For Database ON
Case Id Variable ID
(A)

Number of Index Levels 2
Max Entries Per Index Block 509
Index/Data Block Size 1019/1019
Active/Inactive Data Blocks 2/0
Active/Inactive Index Blocks 2/0

Keysize In Bytes 8
Min/Max Record Size 1/8
Number of Temporary Variables 0
Maximum Number of Data Variables 10

Record Record Number of Maximum
Total In Size In Entry Use
 No. Name Variables Per Case
Database Words Count
---- -------------------------------- --------- -------- ---
----- ------- ---------
 0 CIR 1 1
20 5 1
 1 EMPLOYEE 10 1
20 8 1
 2 OCCUP 4 100
30 1 1

SIR/XS Database 151

 3 REVIEW 5 100
64 2 1

Secondary Indexes
Index Name Record
Variables
-------------------------------- -------------------------
------- --------------------------------
NAME EMPLOYEE
NAME ASC
BIRTHDAY EMPLOYEE
BIRTHDAY ASC
EDUC EMPLOYEE
EDUC ASC

GENDER ASC
EDUCID EMPLOYEE
EDUC ASC

GENDER ASC

ID ASC

The information includes:

A) Overall Database Information

• database name
• current update level
• date of creation, last update and last access
• the current and maximum number of cases
• the current and maximum number of records
• the maximum key size
• the minimum and maximum record size
• the total number of common variables
• size of the CIR

B) Information about each Record Type

• number of variables
• maximum records per case
• total currently in the database
• length of the record
• number of times the record schema has been defined

C) Restructure Information (if any)

• number of original variables
• number of restructured variables

SIR/XS Database 152

• update level for restructured records

D) Secondary index information (if any)

• name of each index
• record indexed
• variables indexed and whether Ascending/Descending and if Upper case

SIR/XS Database 153

JOURNAL RESTORE

JOURNAL RESTORE [FILENAME = fileid]
[FROM = n]
[THRU = n] | [COUNT = n]
[NEXT]

Applies journal files to a database to update it to a more current level. Any
schema changes are applied as well as updates to the data. The process expects
that the database has been recovered from a backup and, by default, looks for
journal records that correspond to updates starting at the current update level on
the database. It then applies all journals forward from that point to arrive at the
most up to date database possible from that journal.

Update level information may be obtained by LIST STATS and ITEMIZE FILE.
The update level listed for journals is the level the database was at after the
update was originally done. So, for example, if the restored database is at level 40,
the first journal to be applied would be update level 41.

JOURNAL RESTORE can restore partial journal records from abrupt interruptions of
journaled update sessions. If a premature End-of-Record condition is encountered,
the database is restored to a useable (non-corrupt) state, with as much data intact
as possible. However if a logical set of updates were being done and were
interrupted, data may be in an inconsistent state between records. It is
recommended that a VERIFY FILE is done after a journal has been restored.

The options on the command are:

FILENAME
Specifies the name of the file that contains the journal. The default journal file is
database file .sr5. For example:
JOURNAL RESTORE FILENAME = 'COMPANY.JNL'
FROM
Specifies that when journal entries are applied, instead of starting from the current
database level, they start from the specified level. This may be higher or lower
than the current database level. Specify the starting update level which is one less
than the first journal to be applied.

SIR/XS Database 154

NEXT
Specifies that one journal entry is applied to the database to take it to the next
update level.
THRU
Specifies that journal entries going up to and including the one at update level "n"
are applied to the database. UPDATE is a synonym. For example:

JOURNAL RESTORE FILENAME = 'COMPANY.JNL'
 THRU = 42
COUNT
Specifies that journal entries on the file from the start including the "nth"
specified on the count are applied to the database. This is an alternative to
specifying update level, which is the recommended approach. Do not specify both
options. For example:

JOURNAL RESTORE FILENAME = 'COMPANY.JNL'
 COUNT = 10

SIR/XS Database 155

JOURNAL ROLLBACK

JOURNAL ROLLBACK [FILENAME = fileid] [UPDATE = n] [COUNT =
n]

Applies journal files to a database to undo updates and roll it back to a previous
level. Only applies to data updates.

If a database update run is interrupted, this might be used to roll back to a known
update level before re-running the update process

JOURNAL ROLLBACK can restore partial journal records from abrupt interruptions
of journaled update sessions. It is recommended that a VERIFY FILE is done after
a journal has been rolled back.

The options on the command are:

FILENAME
Specifies the name of the file that contains the journal. The default journal file is
database file .sr5. For example:
JOURNAL ROLLBACK FILENAME = 'COMPANY.JNL'
UPDATE
Specifies that the database is rolled back to this update level. If no update level is
specified, it is expected that the database update run was interrupted and that the
update level was not changed. This means that only journal records that were
created as part of the last, interrupted run are rolled back. The database remains at
its current update level and, after the rollback, should be in the same state as when
the aborted run started. This would normally be what was wanted. Update level
information may be obtained by LIST STATS and ITEMIZE FILE.
COUNT
Specifies that all journal entries on the file, starting at the last and including the
"nth" specified on the count, are rolled back and so 'undone'. This is an alternative
to specifying update level, which is the recommended approach. Do not specify
both options.

SIR/XS Database 156

VERIFY FILE

VERIFY FILE [ALL]
 [CIRKEY]
 [CIRDATA]
 [CHECK]
 [CCF]
 [RECKEY]
 [RECDATA]
 [RCF]
 [COUNT= total,increment,start]
 [PATCH]

VERIFY FILE examines the database files for damage and corrects errors where
possible. DBA-level security clearance is needed if any keywords are specified,
since potentially secure data might be revealed.

The corruption flag is set when any errors are detected in the database. It is
cleared when the database is verified and found to contain no errors.

The keywords control the amount of checking and the amount of output generated
when verifying each data record. The error message number is followed by a
character that signals the type of error message: I for Informative, N for Non-
correctable, C for Correctable, F for Fatal. The loading factors are printed with 2
decimal digits. Errors are listed by type with informative messages as appropriate.

ALL
Selects all the options. Use this option carefully since the output generated is
voluminous. (Not an option on the menu system but equivalent to selecting all
options.)
CIRKEY
Lists the values of all fields in the CIR record key.
CIRDATA
Lists the values of CIR variables.
CHECK
Checks the value of each variable against its schema specified criteria. Diagnostic
messages are generated when bad values are encountered.
CCF
Clears the corruption flag. Use this option carefully; clearing the flag may mean
that the problem resurfaces in the future after more work has been done and
recovery may be difficult.
RECKEY

SIR/XS Database 157

Lists the values of all fields in a record key.
RECDATA
Lists the values of all record variables.
RCF
Lists the record count fields from the CIR. These counts are the number of data
records of each type that belong to each case.
COUNT
Retrieves a subset of cases from the database. There are three values:
Total
specifies the number of cases to retrieve.
Increment
specifies the "skipping factor" for retrieving cases. e.g. 3 checks every third case.
Start
specifies the ordinal of the first case to process. eg. 3 starts on the third case.
PATCH
Repairs all repairable problems. Run VERIFY FILE again to verify the patched
database to clear the corruption flag if no errors are detected.

VERIFY FILE Error Codes

The following error messages show the types of problems detected. Most of these
errors are "major", and if any of them occur, the data file is probably unsaveable.
(For an explanation of the structure of the database, what is a PRU, etc., please
see Tuning and Efficiency.)

01 index pru out of range.
1 index level
2 index pru that is out of range
3 index pru in error
02 index entry count error. Printed if the header contains an illegal entry count.
1 index level
2 index entry found
3 index pru in error
03 index entry count mismatch. Printed if total records below count does not
match upper level index count.
1 index level
2 index count calculated
3 index count in upper level
4 index pru in error
04 db pru out of range.
1 illegal pru ordinal
2 db pru in error
05 db entry count mismatch. Printed if the entry count in the header does not
match the db.
1 db entry found
2 db entry in header
3 db pru in error

SIR/XS Database 158

06 db size (words used) mismatch. Printed if the number of words used in the
header does not match the db.
1 db used found
2 db used in header
3 db pru in error
07 CIR record count mismatch. Printed on completion of case, if the correct
number of records for each record type is in error.
1 case data file ord:case ord (last case)
2 rectype
3 mismatch (- if too many, + if not enough)
08 CIR record count limit error. Printed if a record count field exceeds some limit.
1 case data file ord:case ord (last case)
2 rectype
3 count field in error
4 legal max record count for rectype
09 CIR record count exceeded. Printed for any record detected that exceeds the
CIR record count field.
1 case data file ord:case ord (last case)
2 record ordinal
3 rectype
10 record locked. Informational only, not an error per se.
1 case data file ord:case ord (last case)
2 record ordinal
3 rectype
11 wrong length CIR.
1 case data file ord:case ord (last case)
2 incirn detected
3 incirn
4 db pru in error
12 wrong length data record.
1 case data file ord:case ord (last case)
2 record ordinal
3 recdrn detected
4 recdrn
5 db pru in error
13 illegal rectype encountered.
1 case data file ord:case ord (last case)
2 record ordinal
3 rectype detected
4 db pru in error
14 rectype record total mismatch. Printed if at end of run the number of records
for a given rectype is in error
1 rectype
2 reccnt detected
3 reccnt

SIR/XS Database 159

15 database record total mismatch. Printed if at end of run there is a record total
mismatch
1 dinrec detected
2 dinrec
16 case total error. Printed if at end of run total number of cases found does not
equal count.
1 dincas detected
2 dincas
17 Record or Case limit exceeded.
1 record of case limit reached
2 master index overflow
3 data file is full
18, 19 used ind block error. Printed if number of ind or db blocks read is in error
1 number detected
2 number should be
20 data error: missing error
21 data error: range error
22 data error: catint error
23 data error: valid error
24 Master Index is Full. If this occurs, the capacity of the database has been
reached. Possible solutions are to increase PRU size or to decrease maximum key
size.
25 index key out of order. Current key in an index block is not greater than the
previous key
1 index block pru
2 index block level
3 case data file ord:case ord (last case)
4 record ordinal
26 data key out of order. Current key in the data block is not greater than the
previous key
1 data block pru
2 case data file ord:case ord (last case)
3 record ordinal
27 non-matching index block keys. First key in index block does not match key in
higher level block pointing to it
1 index block pru
2 index block level
3 case data file ord:case ord (last case)
4 record ordinal
28 non-matching data index block keys. First key in data block does not match
key in index block pointing to it
1 data block pru
2 case data file ord:case ord (last case)
3 record ordinal

SIR/XS Database 160

29 overflow block has been used message. An overflow block is reserved when
the database is created. If the database requires more space and cannot obtain it, it
uses the overflow block to attempt to maintain database integrity.
30 Missing CIR: case id changed but no CIR record.
1 case data file ord:case ord (last case)
2 rec ordinal
3 rectype

Secondary Index verification messages

Any secondary indexes on the database are verified. If there is something wrong,
the following error messages may be produced. All of these are serious errors and
you need to drop and rebuild the index:

***ERROR - couldn't read index PRU - unable to read an index block from disk.
***ERROR - Zero index PRU - should have a block number but have zero.
***ERROR - couldn't read data PRU - unable to read a data block from disk.
***ERROR - Zero data PRU - should have a block number but have zero.
***ERROR - index key mismatch - as the various index levels were processed, a
mismatch on the key was found.
***ERROR - data key mismatch - at the bottom level the data block pointed to by
the index did not match on key
***ERROR - index count mismatch - as the various index levels were processed,
a mismatch on the counts was found ***ERROR - data count mismatch - at the
bottom level the data block pointed to by the index did not match on counts
If one of these errors occurs, supplementary information is printed including:
LEVEL - The index level being processed
PRU - The block being referenced
ENTRIES - The number of entries
COUNT - The count of entries
CURRENT ENTRY - The entry being processed

SIR/XS Database 161

DOWNLOAD

DOWNLOAD FILENAME= filename
 [MESSAGES= ON | OFF]

Reads the text file produced by UPLOAD from a journal and applies these changes
to the database. Database administrator security is required to run this utility.

FILENAME
Specifies the name of the input file.
DOWNLOAD FILENAME = 'JOURNAL.UPL'
MESSAGES
Specifies whether messages are issued. Messages include whether a record exists
in the database that is marked as a new record on the upload file. By default,
messages are off.

For example

DOWNLOAD FILENAME = 'JOURNAL.UPL' MESSAGES = ON

SIR/XS Database 162

SIR MERGE

SIR MERGE FILENAME = input_file
 DATABASE = database [PASSWORD = password]
 [SECURITY = read password]
 RECTYPES = ALL | source [:targetno,name] [(expression)]
 [BOOLEAN = (log_expr)]
 [NODATA]
 [RENAME = [source](source_list = target_list)]
 [UPDATE = ADD | REPLACE]

Merges record types from a copy of one database (source) into an existing
database (target) that is the database currently being used. The source is a binary
file. The FILENAME, DATABASE, and PASSWORD, SECURITY clauses if required on
this database, must appear before any other clauses. DBA write security for the
target database is required to use this command. This utility is not available
through the menu system.

If the record type is already defined in the target database schema, the source and
target record type definitions must match exactly. If a new record type is being
merged, the schema for the new record type is created containing everything from
the source database schema definition except the IF, COMPUTE, RECODE,
ACCEPT REC IF and REJECT REC IF statements.

If the target database is caseless, the case id and CIR's on the source database are
ignored. A caseless source cannot be merged into a case structured target. (Use
SIR SAVE FILE to create a case structured database from a caseless database.)

The options on this command are:

FILENAME
Specifies the name of the source binary file to merge.
DATABASE
Specifies the source database name.
PASSWORD
Specifies the source database password.
SECURITY

SIR/XS Database 163

Specifies the read security password of the source database. The read password
must be the DBA level password.

SIR MERGE FILENAME = 'COMPANY.UNL'
 DATABASE = COMPANY
 PASSWORD = COMPANY
 SECURITY = HIGH
RECTYPES
Specifies the record types to merge. The CIR of the source database is merged if
the variables in the target CIR match exactly.
ALL
Merges all source record types.
source
Merges the specified record types. The record type may be a name or number.
:targetno,name
Merges the source record types with the specified target record types. Do not
leave any blanks between the colon : and the number. Specify both the number
and name of the target record.
(expression)
Specifies a logical expression to select records. This can reference both common
variables and record variables from the source record type(s).
If the RENAME clause is used, specify the new name of the variable in this clause.
BOOLEAN
Specifies a logical expression referencing common variables to select cases. If the
expression is TRUE the case is merged.
NODATA
Specifies that no data is merged. The schema for the specified (new) record
type(s) is added.
RENAME
Specifies new names for variables merged from the source record types. Use if the
source and target records have different names for the same variable or to change
a variable name from the source name when a new record type is being created.
RENAME does not change variable names on existing target records. Specify the
RENAME= rectype (source variable list = target variable list) form when more than
one record type is being merged. The rectype is the source rectype:
SIR MERGE ... RENAME = 1 (EMPNAME = NAME)
UPDATE
Specifies the action to take when the record identifiers on the source record match
those of a record in the target database.
ADD
Specifies that only new records are created. If a source record has a key that
matches an existing record on the target database, the source record is rejected
and a message is issued.
REPLACE
Specifies that records are only replaced. If a source record has a key that does not
match a record on the target database, the source record is rejected and a message
is issued.

SIR/XS Database 164

By default, both new records are added to the database and existing records are
replaced.

SIR/XS Database 165

RELOAD FILE

RELOAD FILE dbname
 FILENAME = fileid
 [PASSWORD = password]
 [SECURITY = rsec,wsec]
 [UPDATE = n | FILE= n]
 [LOADING = n]
 [NOFCASES = n]
 [AVGREC = n]
 [RESTART]

Recreates a database. The input is a binary file that is a copy of a database.

The reload database name and password must be the name and password of the
database on the unload file. To change database names and passwords, specify the
new name and password on the UNLOAD.

Optionally separate multiple parameters on the command with slashes.

FILENAME
Specifies the name of the binary file that contains the input. If there is more than
one copy of a database on the file (which happens if the database is UNLOADed to
the same file more than once), specify UPDATE= n or FILE= n to reload a copy
other than the first.
PASSWORD
Specifies the database password. Must match the password of the unloaded
database.
SECURITY
Specifies the read and write security of the database. Specify an asterisk '*' for a
null security password.
UPDATE
Specifies the update level to reload if there are multiple copies of the database on
the unload file. ITEMIZE FILE reports the update levels of multiple database
copies on a file.
FILE
Specifies the file number of the database to reload if there are multiple copies of
the database on the unload file.
LOADING
Specifies the fraction of each disk block to fill with data.
AVGREC

SIR/XS Database 166

Specifies a new value for RECS PER CASE in the Case Schema definition for a
case-structured database. The specified value is the average number of records per
case.
NOFCASES
Specifies a new value for N OF CASES in the Case Schema definition for a case-
structured database. The specified value is an upper limit on the number of cases
in the reloaded database.
RESTART
Resets the database update level to 1. This is done automatically when the update
level on the reloaded database would be greater than 32268.

Example:

RELOAD FILE MYDBMS
 FILENAME = 'COMPANY.UNL'
 UPDATE = 52

SIR/XS Database 167

Tabfiles and Tables
A Table is a Relational Table (or flat file) that is a number of occurrences (from 0
to n) of a single type of record that has a number of variables (or columns). For
example, a CUSTOMER table might have all of the customers with customer
number, name, address and credit limit as variables. The individual variables that
make up a table are defined including the variables name, format, data type,
missing values and value labels. Tables can be created, defined, populated,
modified and retrieved from.

Tables are physically held in Tabfiles. A Tabfile is a physical file on disk that
contains relational data tables, schema definitions for those tables, indexes to the
tables and system tables. A tabfile is independent of all other tabfiles and is
independent from any SIR/XS database. A tabfile is the largest unit that exists for
security and access control. A tabfile can hold multiple tables. Before accessing a
table, the appropriate tabfile must be connected.

Tables from multiple tabfiles can be accessed and retrieved by SQL, VisualPQL
and FORMS.

A SIR/XS session may be connected to multiple tabfiles at the same time. A
default tabfile can be defined and this tabfile is used whenever a tabfile name is
not specified. Whenever tables are referenced, the tabfile can be specified
explicitly or the default can be used. Tabfiles can only be updated by one user at
one time.

An Index is a way of accessing a table using the values of a particular variable as
the key. Indexes can be defined on any variable or combination of variables. An
index can be defined as only allowing unique values (for example Customer
Number) or can have multiple entries for records all with the same value (for
example Last Name). Indexes can be used to process tables randomly or in index
sequence. If a table is processed without an index, it is retrieved sequentially in
the order in which it was created. Once an index is defined, it is built from any
existing data and is automatically maintained as the table is updated.

Tabfiles, tables and indexes may be defined in a number of ways using SQL, the
VisualPQL procedure SAVE TABLE or the menus. In addition, there are specific
SIR/XS commands that deal with tabfiles and tables. These are:

• CONNECT TABFILE
• CREATE TABFILE
• CREATE INDEX

SIR/XS Database 168

• VERIFY TABFILE

SIR/XS Database 169

CONNECT TABFILE

CONNECT TABFILE tabfile [ON filename]

Connects the specified tabfile. A tabfile must be connected before it can be used.
A pre-compiled VisualPQL program can connect a tabfile when it runs, but, if
you need to compile a VisualPQL program that references a tabfile, the tabfile
must be connected first.

The ON clause identifies the physical file where the name of the physical file is not
the internal tabfile name plus .tbf.

SIR/XS Database 170

CREATE TABFILE

CREATE TABFILE tabfile-name
 [FILENAME filename]
 [IDENT BY grpname [grppass] [.username[userpass]]]
 [JOURNAL filename]
 [BLOCKS n]

Creates a tabfile. The tabfile name is the name used in all other commands. This
name is stored on the physical file and is the same name used to CONNECT to this
file in subsequent sessions. A tabfile is automatically connected when created.

FILENAME
A filename for the tabfile. If this is not specified, the filename is created from the
tabfile name plus a suffix of .tbf and this must be a valid filename on your
operating system.
JOURNAL filename
Specifies that journaling is turned on and names the operating system file to use.
If the journal file is not there when the tabfile is updated, a new journal is created.
If the journal is there, new journal data is added to the end of the file.
IDENT BY
Creates the initial security definitions for access to the tabfile.
Group name and password
Specify a group name who has DBA permission for the tabfile. If this is not
specified, the tabfile is created with no security; this cannot be changed and no
security can be assigned to any individual table on that tabfile. Optionally specify
a group password
User name and password
Further restricts DBA access to a second level of name and optional password.
BLOCKS n
Specifies the number of blocks to create a physical block. In general do not
specify this as the default is adequate. The default of 1 gives an actual block size
of 2k bytes. A specification of 2 gives 4k bytes and so on. The number must be a
positive integer. A block must be able to hold the largest physical record.

SIR/XS Database 171

CREATE INDEX

CREATE [UNIQUE] INDEX index-name
 ON [tabfile.]table (column [ASC|DESC], ...)
 [PCTFREE integer_value]

Creates an index for a table. An index provides direct access to a subset of
records.

ON
Select the tabfile and table to create the index on.
index name
The name used to refer to the index. Must be unique on this table.
UNIQUE
Specifies that two rows cannot have the same index value. Rows with a value the
same as an existing row are rejected. If an index is created for a table, and existing
rows contain identical key values, then the index is not built and an error message
is issued.
Columns
Specifies the column(s) comprising the index in major to minor sequence. For
example: if (Sex, Name) is the index, this retrieves all Males by name, then all
females by name. If (Name, Sex) is the index, everyone with the same name is
retrieved together.
ASC | DESC specifies Ascending or Descending sequence for a particular variable.
Ascending is the default.
PCTFREE
Specifies the percentage of free space to leave in the index blocks. This is used as
new index entries are made. If the table is updated on a regular basis, take the
50% default. If the table is very static and the index is not updated, or is updated
sequentially, specify a low figure.

Examples:

CREATE UNIQUE INDEX XID ON MYFILE.EMPLOYEE (ID)
CREATE INDEX XNAME ON MYFILE.EMPLOYEE (LASTNAME,FIRSTNAME)
CREATE INDEX XREVIEW-DATE ON MYFILE.EMPLOYEE (REVDATE DESC)

SIR/XS Database 172

VERIFY TABFILE

VERIFY TABFILE tabfile [ON filename]

Checks all of the tables on the specified tabfile. If a table or tables are corrupt,
VERIFY issues a notice of the affected tables and prompts on whether to purge the
corrupted tables.

If a tabfile is corrupt, you may have difficulty CONNECTing to it to verify it. If you
have DBA permissions, CONNECT to a corrupt table by specifying READ access
only.

The ON clause is used to identify a the physical file where the name of the physical
file is not the internal tabfile name plus .tbf.

SIR/XS Database 173

Tuning and Efficiency
The information in this topic covers the way SIR/XS manages data internally.
You do not need to know this to use SIR/XS successfully or to implement SIR/XS
systems. It is here if required for database design on large or complex systems, or
tuning particular applications.

Efficiency in an application is difficult to achieve by tuning after the system is
developed. If efficiency is a concern, the best time to consider these issues is at
the design stage. The first thing to determine is whether efficiency is a major
concern and to identify possible areas where these concerns may arise. For
example:

• Data Entry.
Is data entry interactive ?
How many people are going to require simultaneous access ?
What sort of turnaround is required ?
What response times are necessary ?

• Regular Batch Processes.
Are there major processing tasks that must happen every day, week,
month ?
Are there reports that must be done very frequently ?
Are there reports where the results must be available immediately ?

• On-line Queries.
How is the data accessed ?
Are inquiries always on particular records or are sets of records retrieved
that match given conditions ?
How up to date does the data need to be ?

• Disk Space.
Is the amount of data to hold relatively trivial for this size machine or is it
going to have a major impact on disk storage ?
Can disk storage be ignored for all practical purposes or do you have to
have to make the most efficient use possible ?

• Recovery.
How is data going to be protected in case of problems ?
What concurrent updates are going to happen ?
What journaling strategy is appropriate ?

SIR/XS Database 174

Disk Space

 The amount of space that a database occupies on the disk can be a concern with
larger databases. There are often trade-offs between processing efficiency and
storage and there are several things that can be done to limit the size of databases.

Database Subsets

All of the data may not be needed on-line. There are utilities that create a subset
of a database. There are utilities that merge subsets into the master database. For
example, if an application normally only deals with data from the current year,
archive the data for previous years and conserve disk space. If the old information
is needed for year end reports, reload it, use it and then archive it again.

CIR Size

The common information record or CIR on a case structured database occurs once
for each case and holds both record counts and common data.

Record Counts

The CIR holds space to count occurrences of each possible record type on the
case. Allowing for large numbers of record types means a large CIR. In particular,
it is very wasteful to allow a large number of record types (MAX REC TYPES) with
the intention of using very few e.g. do not define a MAX REC TYPES 1000 just to
use a few record types in various ranges (100+, 200+, 300+) to mean something.
For maximum efficiency, start record types at 1 and assigned numbers
sequentially.

The MAX REC COUNT affects the size of each counter (1, 2 or 4 bytes). So a MAX
REC TYPES of 1,000 and a MAX REC TYPES of 1,000,000 would mean 4K of
record counts per CIR.

Common Vars

Defining a variable as a common var means that it is physically stored in the CIR,
not in a record. Very often, there is only one occurrence of a common var in a
case, so storage is identical whether held as a common or a record variable. If a
common var is defined in a record that does occur multiple times, it is only
physically stored once, this value being the latest value written.

Common vars are retrieved very efficiently regardless of a particular record type
that is being processed. (Note that common vars cannot be used as keys in
secondary indexes as they are not physically part of the record.)

SIR/XS Database 175

The Loading Factor

 Records are stored in "data blocks", the exact size of a data block varying from
database to database. Records are added to a data block, and when that gets filled
up, another block is created and so on. Records are maintained in sequence within
a block and some empty space is left on each data block for the insertion of new
records. The amount of space on each data block is controlled by the loading
factor and is expressed as a decimal representing a percentage. The default
loading factor on updates is .5 or 50 percent.

Using the default, when a data block fills up, it is split, with half of the records
staying in the original block and half going to the new block. Fifty percent is a
good figure for active databases. It means however, that as much as fifty percent
of the data file may be empty. This may be unacceptable on large databases and
on relatively static databases.

The amount of free space is controlled with the loading factor clause on database
updating and database creating commands and utilities.

When a database is reloaded or imported, the data is in sequence and the default
loading factor is set to .99 to make maximum use of disk space.

The Database Index

The index to the data records in a database is built from the key variables. The
key of the first record in each data block is in the index. This means that there is
some redundancy between data in the records and data in the index.

The larger the size of the keys, the larger the index. The maximum size keys in
any record in a database affects the size of the index. If an application has one
record type with a much longer key than all others, try to reduce this if possible.
For example, do not have one record type indexed on a 60 character name, if all
other record types in the database have unique numbers.

The maximum possible size of the database key or any secondary index is 320
characters.

In a series of record types that share higher level keyfields, each of these records
store much of the same key information. It is therefore sensible to minimise the
size of these keys.

For example, a text retrieval system might use words to index documents.
However a word can be very long and storing these as keys for documents is
wasteful of space. Assign each word a number, such that the text of the word is
only stored once and all other key indexing is through the word number.

SIR/XS Database 176

Variable Sizes

It takes more space to store strings than integers. Whenever there is a choice,
storing a number is more space efficient. If a string has a defined set of values,
either define the variable as an integer and assign value labels or define it as a
categorical variable.

SIR/XS compresses string variables by stripping trailing blanks to hold only the
data. Specifying a long maximum length for string variable incurs little overhead
provided it is not used in any keys or secondary indexes. Note that the maximum
record size is limited to 32k bytes and is tested assuming all strings are at
maximum defined length.

The size of integers depends on the maximum value. One byte holds integers in
the range of -127 through +123; two bytes holds integers in the range -127*256
through +127*256 (approximately 32,000), four bytes holds integers in the range
-127*256*256*256 through +127*256*256*256 (approximately 2,100,000,000).

SIR/XS stores an actual value in a data field to indicate missing values. A variable
can have four possible missing values. SIR/XS uses the upper four values on
integers for the three missing values that can be specified and the system missing
value UNDEFINED.

Real numbers are stored in 4 or 8 bytes.

Schema Specifications

SIR/XS assigns internal formats according to the external format of the data
defined in the schema. Disk space can be saved by a careful choice of schema
specifications.

For example, a variable with an input format of "I3" requires 2 bytes of storage
because any value between -99 and 999 in the input field can be input. If this field
contains a 2-digit variable with a leading blank or plus sign (+), specify the format
as "1X,I2". This saves one byte of storage space in each data record containing
this variable since 2-digit variables are stored in a single byte.

VAR RANGES

Specify VAR RANGES if the variable has a narrower range of values than given by
the number of digits. The value is used to calculate the minimum number of bytes
needed to store the data on disk. For example, specifying a VAR RANGE of -99 to
+99 on a variable where 3 input columns are allowed saves space. Consider a
potential saving of disk space by defining a proper VAR RANGE.

CATEGORICAL

SIR/XS Database 177

Categorical variables offer an efficient way to store strings that are predefined. A
categorical variable is a character string that has a limited number of values
specified as an ordered list. When the data is input as a string, it is compared to
the list and the number that corresponds to the matching position in the list is
stored instead of the value. This has the advantage that only valid entries are held
and considerable space is saved. In programs and reports, the full string is
displayed and retrieved.

For example, a categorical variable might be a list of the names of American
states. If 'Alabama' were the first entry in the list, when 'Alabama' is input, '1' is
stored.

The list is held in the data dictionary and is searched sequentially. It is a very
simple and easy to use facility for short lists that are not updated very often. A
categorical variable takes one byte (for up to 123 values) or two bytes for longer
lists.

Do not use categorical variables if there are hundreds or thousands of entries, or
there is more information about each entry than just the name, or users have to
modify the entries, use tables with indexes to store this type of reference data.

SCALED VARS

SCALED VARS stores numbers as integers when they have a predefined number of
decimal places. This is more efficient than using floating point R*8 and can be
more accurate than R*4.

For example, suppose a variable XPCT that holds a percentage and can have a
range of 0 through 100 and a precision of one decimal point: Define XPCT as
integer with an "I4" input format and specify SCALED VARS XPCT (-1). On input,
supply the data as a number that includes the physical decimal point, i.e. 10.3,
40.0. The XPCT scaled integer is only going to require two bytes to store (since the
maximum physical digits stored are 1000 i.e. 100.0).

If the precision for the percentage example were 2 digits after the decimal point,
specify an input format of I6 (nnn.nn) allowing for the decimal point and 5
numbers and specify VAR RANGES (0.00,100.00) that tells SIR/XS that 2 bytes
are sufficient.

Even more storage may be saved with SCALED VARS, on numbers that are very
small but have only a small number of significant digits. For example, the specific
gravity of fluids in the human body (blood, urine, etc.), are often measured with a
3 digit precision. To maintain precision in floating point, specify an INPUT
FORMAT of D4.3. SIR/XS would use 8 bytes of storage because of the precision. If
this variable is read as "I2" integer and specify SCALED VARS (-3), 6 bytes is

SIR/XS Database 178

saved per value and accuracy is preserved. (The variable can hold values up to
32.763 that is ample for an S.G. measurement.)

SIR/XS Database 179

Processing Efficiency

 Disk Input/Output (I/O) is the most time consuming operation on a computer and
retrievals should be designed to minimise I/O.

Using Keys

The index is used to retrieve records whenever keys are specified in a retrieval
statement. In case structured databases, the index is ordered by case, record type
and by the key variables. In caseless databases, the index is ordered by record
type and then key variables.

Whenever possible use the keys to retrieve records. To retrieve a single record,
specify the whole key. To retrieve a set of records, specify the high level keys that
define the set. Whenever possible, specify the keys as part of the retrieval
statement, rather than retrieving all the records and testing values in the program.

Efficient On-Line Access

If the key values are known, then data can be retrieved efficiently. Without keys,
an alternative access route is needed. Doing a serial search for particular records
on-line, without knowing the high level keys is a slow process.

Define secondary indexes to provide access to subsets of records. Both databases
and tables provide automatic secondary indexes.

SIR/XS Database 180

Efficient Batch Processing

 Batch processing (the running of jobs in a non-interactive way), typically means
that a user is not at a terminal waiting for the job to finish. Processing speed tends
not to be of the same concern as it is for on-line access. A process that takes 2
minutes as compared to 1 minute is unlikely to be of concern to anyone. However
there may be some concerns when processing thousands of transactions that run
for hours.

Consider sorting the input transactions to ensure that any serial processing
happens only once.

Consider adding additional indexes or keys to avoid an application having to do
serial searches of records to find those of interest,

One common design issue involves processing records after a certain amount of
time has elapsed. For example, sending a letter to all patients who have not
attended for six months. Consider a secondary index by date for planned future
attendances. Update this at the time the visit data is updated and then the system
can process by date rather than serially searching.

Efficiency in Batch Data Input

Batch data input is the loading of data from files into the database through the
batch data input utilities. This can be done interactively or in batch mode.

For the most efficient processing, sort the data for a batch data input run into the
same sequence as the data base key. Sort on :

• the CASE ID
• the record number
• the key fields

This way, the batch data input can be accomplished by an almost sequential
processing of the data base.

It is efficient to process the records by record type. Each time a new record type is
processed, the description of this record type must be loaded from the dictionary.
If different record types are processed together and there are multiple records for
each case, this saves accesses to the case block but requires multiple access to the
dictionary. The most efficient processing depends on the exact mix of input.

SIR/XS Database 181

Database Internal Structure

 The records in a SIR/XS database are stored in a direct access file with an
internal index sequential B-Tree index. The database contains two types of
blocks: data blocks and index blocks. Data blocks contain the data records, index
blocks contain the information needed to access any record in the data base.
Blocks can be in any sequence on the disk. Within one block, records are held in
sequence. The first record in each block is indexed.

When a record is added, it is stored on the correct block in sequence. This means
that a block can get full. If this happens SIR/XS creates a second block to store
the additional data, and creates another entry in the index. New blocks are created
as necessary. A new block is either allocated from existing available blocks or
from new blocks at the end of the file. Blocks become available if the data on
them is deleted.

SIR/XS holds the case id, record number and key fields as the key. All keys are
the same length, which is either the maximum length of a defined key or the MAX
KEY SIZE specified. Pay attention to the size of the key. A key is held for each
data block in the index and the key is held for each record in each data block.
Defining a very large key for one record type impacts the overall database size,
regardless of the number of occurrences of that record type.

At the lowest level, an index consists of a key and a pointer to the data block that
has that key as the lowest value. At the highest level there is a single Master Index
block. This contains a key and a pointer to the index block that has that key as the
lowest value. If necessary, because of the size of a database, there may be further
index levels between the Master index and the lowest level index. When a key is
specified, SIR/XS uses the master index (and any other index levels) that point to
the lowest level index block that corresponds to the value given and retrieves that
data block.

SIR/XS Database 182

Block Organisation

 SIR/XS calculates the size of data blocks and index blocks for a particular
database based on keysize, maximum record size and maximum numbers of
records when it first puts any data into the database. The block size is between a
minimum and maximum (from 2K bytes to 32K bytes on all current systems). The
data blocks and index blocks in a database may be different sizes though in a
particular database all data blocks are the same size and all index blocks are the
same size.

 When a block is created on disk, it is assigned a number known as the PRU or
physical record unit that can then be used to retrieve the block directly. In
operating system terms, a SIR block consists of multiple physical disk blocks
since most operating systems write in fixed blocks.

 The LIST STATS command gives information about the database including the
'INDEX/DATA BLOCK SIZE'. This gives the sizes of the SIR/XS index and data
blocks. Sizes are given in double words - eight bytes on current systems. Sizes do
not include the control information SIR/XS holds on each block. A logical block
of 2K is 256 doublewords. A typical size for logical blocks for small keys and
small data records would be 253/254.

Data Blocks

Records are stored in blocks in the order of the keys:

case 1 CIR of case 1
records of type 1 within case 1
records of type 2 within case 1
...
...
case 2 CIR of case 2
records of type 1 within case 2
records of type 2 within case 2
...
...
case 3 CIR of case 3
...

SIR/XS holds all of the records in a data block in sequence and to do this it
constructs an extra key area at the beginning of each record and holds keys there
separately from the data. All record key areas are the same length, which is the
same as the keys held for the index.

SIR/XS Database 183

Data block size depends on the size of records defined. If there are not any very
long records, SIR/XS uses one block (i.e. 2K). SIR/XS tries to allocate a block
size that is big enough to hold 4 of the largest records. The largest block size is
32K. If the maximum record length is between 512 bytes and 8k bytes, then
SIR/XS allocates a block size between 2K and 32K. A data record is held in one
block. That is, a record is not split across blocks so the maximum size for a single
record type is 32K.

SIR/XS Database 184

Loading Factor

 When SIR/XS needs to insert data that does not fit in the original data blocks, it
creates a new block and splits the original data leaving some space on each block.
The amount of space left on a block when it is split is determined by the "Loading
Factor".

A loading factor can be specified on a retrieval update, a batch data input or on a
utility update run such as RELOAD. This affects the way a full block is split. The
factor is a number between 0 and 1 and the default is .5 on updates and .99 on
imports and reloads. The most efficient database is one where each block is
loaded to the maximum since this minimises the amount of disk space used and
makes retrievals more efficient by reducing the number of disk I/Os. However, a
high loading factor for existing blocks can affect the ways that updates work. To
take some examples:

Example Loading Factor Effects

If a loading factor of .99 is specified on a RELOAD, then all the blocks are
approximately full. Suppose that Batch Data Input is then used to add a large
amount of data at the end of the database, say with an .99% loading factor. Again
all blocks are approximately full. (Blocks have to hold whole records and each
record is a different length. So when a record does not fit into a block a certain
amount of space is left free. This space varies from block to block.)

Now suppose that a Retrieval Update adds records randomly using a loading
factor of .8. At some point a block becomes full. The record being added at that
time is inserted in the correct place and 20% of the space on that block is made
available by copying those records to a new block and entering that into the index.
If the original block is added to further with data that belongs in that block (i.e.
with a key lower than an existing record in that block or than the lowest key in the
next block) then again it becomes full and again split with the next new block
again taking 20%. Thus it is possible under some sequences of updates that many
new blocks are only 20% full. If the loading factor were higher, the result would
be even worse. Adding data in reverse key sequence with a high loading factor
would produce very poor block usage.

The best loading factor depends on the nature of the activity at the time. In
general, adding in sequence at the end of the database is best served by factors
nearer to 1. Randomly adding data throughout the database is best served by
having enough space available for the inserts to work without splitting blocks and,
without specific knowledge as to the sequence of updates, a loading factor of .5
should be used.

SIR/XS Database 185

SIR/XS uses .5 as a default for updates and .99 as a default for reloads and
imports.

The actual, exact loading is reported by the VERIFY FILE command. The number
reported gives an average over all blocks in the database. SIR/XS does not split
records across data blocks and each block contains complete records only. A
block contains a mix of records. For example an 80% full block in the EMPLOYEE
database might contain data for 3 or 4 employees and as such might have say 4
CIRs, 4 Employee records, 7 Position records and 13 review records. Thus the
exact loading of the block depends on the exact mix of records.

Index Blocks

The key is comprised of:

• the CASE ID
• the record type number (0 for the CIR)
• the Key Fields

Each key has the same length - its length is either defined implicitly in the schema
or by the MAX KEY SIZE command.

The index holds the key of the lowest record in each data block. An index block
holds 'n' entries depending on the size of the key. If normal size keys are
specified, say up to about 80 bytes, SIR/XS uses the minimum 2K block size;
after that SIR/XS increases the index block size. The index block size is always a
multiple of the minimum size. If there are very large keys or a very high number
of data blocks, SIR/XS increase the size of the index block to cope with this.

Index Levels

There are always at least two levels of index, a Master Index, which is a single
index block, and a low level index. There may be up to 6 levels of index. A six
level index can point to the number of keys in one index block raised to the power
of 6. For example, with 36 keys in a block, a six level index copes with over
2,000,000,000 data blocks.

To illustrate the way index levels work, assume there are 80 keys per index block.
One index block can point to 80 other blocks. If there are less than 80 blocks of
data, then there are only two index blocks. The master index and one low level
index block. The master index only has one entry. With 81 to 160 data blocks,
there are three index blocks, the master index with two entries, one index block
for the first 80 data blocks and the second for the next eighty blocks. This
continues on until there are 80*80 data blocks, 80 index blocks and one master
index block with 80 entries. When the next data block is added, one of the low
level index blocks is used to create two new low level blocks. The original low

SIR/XS Database 186

level index block is now a third level index that contains just two entries pointing
to the two new low level indexes. As records are added, indexes split as
necessary. The third level takes the index capacity up to 80*80*80 data blocks.
This process continues as necessary.

At no one point in time is there any major overhead or any need to reorganise the
database assuming that none of the limits specified in the schema definition are
reached.

Secondary Indexes

 All secondary indexes are held on a separate database file (.sr6). This is created
when the first index is created and deleted if the last index is deleted.

Each secondary index is physically very similar to a standard database. It contains
index blocks and data blocks. The sizes of these blocks are calculated in a similar
way to the block size calculations for standard database blocks to ensure
reasonably efficient processing given the size of the secondary index key and the
maximum number of records of that type. Each index potentially has different
block sizes.

Each record in the data block in a secondary index has the secondary key as the
key and contains the standard database key as the data. Thus the size of these data
blocks is affected by the size of both keys.

SIR/XS Database 187

Size Estimating

 Once records have been added to the database, each physical data block contains
a number of different record types. For size estimation, calculating the number of
data blocks each record type would take gives a reasonable estimate of disk space
requirements. In addition, space is required for the dictionary and procedures but
typically these are relatively small requirements. See Procedure File for further
details on managing a procedure file.

The following discussion refers to the LIST STATS output listed at the bottom of
this page.

• From the LIST STATS, find the data block size in double words. For
example 254.

• From the LIST STATS find the keysize in bytes. Convert this to double
words by dividing by eight and rounding up. For example, keysize 12 is 2
double words.

• Take the first record type in the LIST STATS. Take the size of the record
in words and add the keysize from step 2 to find the space this record type
takes. For example, "Size in Words" 8 plus key size 2 equals 10.

• Take the data block size and divide by the length from step 3. This gives
the number of that record type that fit in one data block. For example,
record size 10, block size 254 gives 25 records per block.

• Divide the total number of records in the database by the number per
block to find the number of blocks needed. For example 1000 records at
25 per block need 40 blocks.

• Repeat steps 3 thru 5 for each record type plus the CIR. (One CIR per
case). For example:

CIR Size = 5 words plus key 2 = 7.

254 divide by 7 = 36 per block.

1000 cases in database means 1000 CIRs.

1000 divided by 36 means 28 blocks.

• Add up all the blocks needed for each record type to get the total data
blocks required. For example,

CIR = 28 blocks

Rec1 = 40 blocks

SIR/XS Database 188

Rec2 = 32 blocks

Total = 100 blocks

This shows how many data blocks the database requires and the record types that
use the space.

• Apply the 'loading factor'. If using 50%, then twice as many data blocks
are needed; if using 80%, then 20% more are needed. For example, 100
blocks at 80% require 120 blocks.

Next calculate the index size:

• Take the Max Entries per Index Level from the LIST STATS. For example,
126.

• Take the number of data blocks and divide by the Max Index Entries. This
gives the number of lowest level index blocks. For example 120 blocks
divided by index entries of 126 gives 1.

• If the number of index blocks so far is less than the Max Index Entries,
then do not do this step. If the number is more than the Max Index Entries
then divide the answer by the max index entries to get the number of
second level index blocks. If this number is greater than the max index
entries, divide again to get the third level index blocks. Repeat this until
the answer is less than Max Index Entries. Add up all levels.

• Add 1 for the master level.

For example, if Max Index Entries is 40 and there are 100,000 data blocks.
Bottom Level = 100,000/40 = 2,500.

Second level = 2,500/40 = 63 (Rounding up).

Third level = 63/40 = 2.

Total required 2,500 + 63 + 2 + 1 = 2,566.

This gives how many index blocks are needed. To translate these two figures into
physical disk blocks or megabytes on a particular operating system, multiply by
the appropriate factors:

Take the data block size and index block size from LIST STATS in double words
and convert to physical blocks or bytes. There is a small overhead on each
physical block such that the reported size is smaller than the real physical size.
For example, a data block of 254 double words is 2K (which is four 512 byte
blocks on some Windows file systems). 1,000 254 double word data blocks would
take approximately 2 megabytes of disk space.

SIR/XS Database 189

This is how much space the data and indexes are going to take for a database.

• Sample VERIFY FILE output

Index PTBYNAME Verified - Entries 1852
Verify database statistics

Data records on database 60408
Cases on database 1852
Index blocks read 16
Data blocks read 1467

Average index block loading 0.91
Average data block loading 0.97
Warning messages 0
Correctable errors 0
Non-correctable errors 0

Verification complete with no errors

• Sample LIST STATS Output

Statistics for HEART
Database name HEART

Creation Date/Time Dec 13, 2005 11:55:40
Last update Date/Time Dec 13, 2005 11:57:15
Update level 1

Average Records per Case 25000
Max/Current Number of Cases 75000/1852
Max/Current Number of Records 1875000000/60408

Max/Current Number of Record Types 117/85
Maximum Input Columns/Lines 136/30
Rectype Columns 1-3
Journaling ON
Encryption ON
Case Id Variable SSNUM (A)

Number of Index Levels 2
Max Entries Per Index Block 101
Index/Data Block Size 1011/1529
Active/Inactive Data Blocks 1467/0
Active/Inactive Index Blocks 16/0

Keysize In Bytes 72
Min/Max Record Size 1/346
Number of Temporary Variables 0
Maximum Number of Data Variables 958

SIR/XS Database 190

Record Record Number of Maximum
Total In Size In Entry Use
 No. Name Variables Per Case
Database Words Count
---- -------------------------------- --------- -------- ---
----- ------- ---------
 0 CIR 3 1
1852 36 1
 1 DEMO 89 1
1852 96 1
 2 HOSP 292 100
2124 140 1
 3 CLINPRES 958 100
1266 346 1
 4 CATH 530 100
399 213 1
......

SIR/XS Database 191

A DATA TYPE 64
A FORMAT 14, 71
ACCEPT 113
ACCEPT REC IF 59
ADD 123
ADD REC 112
BATCH DATA INPUT 112
ADD VARS 22
ALIMIT 113
ALL 113
ALPHANUMERIC VARIABLES 9
AUTO INCREMENT KEY 73
AVGREC 165
BACKUPS 144
BATCH PROCESSING EFFICIENCY 180
BLANK 81
BLANKUND 113, 118, 121
BLIP 113, 116, 118, 121, 125
INDEX 185
BLOCK SIZE 182
BOOLEANS 59
B-TREE 181
BOOLEANS 129
CASE ID 39
CASE STRUCTURED DATABASE 6
CASELESS DATABASE 7
CAT VARS 60
VARIABLES 9, 176
CATEGORICAL VARIABLES 9, 60, 176
CCF 156
CHARACTER VARIABLES 9, 61
CHECK 156
CIR 6, 41, 100, 103
CIRDATA 156
CIRKEY 156
CLEAR BOOLEANS 22
CLEAR COMPUTES 22
CLEAR RECODES 22
CLEAR VALUE LABELS 22
CLEAR VAR DOC 22
CLEAR VAR LABEL 22
COMMON 103, 139
COMMON INFORMATION RECORD 6
COMMON SECURITY 40
COMMON VARS 41
COMPUTE 62, 123

COMPUTED VARIABLES 62
CONNECT DATABASE 30
CONNECT TABFILE 169
CONSISTENCY CHECKS 16
CONTROL VARS 63
CORRUPTION FLAG 156
COUNT JOURNAL RESTORE 154
CIR 74
CREATE 31
CREATE DATABASE 29
CREATE DBINDEX 97
CREATE INDEX 171
CREATE TABFILE 170
TABFILE 170
CSV 113, 115, 118, 121, 124, 127, 132
D DATA TYPE 64
D FORMAT 14
DATA BLOCK 175, 182
DATA FILES 42
DATA LIST 64
DATA STORAGE 176
DATA TYPES 9
INDEX 175
VARIABLES 9
DATABASE LABEL 44
DATABASE PASSWORD 29
DATABASE PASSWORD SPECIFICATION

 30
DATABASE PREFIX 29, 30
DATABASE STATISTICS 150
VARIABLES 10
DATE DATA TYPE 64
DATE FORMAT 14
DATE VARIABLES 10, 66
DATE VARS 66
DBA 53
DECIMAL POINTS 17
PQLFORM 103
DEFINE TABFILE 170
DATABASES 83
DELETE SCHEMA 38, 108
DELETE STANDARD SCHEMA 38
DELETE VARS 22
DELETING A DATABASE 37
DETAILED 99
DISCONNECT DATABASE 32

SIR/XS Database 192

DISK SPACE 174
DOCUMENT 45, 67
DOCUMENTATION 93
VARIABLES 93
DOWNLOAD 161
DPOINT 127
DROP DBINDEX 98
DUMPING DATA 127
EDIT LABELS 22
BATCH DATA INPUT 180
ENCRYPT 46
ERRFILE 112
ERROR CODES 157
VERIFY FILE 157
ERROR LISTING 110
ERROR RECORDS 110
DATABASES 187
BATCH DATA INPUT 115
EVICT REC 115
EVICTCIR 116
EXACT DATE FORMAT 11
EXPORT 138
EXTENDED DATA TYPES 9
VARIABLES 14
EXTERNAL VARIABLE FORMAT 14
F DATA TYPE 64
F FORMAT 14
FILE DUMP 127
FILE LIST 129
FILE NUMBER 165
CREATE TABFILE 170
FILENAME 99
FLOATING POINT VARIABLES 9
FORMAT SPECIFICATION 70
FORMAT,DATE 10
FORMS 103
FREE SPACE 175
FROM UPDATE LEVEL 153
I DATA TYPE 64
I FORMAT 14
CREATE TABFILE 170
IF 69
IMPORT 137
DATABASE 175
INDEX NAME 97
INDEXED BY 132

INPUT 112
INPUT DATA 110
INPUT FORMAT 70
VARIABLES 9
INTEGER VARIABLES 9, 72
INTEGER*N 72
VARIABLES 15
INTERNAL VARIABLE FORMATS 15
INTERNALS 181
ITEMIZE FILE 148
JOINING RECORDS 8
JOURNAL 34, 144
JOURNAL RECORD NUMBER 155
JOURNAL RESTORE 153
JOURNAL ROLLBACK 155
JOURNAL UPLOAD 146
JOURNALING 29, 30
KEY FIELDS 73
KEY LENGTH 181
KEY VARIABLES 8
KEYS 8, 185
LABEL 17
VARIABLES 17
LABELS 99, 132
LIST DATABASE 33
LIST STATS 150
LISTFILE 112
LISTING DATA 129
LISTING SCHEMA 99
LOAD FACTOR 165
LOADING 113
DATABASE 175
LOADING FACTOR 175, 184
LOCK 83
LOCKING RECORD TYPES 83
LOG 110
LOGALL 113, 118, 121, 124
LOGFILE 112
LOGFILE FORMAT 110
LOGICAL BLOCK 182
LONG 100
MASKPW 103
MAX INPUT COLS 47
MAX KEY SIZE 48
MAX REC COUNT 49, 74
MAX REC TYPES 50

SIR/XS Database 193

RECORDS 52
DATABASES 52
DATABASES 74
MERGING DATABASES 162
MESSAGES 161
MISSCHAR 123
MISSING 81
DATES 75
MISSING VALUES 16, 75
VARIABLES 16
MODIFY SCHEMA 22
MODIFY VARS 22
MODIFYING DATA TYPES 104
MULTIPLE DATA FILES 42
N OF CASES 51
N OF RECORDS 52
NEGATIVE NUMBERS 15
NEW FILE 29
NEWDB 144
NEWPW 145
NEXT UPDATE LEVEL 154
NOAUTO 113, 116, 118, 121, 124, 128
NOBOOL 123
NOCASEID 39
NODATA 139
NOFCASES 166
NOINDEX 139
NOMAXKEY 103, 139
NONEW 83, 113
NOOLD 83
NOPASSWORDS 140
NOPROCS 140
NOTO 103, 140
NOTXS 103, 140
OBSERVATION VARS 77
OLD FILE 30
ON RECNAME 97
PASSWORD 29, 35, 103
PATCH 157
PCTFREE 171
PRU 182
PURGE SIR FILE 37
VARIABLES 16
RANGES 95
RANGES OF VALID VALUES 16
RCF 157

BATCH DATA INPUT 117
READ INPUT DATA 117
SECURITY 53
READ SECURITY 53
DATABASES 53
REAL 78
VARIABLES 9
REAL VARIABLES 9
REC SECURITY 79
RECDATA 157
RECKEY 156
RECODE 80
RECORD DOCUMENTATION 45
RECORD LABEL 83
RECORD SCHEMA 83
RECORD SCHEMA 0 41
RECORD SCHEMA DELETE 38
DATABASES 79
RECORD TYPE 83
CASES 54
DATABASES 54
RECS PER CASE 54
RECTYPE 113, 132
RECTYPE COLS 55
RECTYPES 100, 102
REGULAR 99
REJECT REC IF 85
RELOAD 165
RENAME 163
RENAME VARS 22
BATCH DATA INPUT 120
REPLACE REC 120
RESTART UPDATE LEVEL 166
RESTORING JOURNAL 153, 155
DATABASES 107
RESTRUCTURING 106
RLIMIT 114
NAMES 5
LIST STATS 189
VARIABLES 13
SCALED VARIABLE 13
SCALED VARS 86
SCHEMA LISTING 99
SCHEMA WRITE 102
SCIENTIFIC NOTATION 14
SECONDARY INDEX CREATION 97

SIR/XS Database 194

SECONDARY INDEXES 186
DATABASES 56
SECURITY 30, 36, 103
VALLAB 28
CASES 129
SET DATABASE 33
SHORT 99
SHOW DATABASE 33
SIR FILE DUMP 127
SIR FILE LIST 129
SIR MERGE 162
SIR SCHEMA LIST 99
SIR SPREADSHEET 132
SIR SUBSET 142
VARIABLES 15, 176
LIST STATS 187
SIZE ESTIMATING 187
SCALED VARS 177
VAR RANGES 176
VARIABLES 176
SIZE OF VARIABLES 15, 176
SKIP 114
SORT IDS 73
SPREADSHEET 132
STANDARD SCHEMA 87
STANDARD VARS 88
DATABASES 182, 189
STOP 114
STORAGE EFFICIENCIES 174
VARIABLES 9
STRING VARIABLES 9, 61
DATABASES 181
STRUCTURED 100
DATABASE 174
SUBSET 142
SUBSET DATABASES 174
SUMFILE 112
SUMMARY 110
SECURITY 56
SYSTEM SECURITY 56
SYSTEM SECURITY LEVEL 56
TABLE 132
TEMP VARS 57
FORMAT 12

VARIABLES 12
TIME DATA TYPE 65
TIME FORMAT 14
TIME VARIABLES 12
TIME VARS 89
TITLE 146
TO LISTS 24
UNDEFINED 81, 128
UNIQUE 97
UNIQUE INDEX 171
UNLOAD FILE 144
UPDATE 132, 163
UPDATE LEVEL 149, 154, 155, 165
UPDATE LEVEL RESTART 166
BATCH DATA INPUT 123
UPDATE REC 123
UPLOAD 146
EFFICIENCY 179
VALID VALUES 16, 90
VARIABLES 16
VALLAB 132
VALUE LABELS 17, 28, 91
VARIABLES 17
VAR DOC 93
VAR LABEL 17, 28, 94
VAR RANGES 16, 95
VARIABLES 16
VAR SECURITY 96
SECURITY 96
VARIABLE LABEL 28
VARIABLE LIST 92
VALID VALUES 28
VARIABLES 130, 132
VARLIST 103, 140
VARSEQ 104, 140
VERIFY FILE 156
VERIFY TABFILE 172
WRITE SCHEMA 102
DATABASES 58
WRITE SECURITY 58
ZERO AS BLANK 75
ZERO MISSING VALUE 81

