SIR/XS Host/API 1

SIR APL OVEINVIBI ..ottt sttt sae et e b et e besreeneasneennens 5
The DBIMIS FUNCLIONS ........coiiiiie ettt ettt ettt ae e et e et e e e enneenneeneenneas 6
The DBMS LIST COMMANGS ........cocoieeiiieiiieciie e stee st e st e see s e st e s e s e saeesaeesneesneesneas 8
The SQL FUNCLIONS.....cuiiieii ittt st sb et e e e 9
The SQL LI ST COMMENGS.......ccouiiiiiririiesiesieeie e seesesee et ee e e see s e ssessesseensens 10
e 00 L= o 0] =T L SR 11
ACME SQL ..ttt b bttt b bt e e b e e 11
SIRDBIMSE ... .ottt ettt st et b et e bt et et e b e et e tesnee e e 18
Compilation & LINKBOE .......cociiirieiicee s et 21
GeNEral COMIMENTS......c.eiiieiiecieetecee st ee et re e st e e s e s e sreesseesreesreesseesaeesseesreesnnennnes 22
(o (1 1o o SRS 23
Writing Programs With HOST ..o 24
T O TS o SR 25
The REHEVA SEACK.......c.ecieeeceie et st sneene s 26
ValTaDl€ DESCITPLONS ...ttt sttt sttt b st e sbesneenreas 28
Case and RECOId PrOCESSING .......coiueriirieeiesieeieiiesieseesie e ste e ee e seeseesbesseesessesneeneenee 30
Casel €SS Datanase PrOCESSING. ....ccueiverrerriesieiiesiesesee e sseeseeste s seessessesssesseeseessesseenseses 32
Multiple Datahase MOode in HOST ..o 33
Multiple User SUPPOrt With HOST ..ot 34
HOST 2.2 LOCK TYPES .. veiueeiirieeiestestee ettt sttt sae st e ste st ssesaesneeneessesneenns 35
Routing FOrmal ParameELersS..........ccooiierierienenee ettt 36
TABLE L.ttt ettt b et tenr e e e nae s 36
Overview of the HOST SUDIOULINES........ccccueriieiiiieieesieesieesiee e see e ae e esse e 37
[NItialiSAtION ROULINES......ccuiiiiiieeie ettt b e s nreesreenseens 37
CONLrOl ROULINES ......ceiiiiieeitiesiee sttt ettt ettt sbe e sre e s e s naeenseeneeneennnas 37
Termination ROULINES..........oouiiieiiieieesieeie ettt s ae e eneeteeneense s 37
Case ProcessiNg ROULINES.........coiiiiie i cie sttt sree e sses e sneesneas 38
Record Processing ROULINES .........couiiiiiieiieiie ettt nneens 39
Key Creation ROULINES..........ooiiiieiieiesie ettt ae et e te e sseesseesneenseens 40
Key DefiNitioN ROULINES ........ccoiieiieiiesie ettt ae et se e te e sse e sree s 40
Variable Modification ROULINES...........ccceiieiieiiiniiesee et 41
Variable Retrieval ROULINES..........ccoiieiiiiieiie sttt 41
GENEral ROULINES.......ccuieiieeiiieitie ettt esae e e reeneeennas 41
ULHITY ROULINES. ....cviiiieiieiie ettt sb et sneenneesneenneens 43
Advanced Key Definition ROULINES...........ccoiveiieiienie s 43
Advanced Data Modification ROULINES..........cccccuviieiiiieieeie e 43
Advanced Data Retrieval ROULINES..........cocoviiiiiieiieiie ettt 44
Databhase SWITChING.......coiieeiriee e et eas 45
A e I = SR 47
4 B I o SO URURSRR 48
ZBEGIN ...ttt st e ettt e ettt e et e teereeneenre s 49
A = T IR I (ST URURSR 50
ZCACHE ... ittt e be et bt teere et e nae s 51
A @ LN I O URURRR 52
A @1\ SRR 53



SIR/XS Host/API 2

ZECDEL ... 55
A O ) I PRSP PR PSP 56
ZCFIND ... r e ne s neenenre s 57
ZCFRST et n e re e nre 58
ZCGDMY e nenne 59
ZCIS et r et n e renr e nenre 60
A O 1 D SO P PP PPN 61
Z L A ST e re e nenne 62
ZCLEAR .o 63
ZCLOCK ... it 64
ZONEXT e 65
ZCPREV ..o 66
ZCRDIMY o e 67
ZCREST ... e 68
ZCSAM ... 69
ZCSAMD ... 70
ZOWRIT e 71
ZDESC ... 72
ZDESCB ... 73
ZDESCD ...t 74
ZDESCM ..o 75
ZDETAL oo 76
ZDTTKY e 77
4 I I OO URPRPRTN 78
W4 B I | U PRRPRPPTPRPRRN 79
W4 D B I S TSP URPRRN 80
ZDTXREC. ..t n e nne 81
ZEND ... e ne e nne 82
ZENDDB ... 83
ZERMSG ... ne 84
ZEX T e r e nenne 85
A 1 PP URPRTURPRTTN 86
ZIFPTRC .. et r e e r e n e e e renn e nne 87
ZIFPXKY et r e nenne 88
ZIFPXRC .ot 89
ZIFROM ... nenr e 90
A 1\ I S (U PORPPPPRPRTN 91
ZINTROC ..o r e e e r e e e e n e e e e nreane e e e nne 92
ZINXDT o e 93
ZINXKY e 94
ZINXRC ..o e 95
ZINXTM o 96
ZLABEL ... 97
ZLABLN .o 98
ZLABLS ... 99

ZLCKRT e e s 100



SIR/XS Host/API 3

4 I @ 1 TSP RPRR 101
ZIMSLAB e 102
ZIMISTRC. ...t r e r e n e n s 103
ZINCASE .. 104
ZINEW .. e 105
74 N[ PP 106
ZINORD ...t 107
ZNREGCS ... 108
ZINSIDS.....ooe s 109
ZNVARS. ..o s 110
ZOPEN ... s 111
ZOPT < s 112
ZORDB ..o s 113
ZOSDB ... s 115
ZRONT e s 117
ZRONTD ...t 118
ZROCNTL s 119
ZRCTDT e 120
ZRCTFP s 121
ZRCTIN L s 122
ZRCTRC ..o s 123
ZRCTST o s 124
ZRCTTM Lo s 125
A 09, b I LTRSS 126
ZRCXFP e e 127
A 09 | PRSP 128
A {09 Q1 [PPSR 129
A 9, Gl 1 1 PR P PRSP 130
ZRDEL ... e 131
A ] =5 T TR P PRSP 132
ZRFIND ...ttt 133
ZRFRST . e 134
ZRGDIMD ..o e 135
ZRGDIML ... 136
ZRGDIMY e 137
ZRIS e e n e nnes 138
ZRISD ... r e e 139
ZRISL .o 140
ZRLAST s 141
ZRLOCK ... 142
ZRNAMD ..o s 143
ZRNEXT o s 144
ZRNUM Lo s 145
ZRNUMD ..o s 146
ZRPREV ..ot s 147



SIR/XS Host/API 4

ZRREST ...ttt ettt e e s e se st et et et et e ne e e eneeneenenrenan 149
A S TN |V USRS 150
A S TN | 1 5 RSP 151
A S TN 1 USRS 152
74 41V - SRS 153
ZSDESC....c et bbb et renreenes 154
ZSECLV ettt et r e a e reenes 155
ZSECUR ...t et et sttt b e bbbt re s 156
ZSTART ettt b e bbbttt ne bt nee e 157
S ] B 1 USRI 158
S Y N I - (OSSR 159
ZSTXKY ettt ettt ettt be b e bbb e ettt neenenrenee e 160
ZSTXRC ..ttt sttt b et bbbt n e ne st e e 161
ZTHRU ..ttt b et e b et b e sb e tenee e 162
ZTIME oottt b e bbb et n b e nee e 163
A IV I USSR 164
ZTMTRC ..ottt b et b et et e e et ebesbeseeneenean 165
A 1 1 USRI 166
FA 11 5 USSR 167
ZTMXRC ...ttt bttt b e b e b et et e e et e st ebesbesbeneenean 168
ZUNTIL ettt bttt sttt et et et besbenbaean 169
ZUPLEV .ottt sttt b bbbttt n b e e 170
ZUSER ...ttt b e bbbttt be sttt 171
AN I TSP 172
A S TSNS 173
AT N 1Y USRS 174
AV I . SRS 175
A1V I SNSRI 176
Program LaYOUL ............ooiiiiiieeiiee ettt ne e sne e e e snneesaneesnne e 177
A Typical HOST Program LayOUL .........cceeereerienieniesesieeee e 177
Another Typical HOST Program LayOUL .........c.ccccueeueeiuesiuesiresiieesieesieesieeseeseessesnees 179
A Note on Error CheCKiNg ........coveieiiiiere et 181
Print the Value of aVariable IN @ReCOId...........ccoviriiiiieninieesee e 181
DBMSREIEVAl VEINSION......ccueeieciiecieesiiecee ettt et sre e nr e ns 181
HOST REFEVAl VEISION ...ttt et nn e e 181
Retrieval Update with RECORD IS Nested within aPROCESS CASE ALL ........... 184
DBMS REIEVAl VEISION......cociiiiieiiesie ettt ens 184
HOST RELMEVAl VEISION ..ottt et 184
RECORD IS for aCaseless Datalase........cccevveeeererinenerieree e 186
DBMS REMEVAl VEISION......coiiiiiiieiiieiesie ettt ns 186
HOST RELMEVAl VEISION ..ottt et 186
Multiple Nested NetWOrk REtrieval ...........cccvveeiiiiieiicie e 187
DBMSRELIEVAl VEISION......coiiiiieciiesiesie ettt et 187
HOST Retrieval Version - FUNCHION C........oovvviiiiiccicce e 188
Reserved Entry Point Names and Common BIOCKS .........cccccevvevieiieniccie e 193

COMMON BIOCKS. ...ttt ettt ettt ettt et e e e e eeeeeeeeeeeeeeeseesssaassasssnnsnnsnnnnees 194



SIR/XS Host/API 5

SIR API Overview

The SR/APIs are two simple sets of five functions (one for SSRDBM S and one for
SIRSQL). These APIs can be used to develop your own front-ends for SIR database
management engines.

The 1 NI T function initialise the system and defines two call back routines to handle the
output from the API. The first of these callbacks (writeLine) handles output which would
normally go to the main window, and the second (writeData) handles output from query
type (LI ST) commands. Theinitialise function aso defines the start parameter string that
you would normally use to start SSRDBM S or SIRSQL (eg: DB=COVPANY PW=COMPANY
P=...). Thisinitial function should be called first.

The EXEC function executes a DBM S or SQL command or set of commands.

The sTor function terminates the API, closing any open files and releasing handles. It
should be called at the end of your program.

The other two functions return the Ver si onNunber (this one can be called before INIT)
and the ERROR code. The latter can be called after any API function that hasa FALSE
return code.

Notes:

Y our application will use SIR'sDLLSs, so the SIR's home directory must be included into
your PATH (unless you place your executable file into that directory).

The system is not reenterable, so you must not call any of these functions before the
previous call is completed. Also you cannot use both SirDBMS and SirSQL DLLsfrom
the same application.

To compile your calls correctly under MS-Windows macro _W N32 must be defined. It is
predefined by Visual C++. Defineit in your make file for other compilers. The macro
will inforce __stdcal I calling convention for the DLL's export names. Y ou should use
sirdbms.lib or sirsgl.lib import library to link your application.

To write a console application that does not have a windows interface then use a window
handle (hWnd) of (void *) 1.



SIR/XS Host/API 6

The DBM S Functions

Si r DBMS_Ver si onNunber

int __StdCall SirDBMS_VersionNunmber (void);
Returns DBMS engine's version number (40000 for 4.00.00). It's the only function you
can execute before Si r DBMS_ I nit () .

Si r DBVS_I ni t

int __StdCall SirDBMS Init(
voi d *hWhd,
void (__StdCall *writeLine)(const char *text),
void (__StdCall *witeData)(const char *text),
const char *commandLi ne

)
Must be executed before sending commands to the DBM S engine.

The first argument is the system-specific handle of the main window. It should be the
current window at this moment.

DBMS engine uses the function passed as the second argument to write aline of text into
the message buffer. User interface module should immediately put the text into some
output window.

DBM S engine uses the function passed as the third argument to write aline of text into
the data buffer when given some query-type command.

The engine doesn't add any end-of-line terminators, it just makes one call for each line of
output.

The last argument is a string which contains the command line arguments (without the
leading application name).

Returns TRUE on success, FALSE on failure, doesn't return if the command line activates
the batch mode.

Si r DBMS_Exec

int _ StdCall SirDBMS_Exec(void *hWhd, const char *conmands);
Executes DBM S commands.



SIR/XS Host/API 7

The first argument is the system-specific handle of the current window. It is used as the
owner of the engine's message boxes.

The second argument isa DBM S command[s]. Multiple lines must be separated by "\n'
character.

Returns TRUE on success, FALSE on failure.

Si r DBMS_St op

int __StdCall SirDBMS_Stop(void *hWwd);
Call this before you terminate the program.

The argument is the system-specific handle of the current window. It is used as the owner
of the engine's message boxes.

Thiswill properly disconnect and close all open files.
Returns TRUE on success, FALSE on failure.

Si r DBMS_Er r or Code

int _ StdCall SirDBMS_ErrorCode(void);
Call thisto get the error code if one of the SrDBMS _... functions returned FALSE. Error
code 0 means that information is not available.



SIR/XS

Host/API

The DBMSLIST Commands

The LIST Commands are DBM S commands that send their output to the writeData
callback routine.

LI ST
LI ST
LI ST
end_|
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST
LI ST

ATTRI BUTE LABELS

ATTRI BUTE VALUES
BUFFERLI NE " buffernane” [ FROM start _| i ne_number TO
i ne_nunber]

CONCTDTABFI LES

DBA

DEFFAM LY

DEFMEMBER

EDI TORNAVE

EDI TORTYPE

ERRORLIM T

FAM LI ES

GLOBAL LABELS

GLOBAL VALUES

| NDEXDATA tabfil e.tabl e NAMVES
| NDEXDATA tabfil e.tabl e TYPES
I NDI CES tabfile.table
LOADI NG

VEMBERS

MSGLIM T

MSGLVL

OUTPUTFI LE

PAGELEN

PAGEW D

PRI NTBACK CALL

PRI NTBACK COMVANDS

PRI NTBACK FORMAT

PRI NTBACK REMARK

PRI NTBACK REPEAT

PRI NTBACK USER

PROCFI LE

RECORDS

SORTN

TABFI LE [tabfile]
TABLEDATA tabfil e NAMES
TABLEDATA tabfile TYPES
TABLES

TABLES tabfile

VWARNLIM T



SIR/XS Host/API

The SQL Functions

Si r SQL_Ver si onNunber

int __StdCall SirSQ._VersionNurber (void);
Returns SQL engine's version number (40000 for 4.00.00). It's the only function you can
execute beforeSirsQ._Init().

SirSQ_Init

int __ StdCall SirSQ._Init(
voi d *hWhd,
void (__StdCall *writeLine)(const char *text),
const char *commandLi ne

)
Must be executed before sending commands to the SQL engine.

The first argument is the system-specific handle of the main window. And it should be
the current window at this moment.

SQL engine uses the function passed as the second argument to write aline of text into
the output buffer. User interface module might immediately add the text into the output
window or use results in some other way after it gets control back. The engine doesn't
add any end-of-line terminators, it just makes one call for each line of output.

The last argument is a string which contains the command line arguments (without the
leading application name).

Returns TRUE on success, FALSE on failure, doesn't return if the command line activates
the batch mode.

Sir SQL_Exec

int __StdCall SirSQ._Exec(void *hwd, const char *conmands);
Executes SQL commands.

The first argument is the system-specific handle of the current window. It is used as the
owner of the engine's message boxes.

The second argument is a SQL command[s]. Multiple lines must be separated by \n'
character.

Returns TRUE on success, FALSE on failure.



SIR/XS Host/API 10

SirSQL_St op

int __StdCall SirSQ._Stop(void *hwhd);
Call this before you terminate the program.

The argument is the system-specific handle of the current window. It is used as the owner
of the engine's message boxes.

Thiswill properly disconnect and close al open files.
Returns TRUE on success, FALSE on failure.

Si r SQL_Error Code

int __StdCall SirSQ._ErrorCode(void);
Call thisto get the error code if one of the Si r SQL_. . . functions returned FALSE.

The SQL LI st Commands

The LIST Commandsin SQL correspond to the SHOW command but send their output to
the writeData callback routine.



SIR/XS Host/API 11
Example Programs
ACME SQL
ACME SQL isasimple SQL interface that lets you enter SQL commands and view the
output.
~ AcmeSOL % ,% ﬁ ol =0l x|
File
Good morning, welcome to SirSQL =
Welcome to AcmeSQL interface!
This is a sample program for developers who plan to use SirBAPT.
As a first step we advise you to read sirapi.h in api directory.
Should you wish to see some examples, the source code of AcmeSQL
is in examples subdirectory. Have a look at readme.txt first.
Database COMPANY created on Feb 01, 2006 at 17:00:37 connected.
22 rows selected.
oct 17, 2006 SELECT * FROM EMPLOYEE
In HAME GEHNDEE MARSTAT 55N BIETHD
1 John D Jones 1 1 772-21-1321 Jan 15
2 James A Arblaster 1 1 123-72-8913 Dec U?j
] [ 3
SELECT * FROM EMPLOYEE -1
-
Al 2 |7

//*********************************************************************

*

/1* AcmeSQL - exanple of using SirAPlI (see readne.txt)
*

[1*

/1* This software is provided as is, without any explicit or

*

[1* inplied warranties. Use it at your own ri sk.
*

//*********************************************************************

*

#define STRICT
#i ncl ude <wi ndows. h>
#i ncl ude <stdi o. h>

#i f ndef _W N32
#define _W N32




SIR/XS Host/API

#endi f

#i ncl ude <sirapi.h>
#i ncl ude "acnesqgl .rh"

const char *AppNane
const char *IniFile

" AcmeSQL":
"acnesqgl.ini";

const int M nEngi neVer = 41000;

int InpwhdRati o = 30;
i nt Aut oSave = FALSE;

HI NSTANCE hl nst ;
HWND hFr ane;
HWND hl npWhd;
HWND hQut Whd;
HFONT hFont ;
char *Getlnput Text() {
int length = Get WndowText Lengt h( hl npWhd) ;
if (length == 0)
return NULL;
char *buffer = new char[l ength+1];
| ength = Get W ndowText (hl npwhd, buffer, |ength+l);
TRUE;

0; i<length; i++) if (!isspace(buffer[i])) {
FALSE;

int Enpty
for (int i
Enmpt y
br eak;

}

if (Empty) {
del ete buffer;
return NULL;

}

return buffer;

}

voi d Set | nput Text (const char *text) {
Set W ndowText ( hl npwhd, text);
}

voi d Set Qut put Text (const char *text) {
Set W ndowText (hCQut Whd, text);
}
voi d AddToQut put Wndow const char *text) {

int length = Get WndowText Lengt h( hQut Whd) ;
int addlen = strlen(text);

12



SIR/XS Host/API

}

char *tnp = new char[addl en+2+1];
mencpy(tnp, text, addlen);
mencpy(tnp+addl en, "\r\n", 3);

SendMessage( hQut Wwhd, EM SETSEL, |ength, |ength);
SendMessage( hQut Whd, EM REPLACESEL, FALSE, (LPARAM tnp);

del ete tnp;

void __ StdCall OQutputHandl er(const char *text) {

}

i nt

i nt

i nt

AddToCQut put W ndow( t ext) ;

I ni t Engi ne( HWND hwWhd, const char *ComrandLi ne) {
Enabl eW ndow( hwhd, FALSE);

int status = SirSQ._Init(hWhd, CQutputHandler, ComandLi ne);
if (status == FALSE)
MessageBox(
hwhd,
"Cannot initialize the SQ engine", AppNane,
MB_COK | MB_| CONERROR) ;

Enabl eW ndow( hwhd, TRUE);

return status;

Shut downEngi ne( HWND hwhd) {
Enabl eW ndow( hwhd, FALSE);

int status = SirSQ._Stop(hwhd);
if (status == FALSE)
MessageBox(
hwWhd,

"Cannot shutdown the SQ. engi ne correctly", AppNane,

MB_OK | MB_I CONERROR) ;
Enabl eW ndow( hwhd, TRUE);

return status;

Execut e(HMND hwWhd, const char *command) {
Enabl eW ndow( hwhd, FALSE) ;
Set Cur sor (LoadCur sor (NULL, IDC WAIT));
int status = SirSQ._Exec(hwWwd, command);
if (status == FALSE)

Beep(500, 100);

Set Cur sor (LoadCur sor (NULL, | DC_ARROW ) ;

13



SIR/XS Host/API

Enabl eW ndow( hwhd, TRUE);

return status;

}
LRESULT Mai nWhd_OnCr eat e( HWND hwhd, char *CndLi ne) {

hFrame = hWd;

int dllVersion = SirSQ._VersionNunber ();
if (dllVersion < M nEngi neVer) {
char buffer[1024];
sprintf(
buffer,
"Wong dynanic link Iibrary\n\n"
"The SQL engine fromsirsqgl.dll version %. %92d. %92d\ n\ n"
"You nmust use SQL engi ne version %d. ¥92d. %92d or later",
dl | Ver si on/ 10000, dI | Version/ 1009400, dl | Version%00,
M nEngi neVer /10000, M nEngi neVer/ 1009400,
M nEngi neVer %400) ;
MessageBox(hwhd, buffer, AppNane, MB_OK | MB_| CONERROR);
return -1;

}

int fontSize = GetPrivateProfilelnt(AppName, "FSize", 0, IniFile);
HDC hDC = Get DC( hwhd) ;
int fontHeight = -Mil Di v(fontSize, GetDeviceCaps(hDC, LOGPI XELSY),
72);
Rel easeDC( hwad, hDC) ;
hFont = CreateFont(
font Hei ght, 0, 0, 0, FWBOLD, 0, 0O, 0, ANSI_CHARSET,
OUT_DEFAULT_PRECI S, CLIP_DEFAULT_PRECI S, PROOF_QUALI TY,
FI XED_PI TCH, "Courier New');
if (hFont == NULL)
hFont = CreateFont (
o, 0, 0, 0, FWBOLD, 0, 0, 0, ANSI_CHARSET,
OUT_DEFAULT_PRECI S, CLIP_DEFAULT_PRECI S, PROOF_QUALI TY,
FI XED_PI TCH, "Courier New');

I npWwhdRatio = GetPrivateProfilelnt(AppNanme, "InpWidRatio", 30,
IniFile);

if (InpWwhdRatio < 15 || InpWidRatio > 75)
I npWwhdRati o = 30;

hl npWwhd = Creat eW ndowEx(
0, "EDIT", NULL,
W5 CHILD | W5 VISIBLE | W5 VSCROLL | W5_HSCROLL | W5 _BORDER |
ES LEFT | ES_ MUTILINE | ES_AUTOVSCROLL | ES_AUTCHSCROLL |
ES WANTRETURN,

0, 0, 0, 0, hWwd, (HVENU) 10030, hinst, NULL);
if (hFont != NULL)

SendMessage( hl npWwhd, WM SETFONT, (WPARAM hFont,
MAKELPARAM TRUE, 0) ) ;

SendMessage( hl npwhd, EM LI M TTEXT, 0, 0);

hQut Wid = Creat eW ndowEx(

14



SIR/XS Host/API 15

0, "EDIT", NULL,
W5 CHILD | W5 VISIBLE | W5_VSCROLL | WS_HSCROLL | W5 _BORDER |
ES LEFT | ES MUTILINE | ES_AUTOVSCROLL | ES_AUTCHSCROLL |
ES NOHI DESEL | ES READONLY,
0, 0, 0, 0, hwd, (HMENU) 10031, hlnst, NULL);

if (hFont != NULL)
SendMessage( hQut Wad, WM SETFONT, (WPARAM hFont,

MAKEL PARAM TRUE, 0) ) ;
SendMessage( hQut Wid, EM LI M TTEXT, 0, 0);

Aut oSave = GetPrivateProfilelnt(AppNane, "AutoSave", FALSE,
IniFile);

if (!lnitEngi ne(hwhd, CndLine))
return -1;

AddToCut put W ndow( " ") ;
AddToCQut put W ndow "Wl cone to AcneSQ interface!");

AddToCQut put Wndow( " This is a sanple program for devel opers who pl an
to use SirAPI.");

AddToQut put Wndow("As a first step we advise you to read sirapi.h
in api directory.");

AddToQut put W ndow( " Shoul d you wi sh to see sone exanples, the source
code of AcmeSQ");

AddToCQut put Wndow("i s in exanples subdirectory. Have a | ook at
readme. txt first.");
AddToCut put W ndow( " ") ;

return O;

}
LRESULT Mai nWhd_Ondl ose( HWND hwad) {

if (AutoSave)
Execut e( hFrame, "SAVE");

Shut downEngi ne( hwid) ;
Dest r oyW ndow( hWd) ;

if (hFont !'= NULL)
Del et eObj ect (hFont) ;

return O;

}
LRESULT Mai nWhd_OnSi ze(HWND , int w, int h) {

int I npwidH = h*l npWwhdRat i o/ 100;
int Qut WidH = h- I npWhdH,;

MoveW ndow hQut wad, O, O , w, QutwdH, TRUE);
MoveW ndow( hl npWwhd, 0, Qut WhdH, w, | npWhdH, TRUE);

return O;



SIR/XS Host/API

LRESULT Mai nWhd_OnSet Focus( HWAD) {
Set Focus( hl npwhd) ;
return O;

}

LRESULT Mai nwhd_OnCommrand( HWND hwWwhd, WORD cnd, WORD NCode,
hControl) {

switch (cnd) {
case CMVMD_EXECUTE: {
char *cmd = Getl nput Text () ;
if (cmd !'= NULL) {
int len = strlen(cnd);

int n=0;
for (int i =0; i <=len; i++) {
if (emd[i] == "\r") {
n++;
} else {
if (n!=0)
crd[i-n] = cmd[i];
}
}

}
if (Execute(hFrame, cmd))
Set | nput Text ("");
Set Focus( hl npwad) ;
del ete cnd;
}

br eak;

}

case CVMD EXIT:
SendMessage(hwd, WM CLOSE, 0, 0);
br eak;

defaul t: ;

}

i f (NCode == EN_MAXTEXT || NCode == EN_ERRSPACE) ({
Beep(500, 100);
if (hControl == hQutwhd) {
Set Qut put Text ("");
}

}

return O;

}

LRESULT Mai nWhd_OnPai nt (HWND hwad) {
HDC hDC,
PAI NTSTRUCT ps;
hDC = Begi nPai nt (hWhd, &ps);
EndPai nt (hWhd, &ps);
return O;

}

LRESULT CALLBACK Mai nWhd_WhdPr oc(
HWD hWhd, Ul NT nsg, WPARAM wPar am LPARAM | Par am
) A

HWAD

16



SIR/XS Host/API

typedef struct {
short sz;
voi d *p;

} UNALI GNED * UP;

switch (msg) {
case WM _CREATE:
return Mai nWhd_OnCr eat e(
hwWhd,
(char *)((UP) (((LPCREATESTRUCT) | Par anj -
>| pCr eat ePar ans) ) - >p) ;
case WM CLCSE:
return Mai nWhd_OnCl ose( hWhd) ;
case WM SI ZE:
return Mai nWhd_OnSi ze( hwhd, LOANORD(| Param,
H WORD( | Param) ) ;
case WM SETFOCUS:
return Mai nWhd_OnSet Focus( hwid) ;
case WM COMVAND:
return Mai nwhd_OnComand(
hwid, LOWORD(wParam), H WORD(wParan), (HWD)I Paran;
case WM _PAI NT:
return Mai nWhd_OnPai nt ( hWhd) ;
case WM DESTROY:
Post Qui t Message(0) ;
return O;
default: return Def WndowProc(hWhd, msg, wParam | Paranj;

}

int W NAPI W nMai n( H NSTANCE hl nst ance, H NSTANCE, LPSTR | pCniLi ne,
int) {

hl nst = hl nstance;

VWADCLASS wc;

we. style = CS_VREDRAW | CS HREDRAW | CS_DBLCLKS;
we. | pf nWhdPr oc = Mai nWhd_WhdPr oc;

we. cbCl sExtra = 0;

wc. cbWwhdExtr a = 0;

we. hl nst ance = hl nst ance;

we. hl con = Loadl con( hl nstance,

MAKEI NTRESOURCE( | DR_MAI NI CON) ) ;
we. hCur sor LoadCursor (0, | DC_ARROW ;
we. hbr Backgr ound ( HBRUSH) Get St ockOhj ect (WHI TE_BRUSH) ;
we. | pszMenuName MAKEI NTRESOURCE( | DR_MAI NVENU) ;

we. | pszCl assNanme = " Mai nWhd";
if (RegisterC ass(&w) == 0)
return O;
struct {
short sz;
voi d *p;

} Creat eWndowParam = {si zeof (void *), | pCndLine};

HWD hWwhd = Creat eW ndowEx(
W5_EX_APPW NDOW

17



SIR/XS Host/API 18

we. | pszd assNane, AppNane,
W5_OVERLAPPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT, CW USEDEFAULT, CW USEDEFAULT,
HWND_DESKTOP, NULL, hlnstance, &CreateW ndowPar am
i f (hwhd == NULL)
return O;

ShowW ndow( hWid, SW SHOADEFAULT) ;

HACCEL hAccel = LoadAccel erators(
hl nst ance, MAKElI NTRESOURCE( | DR_ACCELTABLE) ) ;

M5G nsg;
whil e (Get Message(&rsg, 0, 0, 0) == TRUE) {
if (!Transl ateAccel erat or (hwhd, hAccel, &msg)) {
Tr ansl at eMessage( &nsgQ) ;
Di spat chMessage( &nsq) ;

}

Destroyl con(wc. hl con);

return nsg. wPar am

SIRDBM SE

SIRDBMSE isa SIRDBMS console application which lets you enter DBM S commands
and program and run them in acommand window or telnet connection. Enter commands
at the bBVS> prompt and run them by entering go. Enter exi t to end the program. This

program was written by Dave Doulton of the University of Southampton.

o cohsir2002\alphahzirdbmse. exe ai
DEMS>0ld file company password company security high, high

[
DBMS >process record 1
DBMS >write name gender marstat birthday
DBMS >end record
DBMS >end case
DBMS >end retrieval
DBHMS >go
Start retrieval tranzlation
Start retrieval execution

DI Jones

A Arblaster

Leslie Kushner
Chriz M Hiller
Michael Nugent
Cynthia Meuman

11
11
2 2
11
11
21
2 2
11
21
2 2
11
12
2 2

#i ncl ude <string. h>
#i ncl ude <stdi o. h>
#i ncl ude "sirapi.h"



SIR/XS Host/API

voi d Qut put Handl er (const char *text) {
if(text[0] ==" ")

printf("%\n",text+1);
}

el se

printf("%\n",text);

}
}
voi d Di spl ayHandl er (const char *text) {
if(text[0O] ==" ")
{
printf("%\n",text+1);
el se
{
printf("%\n",text);
}
}
int main(int argc, char *argv[]) {
int i;
int res;

char cndLi ne[1024] = "";
char cnd[1024]= "";
char ocnd[ 1024] = "";
char 1ine[200]="";
for (i =1; i < argc; i++) {
if (i > 1) strcat(cndLine, " ");
strcat (cndLi ne, argv[il);
}

res=SirDBVMS I nit((void *) 1, (void *) CQutputHandl er
Di spl ayHandl er, cndLi ne);
if (res 1=1)
{
res=Si r DBMS_Er r or Code() ;
printf("error code % d\n",res);
}
printf("DBMS>");
while (gets(line) !'= NULL)
{
if(strcnp(line,"go") == 0)

res=Si r DBMS_Exec((void *) 1,cnd);
strcpy(ocnd, crmd) ;
strcpy(emd, "");
printf("DBVS>");
}

el se

if(strcmp(line,"rep") ==0)
{

(void *)

19



SIR/XS Host/API

res=Si r DBMS_Exec((void *) 1, ocrd);
strcpy(cend, "");
printf("DBVS>");

}

el se
if(strcmp(line,"exit") ==0)

strcpy(cend,"");
br eak;

}

el se

strcat(cnd, line);
strcat(cnmd, "\ n");
printf("DBMS>");
}

}
}

}

res=Si r DBMS_Exec((void *) 1,cnd);
res=Si rDBMS_Stop((void *) 1);
return res;

20



SIR/XS Host/API 21

Compilation & Linkage

The header file (sirapi.h) and link library files (sirdbms.lib and sirsgl.lib) are found in the
API subdirectory of the SIR installation directory. These files must be used for compiling
and linking the API program. Example makefiles for a couple of compilers are also
included in this subdirectory.

To run aSIRAPI application the SIR dynamic libraries (eg. sirdoms.dll sirmdr.dll etc)
must be in the application's directory or PATH.



SIR/XS Host/API 22

General Comments

HOST isaset of FORTRAN routines that enable the SI R/ DBVS user to interface directly with
adatabase. These routines provide al the capabilities of aDBVS RETRI EVAL or

RETRI EVAL UPDATE. However, schema definition, schema modification, batch datainput,
retrieval procedures (such as SPSS SAVE FI LE or CONDESCRI PTI VE), utility routines and
the graphical user interface are not available via HoST. These operations must be
performed with DBVS.

HOST is designed for use in those situations in which features are required that are not
availablein DBMS. It provides a direct interface between a database and a user-written
program. For this reason, HOST is particularly appropriate when the user has an existing
application package that requires the inclusion of facilities for retrieval of information
from a database. HOST also provides facilities that give the SIR'/DBMS user the capability
to write a program that can process input from many terminals. The user's program
controls the operation of the terminals and uses HOST to process one or more databases
simultaneously, a feature not availablein DBMS.

The HOST package (like any subroutine package) must be used correctly and carefully to
avoid damage to the database. Unlike DBMS, the HOST routines cannot protect the
database from programmer error, accidental or deliberate. For example, if aHOST
memory resident table is modified in any way by the user-written routines during a run,
then invalid data, pointers, counts, and other erroneous information may be written to the
database. Thisinvalid information may not be detected by either HOST or DBMVS until later.

We recommend that applications using HOST be tested thoroughly with a duplicate of the
database before the programs are put into production.



SIR/XS Host/API 23

| ntr oduction

HOST consists of a set of FORTRAN callable functions written in ANSI standard FORTRAN.
The user writes amain program to call the HOST routines which perform the requested
retrieval functions. These routines are compiled by the standard FORTRAN compiler for
each machine on which SI R/ DBV is available and are maintained as a standard library of
FORTRAN routines on each machine.

See additional documentation and examplesin the API subdirectory of the SIR
installation directory.

There may be two HOST libraries available at your site. One of them, referred to as HOST
or regular HOST, isintended for asingle user environment. The other one, referred to as
concurrent HOST, isintended to work in a multiple-user environment, in conjunction with
the MASTER module. The user interface with these two versions is almost identical, such
that almost no programming effort is required to switch between them. The small
differences are documented below in Multiple User Support with HOST.

The HOST routines can be called by a main program written in alanguage other than
FORTRAN (such asPL/ 1 or C), provided that FORTRAN functions can be called from that
language.

If the language can call FORTRAN functions, but cannot test their return values, the user
can use a common area called HERROR to get this value. The first variable of the HERROR
common block isaR* 8 containing the name of the last HOST function called (except for
ZCALL which does not touch the variable). Note that this variable does not have the
CHARACTER* 8 FORTRAN type. The next variable of the HERROR common block isan | * 4
which will contain the return code from the last called HoST function. The next variableis
an | *4 which isreserved for future use. The length of the HERROR common areais the
length of aRr* 8 plusthe length of two | *4's,

The routines provided allow the HOST user to perform all the operations available in DBVS
retrieval. Some DBMS commands are provided in a single HOST function call while others
have been divided into several function calls.

Every HOST routine is a FORTRAN function which returns a value to the calling application
program. If afunction executes its task successfully, then it will return a requested value
or the value zero or a positive status value to the calling program. If afunction encounters
an error or problem in performing its task, however, it will return a negative number and
not perform the task. The absolute value of the returned value will be the error code
detected. A list of all current error codes are listed in Environment appendix A. Some of
the negative returned codes do not represent real errors, but some specific conditions such
as "no more records found" or "amissing value has been stored".



SIR/XS Host/API 24

Writing Programswith HOST

In order to use the routines effectively, the HOST programmer should have experience in
writing DBVS Retrieval programs. We recommend that new HOST users write their
retrievalsin the DBVS Retrieval language and then tranglate them into HOST function calls.
Once the user gains proficiency with HOST, this technique can be dispensed with.

Asillustrated by the examples, a HOST program generally has many more statements than
its DBMs counterpart. Thisis partly because each DBVS Retrieval command usually
trandates into several HOST function calls. HOST programs are also include statements that
check the error codes returned by the HOST functions. It is very important to check the
HOST error codes. If errors are ignored, the results of subsequent function calls will be
unpredictable. If this occurs during a database modification run, the database could be
damaged.

To help the programmer write code that performs all of the required returned values
testing, a new function, ZCALL, has been introduced. zCALL helps the programmer write
programs that are easy to understand and maintain.



SIR/XS Host/API 25

| nitialisation

The HOST system isinitialised by calling ZSTART. It must be the first HOST call in the
user's program. If concurrent HOST is used, zLOG N should be called immediately after
ZSTART.

One or more calls that open the databases to be used during the run follow. There can be
more than one of these calls because, unlike DBVS, HOST allows simultaneous access to
more than one database. The HOST routines that open databases are ZORDB (open a random
database), and zosDB (open a sequential database).

These calls also alow the user to specify default read and write security passwords for
each database. The defaults can be overridden by calling ZSECUR.



SIR/XS Host/API 26

The Retrieval Stack

A HOST retrieval stack isan internal table containing one entry for each CIR and data
record currently being processed. The entries are called blocks. The ordinal of ablock in
the retrieval stack isreferred to as the level of the block. Each block is completely nested
within the preceding blocks similar to the nesting in a DBVS retrieval program. In HOST,
nesting is extended to include the nesting of databases as well as cases and records.

For example, consider the following schematic DBVS Retrieval with four levels of nesting:

RETRI EVAL
PROCESS CASES . ...
PROCESS REC 7. ...
CASE IS. ...
RECORD IS 9 ....
END RECORD | S
END CASE | S
END PROCESS REC
. END PRCCESS CASES
END RETRI EVAL

Within the first level of nesting (PROCESS CASES block), the corresponding HOST retrieval
stack would consist of

level 1 - CR
Within the fourth level of nesting (RECORD | S block), the HOST retrieval stack would
contain

level 1 - CR
level 2 - record type 7
level 3 - CR
level 4 - record type 9

Within aDBVs Retrieval block, the user can only refer to CIR variables or record
variables that belong to the block. HOST, on the other hand, allows the user's program to
access data at any level from any higher level in theretrieval stack. In the previous
example, the user can refer to the CIR variables of level 1 from within levels 2, 3 or 4.
Similarly one can refer to record type 7 variables from within levels 3 or 4. Thisis made
possible by the retrieval stack and by the variable descriptors discussed in the next
section.

Although the retrieval stack allows the user full accessto all preceding levels, there are
some operations that can only be performed on a level-by-level basis with HOST. Among
these operations are record deletion, getting the next record and termination of record
processing. For example, in order to terminate the CASE 1 S block (level 3 in the previous
example) from within the RECORD | S block (level 4), the user must first terminate the
RECORD 1 S block and then the CASE | S block.



SIR/XS Host/API 27

Inversion 2.2, the routines that create blocks ( ZCCNT, ZCCNTD, ZCGDWY, ZCl S, ZCl SD,
ZCSAM ZCSAMD, ZRCNT, ZRCNTD, ZRCNTL,, ZRGDVD, ZRGDM., ZRGDMWY, ZRI S, ZRI SD, ZRI SL,
ZRSAM ZRSAMD and ZRSAM.) return the stack level of the created block rather than O (as
they did in previous releases). The level can be used as the fourth piece of avariable
descriptor. The level of acase block can aso be used as the last argument of ZRCNTL,
ZRGDML, ZRI SL and ZRSAM. to make a "record block™ belong to a"case block" other than
the closest above it. For example, the following structure is possible now:

level 1-CIR
level 2- CIR
level 3 - record type 5 "belonging” to the CIR on level 1
level 4 - record type 2 "belonging” to the CIR on level 2



SIR/XS Host/API 28

Variable Descriptors

In HOST, database variables are accessed by variable descriptor rather than by name. The
purpose of the descriptor isto uniquely identify avariable across al levels of the retrieval
stack.

A variable descriptor contains four pieces of identifying information about a variable:

the database number (assigned by HOST in order of opening)

the record type number (the CIR istype zero)

the variable number (assigned automatically in same order asLI ST SCHEMA)
theretrieval stack level

Note: The value of the database number should be left undefined. Opening and closing
databases could cause a different sequence of values to be assigned.

Variable descriptors are created in HOST by the routines, ZDESC, ZDESCD, ZDESCMand
ZSDESC. Routine zDESCB breaks a descriptor in its 4 components. ZDESCD requires an
explicit database name while ZDESC assumes the database is the one currently in use.

The recommended programming technique is to call ZDESCD at the beginning of the
program for each variable to be referenced.

To illustrate, suppose we plan to retrieve data from two databases, CLI ENT and PROSPECT.
We want to retrieve the variables NAMVE, PHONE, and BI LLED from record type 1 in the

CLI ENT database. We a so want to retrieve NAVE and PHONE from the CIR and SALESREP
and CLDATE from record type 3 in the PROSPECT database.

The calls to zDESCD would be placed at the beginning of the HOST program and would
look like thisin FORTRAN:

| ERR = ZDESCD (CNAME, 'CLIENT' , 1,"NAME ' , 0)
| ERR = ZDESCD (CPHONE, ' CLIENT" , 1,'PHONE , 0)
| ERR = ZDESCD (CBI LLD, ' CLI ENT' 1,'BILLED , 0)
| ERR = ZDESCD ( PNAME, ' PROSPECT', O, ' NAVE , 0)
| ERR = ZDESCD ( PPHONE, ' PROSPECT', O0,' PHONE' , 0)
| ERR = ZDESCD ( PSLSRP, ' PROSPECT', 3,' SALESREP' , 0)
| ERR = ZDESCD ( PDATE, 'PROSPECT', 3,'CLDATE , 0)

The FORTRAN variables CNAME, CPHONE, CBI LLD, etc. contain the variable descriptors for
the corresponding database variables NAVE, PHONE, Bl LLED, etc. Once the descriptors are
defined, they are used in all subsequent HOST calls. For example, to retrieve the value of
the CIR variable NAVE in the PROSPECT database, the appropriate HOST call would be

| ERR = ZRCTST (PNAME, PRONAM 25)



SIR/XS Host/API

ZRCTST transfers 25 characters of the CIR variable NAVE (whose descriptor is stored in
PNAME) into the FORTRAN character variable PRONAM

29



SIR/XS Host/API 30

Case and Record Processing

Case and record processing have been extended in HOST so that cases can be processed
with the AFTER, FROV, THRU, UNTI L, and W TH clauses and records can be processed with
the COUNT and SAMPLE options.

Case and record processing in HOST involves severa steps:

1. Call the appropriate case or record-initialisation routine.

2. If necessary, call one or more key creation and key definition routines.

3. Use ZCNEXT or ZRNEXT asthe first statement of the case or record-processing loop.
These routines get a case or record from the database and make it available for
use.

4. To loop through several cases or records, return to the start of the loop, ZCNEXT or
ZRNEXT. These routines return a negative error code (-4xxx) when there are no
more cases or records | eft.

5. Call zCexi T or zReXI T when the loop is terminated.

To illustrate these concepts further, consider the following DBVS Retrieval commands:

PROCESS CASES ALL
VRI TE CASEI D NAME ADDRESS
END PROCESS CASES

The corresponding HOST program would look like thisin FORTRAN:

| ERR = ZCONT (-1, 1, 1)
100 | ERR = ZCNEXT (0)
IF (IERR .EQ -4001 .OR |ERR .EQ -4002) GO TO 200

(retrieve and print CASElI D, NAME and ADDRESS)

GO TO 100
200 [ERR = ZCEXI T (DUM

Errors -4001 and -4002 indicate that there are no more cases left to be processed.

Now suppose we want to run the same retrieval, but only for those cases whose case-ids
liein the range 5000 to 5999. We must add calls to the HOST routines that create and
define the key values for the cases. The HOST program would then be written as follows:

|ERR = ZCCNT (-1, 1, 1)

| ERR = ZFROM ( 0)

| ERR = ZI NTKY (5000)

| ERR = ZTHRU (0)

| ERR = ZI NTKY (5999)
100 I ERR = ZCNEXT (0)



SIR/XS Host/API 31

IF (IERR .EQ -4001 .OR |ERR .EQ -4002) GO TO 200
..... (retrieve and print CASEI D, NAME and ADDRESS)

GO TO 100
200 [|ERR = ZCEXIT (0)

Note that the key creation (zFROM zTHRU) and key definition (zI NTKY) routines are placed
immediately after theinitialisation routine ( ZCCNT) and before the actual start of the loop
(zcNeXT). Record processing in HOST is analogous to case-processing. For example, the
following PROCESS REC loop:

PROCESS REC 3, WTH (1982, 100)
VRI TE ' DEPT YTD TOTAL IS, YTDSALE
END PROCESS REC

might look like thisin FORTRAN:

|ERR = ZRCNT (3, -1, 1, 1)
IERR = ZW TH (0)
| ERR = ZI NTKY (1982)
| ERR = ZI NTKY (100)
100 1ERR = ZRNEXT (0)

IF (IERR .EQ -4001 .OR |ERR EQ -4002) GO TO 200
..... (retrieve and print value of YTDSALE)

GO TO 100
200 CALL ZREXIT (0)



SIR/XS Host/API 32

Caseless Database Processing

If adatabase is caseless, some of the HOST routines cannot be used when accessing that
database. If you attempt to use these routines with a casel ess database, the routines will
return an error code of -2053. No case block should ever be created. The followingisa
list of the routines that can only be used with "case" databases:

ZCCNT ZCCNTD ZCDEL ZCEXIT ZCFI ND ZCGDWY
ZClS ZCISD ZCLOCK ZCNEXT ZCRDMY ZCREST
ZCSAM ZCSAMD ZOWRI T ZNOR  ZNORD

If you want to find out if a database is caseless or not, your program should call zNsI DS
with the second argument 0. zNsI DS returns the number of sort ids in the database for the
specified record type, which is O for a caseless database. (Actualy it returns the number
of sort idsin the CIR for the casel ess database).

ZNCASE also returns the number of cases in the specified database, and it will always
return O for a caseless database. However, it cannot be used as atest for case structurein
adatabase since it will return O for any empty database, and any caseless database
regardless of the number of records.



SIR/XS Host/API 33

Multiple Database Modein HOST

As previously stated, HOST allows the user to access data from several databases
simultaneoudly. This capability is not available in DBVS Retrieval.

A HOST program is in multiple-database mode when it contains more than one call to the
database initialisation routines (ZORDB, ZOSDB). Note that multiple-database mode
remainsin effect even if al of the databases have been closed.

In multiple database mode, the routines that initialise case and record processing also
establish the identity of the current database. These routines are described in the section
called Database Switching.

All of the records processed within a case loop are assumed to belong to the current
database.

In Variable Descriptors, we saw that variable descriptors allow the user to access data at
higher levels of the retrieval stack from within lower levels. This concept also applies to
stack levels from different databases.

For example, suppose the retrieval stack contains the following levels:

| evel 1 - database DB1, CIR
| evel 2 - database DB1, record type 5
| evel 3 - database DB2, CIR
| evel 4 - database DB2, record type 8

and we have defined the descriptor for the database variable, AGE, from record type 5 in
DB1 with the call:

| ERR = ZDESCD ( XAGE, ' DB1 ',5, "AGE ', 0)
Then, the database variable AGE can be retrieved at any level of theretrieval stack (except
level 1) by using its descriptor stored in XAGE.

If the stack contains two process rec 1 blocks, then stack level O indicates the innermost
process rec.



SIR/XS Host/API 34

Multiple User Support with HOST

As mentioned in the Introduction, in addition to providing access to databases as a stand-
alone program, HOST also provides access to the databases by multiple users. To use
concurrent HOST, a MASTER process must be running and the user program must login to
that MASTER. To do this, atypical application program will call zLod Nimmediately after
calling zSTART. If the user program does not call zLOG N with the name of the MASTER
explicitly, the system will do it, using the name of the default MVASTER. A given
application program can be logged-in to only one MASTER at atime. For regular HOST
programs, the calling of ZLOG Nisoptional.

To determine from within a program which of the two versions of HOST is used, the
function zZVERS can be called. It will return O for regular HOST and 1 for concurrent HOST.



SIR/XS Host/API 35

HOST 2.2 Lock Types

In HOST 2.2, (both regular and concurrent) there are 6 lock types defined:

Lock-type nunber Lock type

0 or 14 protected read
1 or 16 excl usi ve

11 nul |

12 concurrent read
13 concurrent wite
15 protected wite

The locks ensure data integrity. They prevent other programs from updating records that
you are updating. Several HOST programs feature the option to set and test the locks.



SIR/XS

Host/API 36

Routine Formal Parameters

When using the HOST routines great care must be taken to insure that the formal
parameters match in both number and type. TABLE 1 below indicates the various
argument types used by HOST. See the documentation in the API subdirectory for
information and examples for the exact declarations and representations needed for each

data type.

TABLE 1

ABBREV TYPE

B*n BYTE
D8 DESCRI PTOR

val ues

vari -

a

be

not

be
| *4 | NTEGER
N* 8 NAME
R*n REAL

DESCRI PTI ON

This is a CHARACTER*N structure as defined by the
FORTRAN 77 conpiler on your machine. It

nmust be of the proper size to hold the character
strings to be passed to or fromit.

This is an (8 byte) area containing a set of

that uniquely describe a data variable ( i.e.

abl e nunber, record type nunber, database nunber,
stack location ). This data type may be stored as

REAL*8 on sone machines; in this case care should
taken in transferring descriptors because it is

a REAL*8 value but an 8 byte bit pattern and no
floati ng operations such as nornalisation should

per f or med.

This is 1*4 as defined in Machine Specifics
docunentation.( It mght be 4 or 8 bytes long. )
This is a CHARACTER*8 created by a FORTRAN 77
conpi | er.

This is R*4 or R*8 as defined in your Mchine
Dependenci es docunent ati on.



SIR/XS Host/API 37

Overview of the HOST Subroutines

A list of the standard routines available within HOST are listed below. Certain machines
have additional routines available usually dealing with additional type conversions and
other utilities to ease the use of the HOST package. See the documentation in the AP
subdirectory for more information on these routines.

Note that all of the HOST functions are of type | NTEGER* 4 regardless of the first letter of
the names. Declare them as type | NTEGER* 4 in each routine that calls them. Also, the
types of the function arguments do not correspond to standard FORTRAN usage ( i.e. first
letter | through Nistype | NTEGER, otherwise REAL).

As aready stated, these functions may return O, arequired value, a positive status value,
or anegative error code. In Chapter 3, the return values for the functions will be
documented only if they have a specific significance. If they are not documented, the
assumption is that the function will return a positive or zero value for success and a
negative value for failure.

Initialisation Routines

ZSTART Initialises the HOST system.

ZLOG Nlogin the current process into a specified MASTER.

ZSECUR Specifies security passwords for current stream.

ZORDB Initialises a specified random format database for use.

zosDB Initialises a specified sequential format database for use.

Control Routines

ZUSER Allowsthe switching of the current retrieval stack from one stream to another.
ZCALL Call HosT functions and test their return code.

Termination Routines

ZENDDB Terminates the use of a specified database. It closes and return the files for use by
other jobs. In order to use the database again it must be reinitialised.

ZCLEAR Terminates all levelsin theretrieval stack of a specified stream.



SIR/XS Host/API 38

ZEND Terminates the HOST run. It cleans up tables and checks that the databases have
been properly closed and al internal operations are completed. If any databases are still
open, ZEND attempts to close them.

Case Processing Routines

ZCCNT Initialisesa"PROCESS CASE" block with either the "ALL™ or "COUNT" option.

ZCCNTD Initialises a"PROCESS CASE" block with either the "ALL" or "COUNT" option. It
also provides the capability of changing databases.

ZCGDMWY Initialise a case-processing block of an undefined type (dummy).It also provides
the capability of changing databases.

ZCal'S Initialisesa"CASE | S" block.

ZCl sD Initialisesa"CASE | S" block. It also provides the capability of changing
databases.

ZCSAM Initialisesa"PROCESS CASE" block with a"SAMPLE" option.

ZCSAMD Initialises a"PROCESS CASE" block with a"SAMPLE" option. It also provides the
capability of changing databases.

ZCREST Restores the common variables in the innermost case processing block.
ZCRDMWY Terminates the current case-processing level and resets it to adummy.

ZCFI ND Finds a case, after adummy case-processing block was initialised and some CIR
variables specified.

ZCFRST Getsthefirst case in a case-processing block.

ZCLAST Getsthe last case in a case-processing block.

ZCNEXT Gets the next case in a case-processing block.

ZCPREV Gets the previous case in a case-processing block.

ZCLOcK Returns the lock type of a case-processing block.

ZCDEL Deletesthe current case in the innermost case-processing block.

ZOWRI T Writes the current innermost CIR to the database as a permanent change.



SIR/XS Host/API 39

ZCEXI T Leavesthe current case-processing block and pops the retrieval stack back one
level of retrieval nesting.

Record Processing Routines
ZRCNT Initialisesa"PROCESS RECORD" block with either the "ALL" or "COUNT" option.

ZRCNTD Initialises a"PROCESS RECORD" block with either the "ALL" or "COUNT" option. It
also provides the capability of changing databases.

ZRCNTL Initialises a"PROCESS RECORD" block with either the "ALL™ or "COUNT" option,
belonging to a CIR on a specified level.

ZRGDMWY |nitialise a record-processing block of an undefined type (dummy). It also
provides the capability of changing databases.

ZRGDWD I nitialise a record-processing block of an undefined type (dummy). It also
provides the capability of changing databases.

ZRGDML Initialises a record-processing of an undefined type (dummy) block, belonging to
aCIR on aspecified level.

ZRl' S Initialisesa"RECORD | S" block.

ZRI SD Initialisesa"RECORD | S" block. It also provides the capability of changing
databases.

ZRI SL Initialisesa"RECORD | S" block belonging to a CIR on a specified level.
ZRSAMInitialises a"PROCESS RECORD" block with a"SAMPLE" option.

ZRSAMD I nitialises a"PROCESS RECORD" block with a"SAMPLE" option. It also provides
the capability of changing databases.

ZRSAML |nitialises a"PROCESS RECORD" block with a"SAMPLE" option, belonging to a
CIR on a specified level.

ZRREST Restores the record variables in the innermost record processing block.
ZRRDMY Terminates the current record-processing level and resetsit to dummy.

ZRFI ND Finds arecord, after adummy record-processing block was initialised and some
record variables specified.

ZRFRST Getsthefirst case in arecord-processing block.



SIR/XS Host/API 40

ZRLAST Getsthe last case in a record-processing block.

ZRNEXT Gets the next case in arecord-processing block.

ZRPREV Gets the previous case in arecord-processing block.

ZRLOCK Returns the lock type of arecord-processing block.

ZRDEL Deletesthe current record in the innermost record-processing block.

ZRWRI T Writes the current innermost record to the database as a permanent change.

ZREXI T Leavesthe current record-block and pops the retrieval stack one level of retrieval
nesting.

Key Creation Routines

ZAFTER Initialises the creation of akey for either case or record processing levels. It starts
up akey of the form of the "AFTER" keyword on the PROCESS statement in DBIVS.

ZBEG N Initialises the creation of akey for either case or record processing levels. It starts
up akey of an yet undefined form.

ZFROM Initialises the creation of akey for either case or record processing levels. It starts
up akey of the form of the "FROV' keyword on the PROCESS statement in DBVS.

ZTHRU Initialises the creation of akey for either case or record processing levels. It starts
up akey of the form of the "THRU" keyword on the PROCESS statement in DBVS.

ZUNTI L Initialises the creation of akey for either case or record processing levels. It starts
up akey of the form of the "UNTI L" keyword on the PROCESS statement in DBIVS.

ZW TH Initialises the creation of akey for either case or record processing levels. It starts
up akey of the form of the "w TH"' keyword on the PROCESS statement in DBVS.

Key Definition Routines

ZDTTKY Moves a date string into the next sort-id position of the current key.
ZFPTKY Moves areal value into the next sort-id position of the current key.

ZI NTKY Moves an integer value into the next sort-id position of the current key.

ZSTTKY Moves a character string into the next sort-id position of the current key.



SIR/XS Host/API 41

ZTMIKY Moves atime string into the next sort-id position of the current key.
Variable Modification Routines

ZBLTRC Stores ablank missing value in avariable.

ZDTTRC Moves a date string into a specified variable descriptor.

ZFPTRC Moves areal value into a specified variable descriptor.

ZI NTRC Moves an integer value into a specified variable descriptor.

ZMVsTRC Transfers a missing/undefined value to a specified variable descriptor.
ZRCTRC Transfers the value from one variable descriptor to another variable descriptor.
ZSTTRC Moves a string value into a specified variable descriptor.

ZTMIRC Moves atime string into a specified variable descriptor.

Variable Retrieval Routines

ZRCTDT Returns the value of a specified date variable descriptor.

ZRCTFP Returns the value of a specified real variable descriptor.

ZRCTI N Returns the value of a specified integer variable descriptor.

ZRCTST Returns the value of a specified string variable descriptor.
ZRCTTMReturns the value of a specified time variable descriptor.

General Routines

ZVERS Returns the version and revision numbers of HOST.

ZOPEN Returns an indication of whether a specified database is currently available for use
or not.

ZUPLEV Returns the current update level of a database.
ZSECLV Returns the current security levels for a specified database.

ZLCKRT Sets/returns the record type lock for a specific record type.



SIR/XS Host/API 42

ZNCASE Returns the number of cases in the database.

ZNRECS Returns the number of records of a specific type that are currently in the
database.

ZNEW Returns an indication of whether the last ClR/record accessed was a new
CIR/record or an existing CIR/record.

ZNOR Returns the number of records of a specific type that are currently in the innermost
CIR.

ZNORD Returns the number of records of a specific type that are currently in the
innermost CIR of a specified database.

ZRNAND Returns the record name for arecord number.

ZRNUM Returns the record number for arecord name.

ZRNUMD Returns the record number for arecord name in a specified database.
ZNVARS Returns the number of variablesin a specific record type.

ZNSI DS Returns the number of sort idsin the key of arecord of a specific type.
ZVARLB Returns the variable label of avariable specified by descriptor.

ZVNAME Returns the variable name for a variable specified by descriptor.

ZVTYPE Returns the storage type of the variable specified by descriptor.

ZLABLN Returns the value label for avalue of a specified numeric variable descriptor.
ZLABLS Returns the value label for avalue of a specified string variable descriptor.
ZMVBLAB Returns the value label for amissing value.

ZDESC Buildsthe variable descriptor from a variable description.

ZDESCD Builds the variable descriptor from a variable description for avariablein a
different database.

ZSDESC Returns the variable descriptor corresponding to the nth sortid of the specified
record type.

ZDESCB Breaks a descriptor in its four components.



SIR/XS Host/API 43

ZDESCM M akes a descriptor out of its four components.

ZEXI T Performs the equivalent of ZCEXIT for a case-processing block and of ZREXIT
for arecord-processing block.

Utility Routines

ZATTR Perform equivalent to DBVS ATTRI BUTE command.

ZCACHE Activates/deactivates the caching and sets/reads various caching parameters.
ZOPT Set or return various system options.

ZERVBG Returns a text string describing a specific numbered error. Optionally it can aso
file the error message in the job log.

ZDTXI N Converts a date string into a date integer.

ZI NXDT Converts a date integer into a date string.

ZTMXI N Converts atime string into atime integer.

ZI NXTM Converts atime integer into atime string.

ZTI ME Returns the current date and time as julian integers.

Advanced Key Definition Routines

ZDTXKY Moves a date string into the next sort-id position of the current key.
ZFPXKY Moves areal value into the next sort-id position of the current key.

ZI NXKY Moves an integer value into the next sort-id position of the current key.
ZSTXKY Moves a character string into the next sort-id position of the current key.
ZTMXKY Moves atime string into the next sort-id position of the current key.
Advanced Data M odification Routines

ZDTXRC Moves a date string into a specified variable descriptor.

ZFPXRC Moves areal value into a specified variable descriptor.

ZI NXRC Moves an integer value into a specified variable descriptor.



SIR/XS Host/API

ZSTXRC Moves a string value into a specified variable descriptor.

ZTMXRC Moves atime string into a specified variable descriptor.

Advanced Data Retrieval Routines

ZRCXDT Returns the value of a specified date variable descriptor.

ZRCXFP Returns the value of a specified real variable descriptor.

ZRCXI N Returns the value of a specified integer variable descriptor.

ZRCXST Returns the value of a specified string variable descriptor.

ZRCXTMReturns the value of a specified time variable descriptor.

44



SIR/XS Host/API 45

Database Switching

In amultiple database environment, it isimportant to know which database is being used
at any given time. This database is referred to as the "current database". While most of
the routines refer to the current database, some routines can switch databases, making
another database the current one. The following list describes how the HOST routines
mani pul ate the databases. (The term "specified” refersto an item in the argument list of
the subroutine):

ZCCNTD, ZCGDMWY, ZCl SD, ZCSAMD, ZRCNTD, ZRGDVD, ZRI SD, ZRSAMD explicitly make the
specified database be the current database.

ZRCNTL, ZRGDM., ZRI SL, ZRSAM. make the database at the specified level be the current
database.

ZEXI T, ZCEXI T, ZEXI T pop back 1 level from the stack and make the database at the new
level be the current database.

ZORDB, ZOSDB do not switch databases. However, if thereis no current database, the
specified database is made current.

ZENDDB does not switch databases. However, if the specified database is the current one,
the "next" open database is made current.



SIR/XS

Host/API

46



SIR/XS

Host/API a7

ZAFTER

ZAFTER, Start Creation of an AFTER Key

ARGS
DESC:

ENTRY:

EXIT:

DUMWY

ZAFTER starts the creation of a DBMS key. It creates
an "AFTER' key. That is, a key which will be used
to select all CIR/ record s whose key cones after the
key that is currently being defined. It is normally
called after one of the case/record | eve
initialisation routines in order to initialise the
key selection options for case or record | oops.
Following a call to ZAFTER, key definitions routines
are called to enter values into the key one at a
time. For a case key only one call is made to enter
the value of the case id. For record keys, the case
idis assuned to be the same as the last CIR
retrieved or restored. Therefore, only the record
sort ids have to be inserted into the key. The
sort-ids nmust be entered in the order of their
appearance in the key being created.

DUMW (I * 4 ) Dumry argurment needed to nmake a
syntactically correct FORTRAN function. Shoul d

al ways be 0.

None.



SIR/XS Host/API 48

ZATTR

ZATTR, Equival ence Long and Short Fil enanes
ARGS: FI LENM STRI NG, STRLEN
DESC. ZATTR perfornms the equival ent of the ATTRI BUTE
conmmand in DBMS. Currently it allows the
equi val enci ng of a FILENAME (short 1-8 character
nane) and a long (quoted filenane). After ZATTR is
called use of the short name will reference the file
specified by the | ong nane.
ENTRY: FILENM (N * 8) Short name or "ldi" specification of
ATTRI BUTE conmand.
STRING (B * n) Long nane or string appearing within
quot e marks of DSN = subparaneter of
ATTRI BUTE conmmand (w t hout quotes).
STRLEN (I * 4) Nunber of characters in argument STRI NG
EXIT: None.
RETURN: The location of the entry in the ATTRI BUTE table
(smal | positive integer).



SIR/XS

Host/API

ZBEGIN

ZBEG N, Start Creation of Starting Key

ARGS:
DESC:

ENTRY:

EXIT:

DUMWY

ZBEG N is called after a new level in a retrieval

block is started, and prior to retrieving the first

CIR/'record. It allows the user to start creating a

key which will be used as the first key to be

processed at the |evel.

DUMW (I * 4 ) Dumry argurment needed to nmake a
syntactically correct FORTRAN
function. Should al ways be 0.

None.

49



SIR/XS

Host/API 50

ZBLTRC

ZBLTRC, Store Blank in Variable if Blank Is M ssing or Undefined

ARGS
DESC:

ENTRY:

EXIT:

VDESC

ZBLTRC stores a blank into a variable. |If the blank

is a nmssing value, then it is stored as the

respective mssing value. For other values, an

error is returned

VDESC (D * 8) The descriptor for the variable to be set
to bl ank.

None.



SIR/XS

Host/API 51

ZCACHE
ZCACHE, Set and Retrieve Cache System Control Paraneters
ARGS: FNC, VAL
DESC. ZCACHE is used to set and retrieve cache systemcontrol
par anmet ers.
ENTRY: FNC (I * 4) The control function code.
VAL (I * 4) The new value or dummy.
EXI T: None.
RETURN: Negative if error, if not as described bel ow
FNC VAL Ret urn code Descri ption
1 0 0 Di sabl e cache
1 1 0 Enabl e cache
2 n 0 Set table space = n
3 n 0 Set nunber of buffers=n
5 0 0 Set "wite when" node
5 1 0 Set "wite thru" node
11 X 0 Return for cache disabl ed
11 X 1 Return for cache enabl ed
12 X n Return tabl e space
13 X n Ret urn nunber of buffers
15 X 0 Return for "write when" node
15 X 1 Return for "write thru" node



SIR/XS Host/API

ZCALL

ZCALL, Call HOST Function and Check Its Return Val ue
ARGS: ZFUNC, PRTFL, ENDFL, LBLNO, CODE1l, CODE2
DESC. ZCALL enables the programmer to wite a nobre concise
and easier to maintain programby performng the
testing of the return codes and the eventual error
processing. First, ZCALL calls ZFUNC. |f ZFUNC
returns a positive value, zero or a negative value
that is between CODE1 and CODE2, ZCALL returns
i mediately. |If ZCALL does not return imredi ately,
the followi ng action is taken: PRTFL is 0, nothing
is printed inthe log file. PRTFL is 1, a brief
nessage is printed that indicates the subroutine
nanme, the error code, and the statement |abel LBLNO.
If it is 2, the short nmessage is printed foll owed by
the conplete error nessage on the next line. If
ENDFL is O, ZCALL returns. If it is -1, the full
HOST systemis shutdown but the subroutine returns.
If it is -2, the full systemis shutdown and the
subroutine exits directly. If it is n(positive
integer), the current stream (user) is shutdown, the
system switches to user n and the subroutine
returns.
ENTRY: ZFUNC (I * 4) Z function to call, with all its arguments.
PRTFL (I * 4) Print flag, controls if and how a nessage is
printed.
ENDFL (I * 4) End flag, controls the flow of control after
an error has occurred
LBLNO (I * 4) Statenent |abel nunber.
CODE1 (I * 4) Error code (Negative 4 digit nunmber or 0).
CODE2 (I * 4) FError code (Negative 4 digit nunmber or 0).
EXIT: None.
RETURN: Return val ue of ZFUNC.

52



SIR/XS Host/API 53

ZCCNT

ZCCNT, Initialise COUNT Case-processing Block for Current Database

ARGS: TCASES, | NDEX, START

DESC: ZCCNT is the first of a series of routines that can
be called in order to create "PROCESS CASE" bl ock
with the COUNT option. The purpose of this call is
toinitialise the retrieval stack with the required
i nformation. The argunents correspond to the
argunents on the COUNT = cl ause of the PROCESS CASE
command in RETRIEVAL. ZCCNT can al so be used to
process ALL cases by setting | NDEX and START to 1
and TCASES to -1.

ENTRY: TCASES(! * 4) Total number of cases to be processed.
INDEX( | * 4) Every INDEX the case will be processed.
START (I * 4) Starting with the START th case in the

dat abase.

EXIT: None.

RETURN: Stack | evel of the newy created bl ock, negative if
error.



SIR/XS

ZCCNTD

Host/API

54

ZCCNTD, Set Current Database and Initialise COUNT Case-processing Bl ock
TCASES, | NDEX, START, DBNANMVE
ZCCNTD is called to make DBNAME the current database
and to start creating a "PROCESS CASE"
the COUNT option. The purpose of this

ARGS
DESC:

ENTRY:

EXIT:
RETURN:

initialise the retrieva

i nformation. The argunents correspond
argunents on the COUNT = cl ause of the PROCESS CASE
RETRI EVAL. the database. ZCCNID can al so
process ALL cases by setting | NDEX and

command in
be used to

START to 1
TCASES(1 *
I NDEX (I *
START (I *
DBNAMVE( N *
None.

St ack | eve

and TCASES to -1.
4) Total nunber of cases to
4) Every INDEX th case will

bl ock with
call is to

stack with the required

to the

be processed.
be processed.

4) Starting with the START the case in

t he dat abase.

8) The dat abase name to be processed by

this case | oop

of the newy created bl ock,

negative if error.



SIR/XS Host/API

ZCDEL

ZCDEL, Del ete Current Case from Dat abase
ARGS: DUMWY
DESC.: ZCDEL is called after a CIRis retrieved to delete

the current CIR and all its associ ated data records.

ENTRY: DUMW (I * 4) Dunmmy argunent needed to nake a
syntactically correct FORTRAN
function. Should al ways be 0.
EXI T: None.

55



SIR/XS

ZCEXIT

Host/API

ZCEXI T, Term nate Case Processing Level

ARGS:
DESC:

ENTRY:
EXIT:

OLDSEED

ZCEXIT is called to term nate a case | evel and pop
back one level in the retrieval stack.

None.
OLDSEED( |

* 4) The current value of the seed is
returned to this argument if this was a
PROCESS | oop with the SAMPLE opti on.

O herwi se the value is undefined.

56



SIR/XS

Host/API

ZCFIND

ZCFI ND,
ARGS:
DESC:

ENTRY:

EXIT:
RETURN:

Find Case with G ven Key

OPT, LFLAG DI RECT, BEG N

ZCFI ND finds an existent case or creates a new case

with a previously specified key. It is called after

routi ne ZCGDWY or ZCRDWY has created a dummy bl ock
and after putting values into the caseid variable in

CCRand ( if OPTis 1) in other comon vari abl es.

When ZCFIND is executed, the value of the caseid is

used to create the case key. |If the caseid variable

i s undefined, then the dunmy block is converted into

a PROCESS CASE ALL bl ock and the next or previous

CIRis read. Oherwi se, the dunmy block is

converted into a CASE IS block and: a) if OPT is 1,

then the undefined val ues are updated to the val ues

read fromthe found CIR or b) if OPT is 2 the full

current CIRis replaced by the read CI R

OPT (I * 4) Controls the update/replace of the CR

LFLAG (I * 4) Lock flag.

DIRECT (I 4) |If PROCESS CASE then use 1 to get the
next case and -1 to get the previous
case.

BEG N (I * 4) Should be 0 to set the range to all
cases (starting with the first case in
t he database) and | to convert to a
PROCESS CASES ALL block (if caseid is
undefined) or CASE IS block (if
caseid is defined).

None.

-4001 if CIR not found,

-3026 if CIRis found but is inconpatible |ocked;

+0003 if CIRis found and has a conpati bl e | ock;

+0004 if CIRis found and avail able for CASE IS;

+0000 if CIRis found and avail abl e for PROCESS
CASE;

negative if error.



SIR/XS

Host/API

ZCFRST

ZCFRST, Start-up Case Level Block and Get First CIR

ARGS:
DESC:

ENTRY:
EXIT:

LFLAG

ZCFRST is called after case-block initialisation and
all key creation, and after all key-definition
routines. It starts-up the case block and gets the
first CIRthat neets all of the selection options
previously specified. No other case-level function
can be called until this block is successfully
executed. After ZCFRST is executed, no further key
definitions may be nmade. The system checks that the
current lock flag is conpatible with LFLAG and if it
is, LFLAG becones the new | ock.

LFLAG I * 4) The | ock flag.

None.

58



SIR/XS Host/API 59
ZCGDMY
ZCADMWY, Initialise Dunmy Case-level Processing
ARGS: DBNAME
DESC. ZCCDMWY starts up a case block w thout accessing the
dat abase. After ZCGDMY has been call ed and val ues
put in the CIR ZCFIND should be called to create
the key and find the CIR |If DBNAME is not all
bl anks, it is nade the current database.
ENTRY: DBNAME ( N * 8 ) Database name (all bl anks neans use
current database
EXI T: None.
RETURN: Stack | evel of the newy created block, negative if error.



SIR/XS

ZCIS

ZCl'S,
ARGS:
DESC:

ENTRY:

EXIT:
RETURN:

Host/API

Initialise CASE IS Block for Current Database

NEW OLD

ZClSis the first of a series of routines that can

be called in order to create "CASE |IS" block. The

purpose of this call is to initialise the retrieval

stack with the required infornmation.

NEW (1l * 4) It is 1 if a new case can be created by
this level, otherwise it is 0. The
dat abase nust have been opened for
update to allow a val ue of 1.

AD (I * 4) It is 1if an old case can be accessed
by this level, otherwise it is 0.

None.

Stack level of the newy created bl ock, negative if error.

60



SIR/XS

ZCISD

ZCl SD,
ARGS:
DESC:

ENTRY:

EXIT:
RETURN:

Host/API

Set Current Database and Initialise CASE IS Bl ock

NEW OLD, DBNAME

ZCISD is called to make DBNAME the current database

and to start creating a "CASE I S" bl ock. The

purpose of this call is to initialise the retrieval

stack with the required infornmation.

NEW (1l * 4) It is 1 if a new case can be created by
this level, otherwise it is 0. The
dat abase nust have been opened for
update to allow a val ue of 1.

AD (I * 4) It is 1 if an old case can be accessed
by this level, otherwise it is O.

DBNAVE( N*8) The dat abase name to be processed by the
| evel being created.

None.

Stack | ocation of the new block, negative if error.

61



SIR/XS

Host/API

ZCLAST

ZCLAST, Start Case-level Block and Get Last CIR

ARGS:
DESC:

ENTRY:
EXIT:

LFLAG

ZCLAST is called after case-block initialisation and
all key creation, and after all key-definition
routines. It starts-up the case block and gets the
last CIR that nmeets all of the selection options
previously specified. No other case-level function
can be called until this block is successfully
executed. After ZCLAST is executed, no further key
definitions may be nmade. The system checks that the
current lock flag is conpatible with LFLAG and if it
i s, LFLAG becones the new | ock.

LFLAG (I * 4) The | ock flag.

None.

62



SIR/XS Host/API

ZCLEAR

ZCLEAR, Clear Retrieval Stack for a Stream

ARGS: USERNO

DESC. ZCLEAR calls ZREXIT and ZCEXIT as often as needed
and in the proper order, in order to clear all
levels in the retrieval stack for the specified
user. ZCLEAR should be used to clear the stack when
the current position is unknown.

ENTRY: USERNQ(I * 4) The stream nunber whose retrieval stack
shoul d be cl eared.

EXI T: None.

63



SIR/XS Host/API 64
ZCLOCK
ZCLOCK, Return The Lock Type of the Case Level from
Executi on Stack
ARGS: LFLAG
DESC. ZCLOCK returns the lock type of the case level to
whi ch the innernpst block in the execution stack
bel ongs.
ENTRY: None.
EXI T: LFLAG (I * 4) Lock type.
RETURN: O if the level is not wite-locked. 1 if the level is wite-

| ocked.



SIR/XS

Host/API

ZCNEXT

ZCNEXT, Get Next Case for Current Level

ARGS:
DESC:

ENTRY:
EXIT:

LFLAG

ZCNEXT is called after case-block initialisation and
all key creation, and after all key-definition
routines. It starts-up the case block and gets the
next CIR that neets all of the selection options
previously specified. No other case-level function
can be called until this block is successfully
executed. After ZCNF-XT is executed, no further key
definitions may be nade. The system checks that the
current lock flag is conpatible with LFLAG and if it
i s, LFLAG becones the new | ock.

LFLAG (I * 4) The | ock flag.

None.

65



SIR/XS

Host/API

ZCPREV

ZCPREV, Start-up Case Level Block and Get Previous CIR

ARGS:
DESC:

ENTRY:
EXIT:

LFLAG

ZCPREV is called after case-block initialisation and
all key creation, and after all key definition
routines. It starts-up the case block and gets the
previous CIR that neets all of the selection options
previously specified. No other case-level function
can be called until this block is successfully
executed. After ZCPREV is executed, no further key
definitions may be nmade. The system checks that the
current lock flag is conpatible with LFLAG and if it
i s, LFLAG becones the new | ock.

LFIAG (I * 4) The | ock flag.

None.

66



SIR/XS Host/API

ZCRDMY

ZCRDMWY, Termi nate Case-processing Level and Reset to
Durmmy
ARGS: DUMWY
DESC. ZCRDMWY term nates the processing of the current CR,
rewites it to the database if necessary, and then
resets the bl ock to dumy.
ENTRY: DUMW (I * 4 ) Dumry argument needed to nake a
syntactically correct FORTRAN
function. Should al ways be O.
EXI T: None.

67



SIR/XS Host/API

ZCREST

ZCREST, Restore CIR from Dat abase and Reset Lock Type

ARGS: LFLAG

DESC. ZCREST is called to replace the values of the conmon
variables in the retrieval stack with the val ues of
the common variables in the database. Potentially,
it can change the lock type of the CIR

ENTRY: LFLAG (I * 4) The | ock fl ag.

EXI T: None.

68



SIR/XS Host/API

ZCSAM

ZCSAM Initialise SAVPLE Case-processing Bl ock

ARGS: SAMPLE, SEED

DESC: ZCSAM is the first of a series of routines that can
be called in order to create "PROCESS CASE' bl ock
wi th the SAMPLE opti on.

ENTRY: SAMPLE(R * 4) Sanple size (SAWPLE).

SEED (I * 4) Starting seed for random nunber
generator. Sane seed al ways produces the
same random sel ecti on sequence. Any odd
val ue can be used for the seed. See
routine ZCEXIT for obtaining the val ue
of the seed after the loop is finished.

EXIT: None.
RETURN: Stack | ocation of the new bl ock, negative if error.

69



SIR/XS

Host/API

ZCSAMD

ZCSAMD, Set Current Database and Initialise a SAMPLE
Case- processi ng Bl ock

ARGS: SAMPLE, SEED, DBNAME

DESC. ZCSAMD is called to nmake DBNAME the current database
and to start creating a "PROCESS CASE" bl ock with
the SAMPLE option. The purpose of this call is to
initialise the retrieval stack with the required

i nformati on.

ENTRY: SAMPLE(R * 4) Sanple size (SAWVPLE).

SEED (I * 4) Starting seed for random number
generator. Sane seed al ways produces
the sane random sel ecti on sequence.
Any odd val ue can be used for the
seed. See routine ZCEXIT for obtaining
the value of the seed after the | oop
is finished.

DBNAME(N * 8) The dat abase name to be processed by
this case block (all blanks neans use
current database).

EXIT: None.
RETURN: Stack | ocation of the new bl ock, negative if error.

70



SIR/XS

Host/API

ZCWRIT

ZOWRI T, Replace Mdified CIR on Database and Lock of

ARGS:
DESC.

ENTRY:
EXIT:

Bl ock

LFLAG

ZCNWT is called to replace the database version of
the CCRwth the current version in the retrieval
stack. This process is perforned automatically by
t he HOST routines when the next CIRis retrieved or
the case level is term nated. However the user nay
want to wite the nodified CIR to the database and
change the lock for further processing.

LFLAG (I * 4) Lock fl ag.

None.

71



SIR/XS

ZDESC

ZDESC,

DESC:

ENTRY:

EXIT:

Host/API

Create Vari abl e Descriptor

VDESC, RECTYP, VRNAME, LEVEL

ZDESC buil ds-up a variable's descriptor. (Refer to

t he Machi ne Specifics docunentation for

additional information on descriptors.) ZDESC can be

cal l ed once prior to entering a | oop which

references a variable. This avoids the necessity of
creating the variable descriptor for each | oop
iteration. Unlike ZDESCD, the database nane is not
required.

RECTYP(lI * 4) The record type nunber to which the
vari abl e bel ongs. Comopn variables are
indicated by setting this argunent to
zero.

VRNAMVE( N*8) The vari abl e nane.

LEVEL (I * 4) Level in the retrieval stack where the
ClR/ data record can be found. A zero
val ue indi cates that when the descriptor
is used, the systemshould start with
the innernost level in the retrieval
stack and search outwards for the first
| evel which matches the database and
record type specified within the
descriptor. A negative value indicates
that the record is LEVEL |evels out from
the innernost level. A positive value
i ndicates that the record is LEVEL
| evel s deep in the retrieval stack.

VDESC (D*8) Contains the descriptor for the variable
speci fied by the other argunents.

72



SIR/XS Host/API

ZDESCB

ZDESCB, Break Descriptor Into Four Integers

ARGS: VDESC, DBNUM RECTYP, VARNUM LEVEL

DESC. ZDESCB breaks a descriptor into 4 integers.

ENTRY: VDESC (1 * 4) Contains the descriptor.

EXIT: DBNUM (I * 4) The database number in HOST system
RECTYP(I * 4) The record-type nunber.
VRNUM (I * 4) The variable nunmber in record.
LEVEL (I * 4) The stack level.

73



SIR/XS

Host/API 74

ZDESCD

ZDESCD, Create Variabl e Descriptor

ARGS
DESC:

ENTRY:

EXIT:

VDESC, DBNAME, RECTYP, VRNAME, LEVEL

ZDESCD | ooks up a common or record variable nane and

returns the variable's descriptor. Refer to the

Machi ne Specifics docunentation for additiona

i nformati on on descriptors. ZDESCD can be called

once prior to entering a | oop which references a

variable. This avoids the necessity of creating the

vari abl e descriptor for each | oop iteration.

DBNAME( N*8) The dat abase in which the variable
resides.

RECTYP(lI * 4) The record type nunber to which the vari-
abl e bel ongs. Conmon variables are indi-
cated by setting this argument to zero

VRNAMVE( N*8) The vari abl e nane.

LEVEL (I * 4) This indicates where the CIlR data record
can be found. A zero val ue indicates
that when the descriptor is used, the
system shoul d start with the innernopst
level in the retrieval stack and search
outwards for the first level which
mat ches the dat abase and record type
specified within the descriptor. A
negative value indicates that the record
is LEVEL |l evels out fromthe innernost
| evel A positive value indicates that
the record is LEVEL | evels deep in the
retrieval stack.

VDESC (D 8) Contains the descriptor for the variable
specified by the other argunents.



SIR/XS

ZDESCM

Host/API 75

ZDESCM WMake Descriptor out of Four Integers
ARGS: VDESC, DBNUM RECTYP, VARNUM LEVEL
DESC. ZDESCM nakes a descriptor from4 integers.

ENTRY:  DBNUM (|
RECTYP( |

VRNUM ( |
LEVEL (I
EXIT:  VDESC (I

*

*

*

4)

The dat abase nunber in HOST system

The record type nunber. It cannot be 0
for a casel ess dat abase

The vari abl e nunber in record.

The stack |evel.

Cont ai ns the descriptor for the variable
speci fied by the other argunents.



SIR/XS

Host/API

ZDETAL

ZDETAL, Find Location of File Control Block of DETAIL File

ARGS:
DESC:

ENTRY:
EXIT:

DUMWY

ZDETAL returns the location in table ZERO of the
file control block for the detail file for the
current database.

DUMMY(I * 4) Dunmy ar gunent.

None.

RETURN: Location of DETAIL file FCB.

76



SIR/XS

Host/API

ZDTTKY

ZDTTKY, Enter a Date String into a Key

ARGS:
DESC:

ENTRY:

EXIT:

DATEST, LENGTH, DATEMP

ZDTRKY is called after one of the key initialisation

routines in order to insert the value of a date

string into the next |ocation of the key currently
bei ng defi ned.

DATEST (B * n) Date string to insert into key.

LENGTH (I * 4) Nunber of characters in strings DATEST
and DATEMP.

DATEMP (B * n) String containing format for decoding
the date specified in DATEST. Legal
characters are | (ignore), Y(year),

M nonth), or D(day). For
exanpl e ' WM DDl YY'

None.

77



SIR/XS Host/API

ZDTTRC

ZDTTRC, Move Date into Cl R Record
ARGS: DATEST, LENGTH, DATEMP, VDESC
DESC. ZDTTRC transfers the value of a date string into a

ClR or data record.

ENTRY: DATEST (B * n) Date string to transfer to record.

LENGTH (I * 4) Nunber of characters in strings DATEST
and DATEMP.

DATEMP (B * n) String containing format for decoding
the date specified in DATEST. Legal
characters are | (ignore), Y(year),

M nont h), or D(day).

VDESC (D * 8) Variable descriptor of variable to receive

val ue.
EXIT: None.

78



SIR/XS Host/API 79

ZDTXIN

ZDTXIN, Convert Date String into Date Integer
ARGS: DATEST, ORDI NAL, DATEMP, LENGTH
DESC. ZDTXI N converts a date encoded as a character string
into a julian integer val ue.
ENTRY: DATEST (B * n) Date string to convert.
ORDI NAL (I * 4) First character in string DATEST to
use.
DATEMP(B * n) String containing format for
decodi ng the date specified in
DATEST. Legal characters are
I (ignore), Y(year), Mnonth), or
D(day). For exanple ' MM DD YY
LENGTH(I * 4) Nunber of characters in strings
speci fi ed above.
EXIT: None.



SIR/XS

Host/API

ZDTXKY

ZDTXKY, Enter Date String into Key

ARGS
DESC:

ENTRY:

EXIT:

DATEST, ORDI NAL, LENGTH, DATEMP

ZDTXKY is called after one of the key initialisation

routines in order to insert the value of a date

string into the next |ocation of the key currently

bei ng defi ned.

DATEST (B * n) Date string to insert into key.

ORDI NAL (I * 4) Starting byte nunmber in area DATA to
transfer the value from For a
sinmple variable this value is 1.

LENGTH (I * 4) Nunber of characters in strings
speci fied above.

DATEMP (B * n) String containing format for
decodi ng the date specified in
DATEST. Legal characters are
I (ignore), Y(year), Mnonth), or D
(day). For exanple ' MM DDl YY

None.

80



SIR/XS

ZDTXRC

Host/API

ZDTXRC, Move Date into Cl R Record

DATEST, ORDI NAL, LENGTH, DATEMP, VDESC

ZDTXRC transfers the value of a date string into a
CIR or data record.

ARGS:
DESC:

ENTRY:

EXIT:

DATEST (B * n)
ORDINAL (I * 4)

LENGTH (1 * 4)

DATEMP (B * n)

VDESC (D * 8)

None.

Date string to transfer to record.
Starting byte nunber in area DATA to
transfer the value from For a
sinmple variable this value is 1.
Nunber of characters in strings
speci fied above.

String containing format for
decodi ng the date specified in
DATEST. Legal characters are

I (ignore), Y(year), Mnonth), or
D(day) .

Vari abl e descriptor of variable to
recei ve val ue.

81



SIR/XS

ZEND

ZEND,
ARGS
DESC:

ENTRY:
EXIT:

Host/API 82

Term nat e Processing of HOST

TSUSED

ZEND ternminates a HOST run. |t nust be called after
using ZENDDB to close all the databases still open
for the run. ZEND ensures that all information

related to the databases are properly handled. Al
internal tables are cleared and any scratch files

used are closed and returned.

None.

TSUSED (I * 4) The anpunt of table space actually used

in the current job is returned by HOST via
this argunment. If the value is negative then
during the run sonme tables had to be

swapped to a scratch disk file in order to
conti nue processing. In this case addition-

a

menory shoul d be allocated to reduce

the swapping tine the next tine the
programis used.



SIR/XS

Host/API

ZENDDB

ZENDDB, Term nate the Use of Database

ARGS:
DESC:

ENTRY:

EXIT:

DBNANME

ZENDDB term nates the use of a specified database

The files are updated and closed. The space

associated with each database is not freed until

ZEND is called. ZENDDB nust be called for each open

dat abase prior to calling ZEND. Prior to calling

ZENDDB, all streans nust have term nated their use

of the database, otherwise the call fails and

returns a fatal error. Failure to close a database
can cause destruction of the database.

DBNAME(N * 8) Name of the database. This is the sane
nane that appeared on the database
initialisation routine.

None.

83



Host/API

ERRNUM BUFFER, BUFLEN, LOGFLG, RNAMVE
ZERMSG converts an error code ERRNUM i nto coded text

Error code to be converted.
Maxi mum nurmber of characters to
transfer to error text buffer BUFFER
Insert error nmessage in log flag. If
the value of this argunent is O then
no nmessage is placed in the system
log file. If the value of this
argument is | then the nmessage is

pl aced in the systemlog file and

al so transferred to the BUFFER array.
Calling routine name to be included
in error nessage placed in systeml og

Wl contain up to BUFLEN characters
describing the error code ERRNUM

SIR/XS
ZERMSG
ZERMSG, Error Description Routine
ARGS
DESC:
that can be printed.
ENTRY: ERRNUM (I * 4)
BUFLEN (I * 4)
LOGFLG (I * 4)
RNAME (N * 8)
file.
EXI T: BUFFER (B * n)
RETURN:

Nunber of characters in the returned nessage,
negative if error.

84



SIR/XS

ZEXIT

ZEXI T,
ARGS
DESC:

ENTRY:
EXIT:

Host/API 85

Exit One Process Level Regardless of Type

OSEED

ZEXIT exits the block at the lowest level in the

current stack, regardless its type(case or record).

None.

OSEED(I * 4) If this was a process sanple |evel,
then the current seed value is returned
here so that it can be used on the next
call for the next random nunber
generati on.



SIR/XS Host/API

ZFPTKY

ZFPTKY, Enter Real Value into Key

ARGS: DATA

DESC. ZFPTKY is called after one of the key initialisation
routines in order to insert a real value into the
next location of the key currently being defined.

ENTRY: DATA (R * 4) Real value to insert into key.

EXI T: None.

86



SIR/XS Host/API

ZFPTRC

ZFPTRC, Move Real into Cl R Record

ARGS: DATA, VDESC

DESC. ZFPTRC transfers a real value into a CIR or data
record.

ENTRY: DATA (R * 4) Real value to transfer to record.
VDESC (D * 8) Variable descriptor of variable to

recei ve val ue.
EXI T: None.

87



SIR/XS Host/API

ZFPXKY

ZFPXKY, Enter Real Value into Key
ARGS: DATA, ORDI NAL, LENGTH
DESC. ZFPXKY is called after one of the key initialisation
routines in order to insert a real value into the
next location of the key currently being defined.
ENTRY: DATA (R * n) Real value to insert into key.
ORDI NAL (I * 4) Starting byte nunmber in area DATA to
transfer the value from For a
sinple variable this value is 1.
LENGTH (I * 4) Number of bytes in val ue.
EXIT: None.

88



SIR/XS Host/API

ZFPXRC

ZFPXRC, Move Real into Cl R Record
ARGS: DATA, ORDI NAL, LENGTH, VDESC
DESC. ZFPXRC transfers a real value into a CIR or data
record.
ENTRY: DATA (R * n) Real value to transfer to record.
ORDI NAL (I * 4) Starting byte number in area DATA to
transfer the value from For a
sinmple variable this value is 1.
LENGTH(I * 4) Nunmber of bytes in val ue.
VDESC (D * 8) Vari abl e descriptor of variable to
recei ve val ue.
EXI T: None.

89



SIR/XS

Host/API 90

ZFROM

ZFROM
ARGS
DESC:

ENTRY:

EXIT:

Start Creation of FROM Key
DUMWY
ZFROM starts the creation of a key. It creates a
"FROM' key. That is, a key which is used to select
all CRrecord s whose key matches or cones after
the key that is currently being defined. It is
normal ly called after one of the case/record |eve
initialisation routines in order to initialise the
key selection options for case or record | oops.
Following a call to ZFROM other routines are called
to enter values into the key one at a tinme. For a
case key only one call is nmade to enter the val ue of
the case id. For record keys, the case id is
assuned to be the sane as the last CIR retrieved or
restored. Therefore, only the record sort ids have
to be inserted into the key. The sort-ids nust be
entered in the order of their appearance in the key
bei ng creat ed.
DUMW(I * 4) Dummy argunent to nmake routine a
syntactically correct FORTRAN function.
Shoul d al ways be 0.
None.



SIR/XS

Host/API

ZINTKY

ZI NTKY, Enter Integer Value Into Key

ARGS:
DESC:

ENTRY:
EXIT:

DATA

ZINTKY is called after one of the key initialisation
routines in order to insert an integer value into
the next location of the key currently being

defi ned.

DATA(l * 4) Integer value to insert into key.

None.

91



SIR/XS Host/API

ZINTRC

ZI NTRC, Move Integer into CIR record

ARGS: DATA, VDESC

DESC. ZINTRC transfers an integer value into a CIR or data
record.

ENTRY: DATA (I * 4) Integer value to transfer to record.
VDESC (D * 8) Descriptor for variable to nodify.

EXI T: None.

92



SIR/XS

ZINXDT

ZI NXDT, Convert

ARGS:
DESC:

ENTRY:

EXIT:

I nt eger

Host/API

into Date String

| DAYS, DATEST, ORDI NAL, LENGTH, DATEMP
ZI NXDT converts an integer value into a date string
according to a specified format.

I DAYS (1 * 4)
ORDINAL (I * 4)

LENGTH (I * 4)

DATEMP (B * n)

DATEST (B * n)

The integer value to convert.
Starting byte nunber in area DATEST
to transfer the date string to.
Nunber of characters in strings
speci fi ed above.

String containing format for

decodi ng the date specified in
DATEST. Legal characters are

I (ignore), Y(year), Mnonth), or
D(day). For exanple ' WM DD YY'

The area in which to place the date
string created. Starting at

position ORDI NAL as specified above.

93



SIR/XS Host/API

ZINXKY

ZI NXKY, Enter Integer Value Into Key

ARGS: DATA, ORDI NAL, LENGTH

DESC. ZINXKY is called after one of the key initialisation
routines in order to insert an integer value into

the next location of the key currently being defined.

ENTRY: DATA (I * n) I nteger value to insert into key.
ORDI NAL(I * 4) Starting byte nunber in area DATA to
transfer the value from For a sinple
variable this value is 1.
LENGTH(I * 4) Nunber of bytes in value.
EXIT: None.

94



SIR/XS Host/API

ZINXRC

ZI NXRC, Move Integer into Cl R Record
ARGS: DATA, ORDI NAL, LENGTH, VDESC
DESC. ZINXRC transfers an integer value into a CIR or data
record.
ENTRY: DATA (I * n) Integer value to transfer to record.
ORDI NAL (I * 4) Starting byte nunmber in area DATA to
transfer the value from For a
sinmple variable this value is 1.
LENGTH (1 * 4) Nunber of bytes in val ue.
VDESC (D * 8) Descriptor for variable to nodify.
EXIT: None.

95



SIR/XS

ZINXTM

ZI NXTM Convert | nteger

Host/API 96

into Time String

ARGS: I TI ME, TI MSTR, ORDI NAL, LENGTH, TI MVAP
DESC. ZI NXTM converts an integer value into a tinme string
according to a specified tine fornmat.

ENTRY: ITIME (I * 4)
ORDINAL (I * 4)

LENGTH (I * 4)
TIMVAP (B * n)

EXIT: TIMSTR (B * n)

The integer to convert.

Starting byte nunber in area TIMSTR to
transfer the tine string to.

Number of characters in strings above
String containing the decodi ng

format for the tine string

contained in TIMEST. Legal val ues

are | (ignore), H(hour), Mm nute),
S(second). For exanple ' HHMWEBS

The area to receive the tine

string. The location the string is
placed in this area is dependent on
ORDI NAL.



SIR/XS

Host/API

ZLABEL
ZLABEL, Get Value Label for Current Value of a Variable
ARGS: VDESC, STRI NG, LENGTH
DESC. ZLABEL gets the value |abel for the current val ue of
a variable. It is equivalent to the VALLAB
function.
ENTRY: VDESC (D * 8) The variable descriptor.
LENGTH (I * 4) Number of characters of val ue | abel
to retrieve.
EXIT: STRING (B * n) String area in which the val ue | abel
will be placed.
RETURN: Nunber of characters actually transferred, negative

if error.

97



SIR/XS Host/API

ZLABLN

ZLABLN, Get Val ue Label for Numeric Variable
ARGS: VDESC, VALUE, STRI NG, LENGTH
DESC: ZLABLN searches the database for the val ue | abel
associ ated with the specified variable and the
nuneric val ue.
ENTRY: VDESC (D * 8) The variabl e descriptor.
VALUE (R * 8) The specific value whose label is to
be returned.
LENGTH(I * 4) Nunber of characters of value label to
retrieve.
EXIT: STRING (B * n) Area in which the value |abel will be
pl aced.
RETURN: Nunber of characters actually transferred, negative if error.

98



SIR/XS Host/API

ZLABLS

ZLABLS, Cet Value Label for String Variable
ARGS: VDESC, VALUE, LENGTHI , STRI NG, LENGTH2
DESC: ZLABI LS searches the database for the val ue | abel
associated with the specified variable and the
string val ue.
ENTRY: VDESC (D * 8) The variable descriptor.
VALUE (B * n) The specific value whose label is to
be returned.
LENGTHL(I * 4) Number of characters in the val ue.
LENGTH2(I * 4) Number of characters of val ue | abel
to retrieve.
EXI T: STRING (B * n) Area in which the value label is to
be pl aced.
RETURN: Nunber of characters actually transferred, negative if error.

99



SIR/XS

Host/API

ZLCKRT

ZLCKRT, Set or Return the Record Type Lock

ARGS
DESC:

ENTRY:

EXIT:

DBNAME, RECTYP, LFLAG

ZLCKRT sets or returns the lock for a specified

record type. It works only for concurrent HOST.

The routine can be invoked froma regul ar HOST

program but it does not have any effect, nor does it

return any significant val ue.

DBNAME(D * 8) The database name to which the record
type bel ongs.

RECTYP(B * n) If ZLCKRT is invoked to set a record
type lock, RECTYP is the record type
nunber (0 means CIR). If it is
i nvoked to return a record type | ock
RECTYP shoul d be set to a negative
value that is the -1 minus the record
type (i.e. -1 for AR - 2 for
rectype 1, etc.)

LFLAG (I * 4) Value to set the lock record type to (
if RECTYP is not negative).

LFLAG (B * n) Current value of the lock flag for the
rectype specified by a negative val ue
of RECTYP.

100



SIR/XS Host/API

ZLOGIN

ZLOA N, Initialisation of Master Link

ARGS: MDSN, MLEN, SDSN, SLEN

DESC. ZLOGA N specifies the MASTER and SLAVE names ( DSNS)
and | ogs the slave (current process) into the
MASTER. It nust be the next routine called after
ZSTART. If it is not called, the default master and
sl ave nanmes are used. For non-concurrent HOST,
ZLOG N is not operational.

ENTRY: NMDSN (B * n) The MASTER DSN.

EXIT:

MLEN (I * 4) The length of the NMDSN.
SDSN (B * n) The SLAVE DSN.

SLEN (I * 4) The length of the SDSN.
None.

101



SIR/XS

ZMSLAB

Host/API

ZMSLAB, Return Val ue Label for M ssing Val ue

VDESC, VALUE, STRI NG, LENGTH

ZVSLAB retrieves the value | abel for a specified
nm ssing value of a certain variable.

ARGS:
DESC:

ENTRY:

EXIT:

RETURN:

VDESC (D * 8)
VALUE (I * 4)

LENGTH(I * 4)

STRING (B * n)

The descriptor for the variable.
The m ssing val ue whose | abel is
being returned. (0, 1, 2, 3)

Maxi mum nurmber of characters to
return.

String area that will have the | abel
placed init.

The nunmber of characters actually transferred
negative if error.

102



SIR/XS Host/API

ZMSTRC

ZMSTRC, Transfer M ssing Value to Variable
ARGS: NUVBER, VDESC
DESC. ZMSTRC sets the value of a specified variable to
ei ther undefined or one of the 3 missing val ues.
ENTRY: NUMBER(I * 4) The value O if the variable is to be
set to undefined or the value 1-3 for
m ssing val ue 1-3.
VDESC (D * 8) The descriptor of the destination
vari abl e.
EXI T: None.

103



SIR/XS Host/API

ZNCASE

ZNCASE, Get Number of Cases in Database
ARGS: DBNAME
DESC. ZNCASE returns the nunber of cases currently in the

dat abase.
ENTRY: DBNAME (N * 8) The dat abase nane.
EXI T: None.

RETURN: The nunber of cases in the database, negative if error.

104



SIR/XS

ZNEW

ZNEW
ARGS:
DESC:

ENTRY:

EXIT:
RETURN:

Host/API 105

Check if New CIR record was Created

DUMWY

ZNEWreturns an indication of whether the

ClR/'record in the lowest level of the retrieval

stack was just created or if it existed prior to

this reference.

DUMW (I * 4 ) Dumry argurment needed to make a
syntactically correct FORTRAN
function. Should al ways be O.

None.

Oif CARrecord previously existed, 1 if CIRrecord

was just created, negative if error.



SIR/XS

ZNOR

ZNOR,
ARGS:
DESC:

ENTRY:

EXIT:
RETURN:

Host/API

Get The Nunber of Records in Current Case

RECTYP

ZNOR returns the nunber of records of the specified

type within the current case. This function

corresponds to the COUNT function in DBMS. ZNOR
differs fromZNORD only in that the CIR

corresponding to the innernost block in retrieval
stack is used, regardl ess of database being used.

ZNOR cannot be used on a casel ess dat abase.

RECTYP(lI * 4) The record type. If it is zero, then
it returns the total nunber of records
in the case.

None.

The nunber of records of the specified type in the

current case, negative if error.

106



SIR/XS

Host/API 107

ZNORD

ZNORD,
ARGS
DESC:

ENTRY:

EXIT:
RETURN:

Get Number of Records in Current Case for Specified Database

DBNAME, RECTYP

ZNORD returns the nunber of records of the specified

type in the current case for the specified database.

This function corresponds to the COUNT function in

DBIVS.

DBNAME (N * 8) The database name. ZNORD searches
backwards fromthe current |evel for
a bl ock "bel onging” to the specified
dat abase and uses its CIRto return
the value from ZNORD cannot be used
on a casel ess dat abase.

RECTYP (I * 4) The record type. If it is zero, then
it returns the total nunber of
records in the case.

None.

The nunber of records of the specified type in the

current case, negative if error.



SIR/XS Host/API 108

ZNRECS

ZNRECS, Cet Nunber of Records of Type

ARGS: DBNAME, RECTYP

DESC. ZNRECS returns the nunber of records of a specified
type currently in the database.

ENTRY: DBNAME (N * 8) The dat abase nane.
RECTYP (I * 4) The record type nunber, 0 for CIR

EXI T: None.

RETURN: The nunber or records of the specified type,
negative if error.



SIR/XS Host/API 109

ZNSIDS

ZNSI DS, Get Nunber of Sort-ids in Record Type

ARGS: DBNAME, RECTYP

DESC. ZNSI DS returns the nunber of sort-ids in the key for
the specified record type.

ENTRY: DBNAME (N * 8) The dat abase nane.
RECTYP (I * 4) The record type nunber.

EXIT: None.

RETURN: The nunber of sort-ids in the specified record type,
negative if errors.



SIR/XS Host/API
ZNVARS
ZNVARS, Get the Nunber of Variables in Record
ARGS: DBNAME, RECTYP
DESC. ZNVARS returns the nunber of variables in a
specified record type or the CIR It can be used to
determne if a database is casel ess or not.
ENTRY: DBNAME (N * 8) The dat abase nane.
RECTYP (I * 4) The record type nunber. Use zero for
the CIR If RECTYP is 0 and the
dat abase is casel ess, the function
returns O.
EXI T: None.
RETURN: The nunber of variables in the specified record

type, zero for the nunber of variables in the CIR of
a casel ess database, negative if error.

110



SIR/XS Host/API 111

ZOPEN

ZOPEN, Deternmine if Database is Avail able

ARGS: DBNAME

DESC. ZOPEN is called to deternmine if a specified database
is currently open for use or not.

ENTRY: DBNAME ( N * 8 ) The database name to check.

EXI T: None.

RETURN: I nternal database nunber ( small positive integer ),
negative if error.



SIR/XS Host/API 112

ZOPT

ZOPT, Set or Return Various System Options

ARGS: oPT

DESC: ZOPT allows the user to select, deselect or return

various options.

ENTRY: OPT (I * 4) The sumof the options to select if
positive; -1 to return the current
settings.

OoPT Descri ption
0*1 or 1*1 al low or disallow the storage of valid
val ues
0*2 or 1*2 all ow or disallowthe storage of undefined
val ues
0*4 or 1*4 al l ow or disallowthe storage of m ssing
val ues
0*8 or 1*8 al | ow or disall ow backward search In the
stack when a "front descriptor level Is O
0*16 or 1*16 al l ow or disall ow backward search in the
stack when a "to" descriptor level is O
EXI T: None.
RETURN: O if OPT is between 0 and 31, the sum of selected

options if OPT is -1, negative if error.



SIR/XS

ZORDB

ZORDB,
ARGS
DESC:

ENTRY:

Host/API

Initialise Specified Random Dat abase

DBNAME, DBPASS, HSPASS, RDPASS, WRPASS, UPD, PREFI X, PRELEN

ZORDB is called to attach the database. It also
verifies the passwords to ensure database security
and accessibility. It nmust be called prior to any
reference to the new database. Each open dat abase
requires a significant amount of nmenory to be
allocated in the table area regardl ess of whether it
is currently being used or not. ZORDB may only be
called for
DBNAVE(N * 8) Nane of the database. This is the sane

DBPASS(N * 8)
HSPASS(N * 8)

RDPASS(N * 8)

VDPASS(N * 8)

UPD (I

* 4)

a database that is in random fornmat.

nane that woul d appear on an "CLD FI LE"
conmand.

The password for the database.

The password required to access the
dat abase via HOST. If no password is
required then this field should
contain a bl ank nane.

The read security password for the
dat abase. This password is used to
define the default read security |evel
for any stream whi ch does not
specifically set the read security

| evel for this database. If the
argunent contains 8 blanks then the
standard DBMS default is used for

any stream not specifying a read
security password.

The wite security password for the
dat abase. This password is used to
define the default wite security

| evel for any stream which does not
specifically set the wite security

| evel for this database. If the
argument contains 8 blanks then the
standard DBMS default is used for

any streamnot specifying a wite
security password.

Updat e/ nonupdate flag. If UPDis O
then the database is attached for read
only access. |If however the val ue of
this argument is 1 or 2 then the

dat abase is attached for exclusive
usage in order to allowthe job to
nmodi fy the database. If the value is 2
then every change to the dat abase
causes the changed internal tables to
be rewitten to the database file. If
the value is 1 then only when HOST
determnes it is necessary will the
tables be rewitten to the database

113



SIR/XS Host/API 114

file.
PREFI X(B * n) Prefix used for database fil enames.
PRELEN(I * 4) Nunber of characters in "PREFI X".
EXIT: None.
RETURN: The dat abase nunber used in creating descriptors if
no errors are encountered ( 1 for 1st opened
dat abase, 2 for 2nd, etc. Negative if error.



SIR/XS Host/API

Z0SDB

Z0SDB, Initialise Specified Sequential Database

ARGS: DBNAME, DBPASS, HSPASS, RDPASS, WRPASS, UPD,
PREFI X, PRELEN, SI FNAM SOFNAM

DESC. ZOSDB is called initially to attach a sequentia
format database. It also verifies the passwords to
ensure database security and accessibility. Each
open database requires a significant amunt of
menory to be allocated in the table area regardl ess
of whether it is currently being used or not. ZOSDB
may only be called for a database which is in
sequential format.

ENTRY: DBNAME(N * 8) Nane of the database. This is the same

nanme that woul d appear on an "OLD FILE"
conmand.

DBPASS(N * 8) The password for the database.

HSPASS(N * 8) The password required to access the
dat abase via HOST. If no password is
required then this field should contain
a bl ank nane.

RDPASS(N * 8) The read security password for the
dat abase. This password is used to
define the default read security |eve
for any stream which does not
specifically set the read security
I evel for this database. If the
argunent contains 8 blanks then the
standard DBMsS default is used for any
stream not specifying a read security
passwor d.

WRPASS (N * 8) The wite security password for the
dat abase. This password is used to
define the default wite security |eve
for any stream whi ch does not
specifically set the wite security
| evel for this database. If the
argument contains 8 blanks then the
standard DBMS default is used for any
stream not specifying a wite security
passwor d.

UPD (I * 4) Updat e/ nonupdate flag. If UPDis O then
t he database is attached for read only
access. |If however the value of this
argument is 1 or 2 then the database is
attached for exclusive usage in order
to allowthe job to nodify the
database. If the value is 2 then every
change to the database causes the
changed internal tables to be rewitten
to the database file. If the value is
then only when HOST determines it is
necessary will the tables be rewitten

115



SIR/XS

EXIT:
RETURN:

PREFI X(B * n)
PRELEN(| * 4)
SIFNAM (N * 8)

SOFNAM (N * 8)

None.

Host/API

to the database file.

Prefix used for database fil enanes.
Nurmber of characters in "PREFIX".

The "FI LENAMVE" of the file containing
the sequential format input database
The "FILENAME" of the file which wll
contain the sequential format output
database. If this is not an update run
then this argunent should contain al

bl anks.

The dat abase nunmber used in creating descriptors if
no errors are encountered ( 1 for 1st opened
dat abase, 2 for 2nd, etc ). negative if error.

116



SIR/XS

ZRCNT

ZRCNT,
ARGS:
DESC:

ENTRY:

EXIT:
RETURN:

Host/API

Initialise COUNT Record Processing Bl ock

RECTYP, TRECS, | NDEX, START

ZRCNT is the first of a series of routines that can
be called in order to create "PROCESS RECORD' bl ock

with the COUNT option.

ALL records by setting INDEX and START to 1 and
TRECS to -1.
argunents on the COUNT = cl ause of the PROCESS CASE
conmmand i n RETRI EVAL.

RECTYP(I *
TRECS (I *
| NDEX (I *
START (I *
None.

St ack | evel

error.

4)
4)
4)

4)

The arguments correspond to the

The record type nunber to be

processed.
Total nunber of records to be
processed.
Every INDEX the record will be
processed.

Starting with the START the record in
t he dat abase.

of the newy created block, negative if

ZRCNT can be used to process

117



SIR/XS

Host/API

ZRCNTD
ZRCNTD, Set Current Database and Initialise COUNT
Recor d- processi ng Bl ock
ARGS: RECTYP, TRECS, | NDEX, START, DBNAME
DESC. ZRCNTD is called to nmake DBNAME the current database
and to start creating a "PROCESS RECORD' bl ock with
the COUNT option. The purpose of this call is to
initialise the retrieval stack with the required
i nformation. The argunents correspond to the
argunments on the COUNT = clause of the PROCESS CASE
command i n RETRI EVAL.
ENTRY: RECTYP(lI * 4) The record type nunber to be
processed.
TRECS (I * 4) Total nunber of records to be
processed.
INDEX (I * 4) Every INDEX the record will be
processed.
START (I * 4) Starting with the START the record in
t he dat abase.
DBNAME(N * 8) Dat abase nane.
EXIT: None.
RETURN: Stack |evel of the newly created bl ock, negative if

error.

118



SIR/XS

Host/API

ZRCNTL

ZRCNTL,

ARGS:
DESC.

ENTRY:

EXIT:
RETURN:

Initialise COUNT Record Processing Bl ock

Bel onging to CIR

RECTYP, TRECS, | NDEX, START, LEVEL

ZRCNTL is called to start creating a "PROCESS

RECORD" bl ock (with the COUNT option) that bel ongs

to the CIR at the specified |l evel. The purpose of

this call is toinitialise the retrieval stack with

the required information. Potentially, it can

switch databases. ZRCNTL can be used to process ALL

records by setting |INDEX and START to 1 and TRECS to

-1. The argunents correspond to the argunents on

the COUNT cl ause of the PROCESS CASE conmand in

RETRI EVAL.

RECTYP(lI * 4) The record type nunber to be
processed.

TRECS (I * 4) Total nunber of records to be
processed.

INDEX( | * 4) Every INDEX the record will be
processed.

START (I * 4) Starting with the START the record in
t he dat abase.

LEVEL (I * 4) Stack |level of the CIR block to which
the record shoul d bel ong.

None.

Stack level of the newy created bl ock, negative if

error.

119



SIR/XS Host/API 120

ZRCTDT

ZRCTDT, Transfer Date from Cl R/ Record
ARGS: VDESC, DATEST, LENGTH, DATEVAP
DESC. ZRCTDT retrieves a date value fromthe specified
Cl R/ data record and converts it to a date string
according to the user specified date map.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
retrieve.
DATEST(B * n) Location to place date string.
LENGTH(I * 4) Nunber of characters in strings DATEST
and DATEMP.
DATEMP(B * n) String containing the decoding fornat
for the date string contained in
DATEST. Legal values are Wday of
week) M nonth), D(day), Y(year). For
exanpl e, 'MM DD/ YY" woul d produce
'12/ 31/ 86" .
EXIT: DATEST(B * n) WII contain date string retrieved
fromcurrent Cl R/ data record.



SIR/XS Host/API 121

ZRCTFP

ZRCTFP, Transfer Floating-point Value from Record

ARGS: VDESC, DATA

DESC. ZRCTFP retrieves a real value fromthe specified

Cl R/ data record.

ENTRY: VDESC (D * 8) Variable descriptor of variable to
retrieve.

EXI T: DATA (R * 4) WII contain real value retrieved from
current ClR/ data record.



SIR/XS Host/API 122

ZRCTIN

ZRCTIN, Transfer Integer Value from Record

ARGS: VDESC, DATA

DESC. ZRCTIN retrieves an integer value fromthe specified

Cl R/ data record.

ENTRY: VDESC (D * 8) Variable descriptor of variable to
retrieve.

EXI T: DATA (I * 4) WIIl contain integer value retrieved
fromcurrent Cl R/ data record.



SIR/XS Host/API 123

ZRCTRC

ZRCTRC, Transfer Value from One Variabl e to Anot her
ARGS: VDESCI , VDESC2
DESC. ZRCTRC transfers data fromone variable in one
record to a variable in either another record or the
sanme record.
ENTRY: VDESC1(D * 8) The descriptor of the source
vari abl e.
VDESC2 (D * 8) The descriptor of the destination
vari abl e.
EXI T: None.



SIR/XS Host/API 124

ZRCTST

ZRCTST, Transfer String from Cl R Record
ARGS: VDESC, DATA, LENGTH
DESC. ZRCTST retrieves a character string value fromthe
specified Cl R/ data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
retrieve.
LENGTH(I * 4) Number of characters at | ocation DATA.
EXI T: DATA (B * n) WIIl contain character string
retrieved fromcurrent Cl R data
record.



SIR/XS Host/API 125

ZRCTTM

ZRCTTM Transfer Time from Cl R/ Record
ARGS: VDESC, Tl MEST, LENGTH, TI MEMP
DESC. ZRCTTM retrieves a tine string fromthe specified

Cl R/ data record.

ENTRY: VDESC (D * 8) Vari abl e descriptor of variable to
retrieve.

TIMEST (B * n) Location to place time string.

LENGTH (I * 4) Nunber of characters in strings
TI MEST and TI MEMP.

TIMEMP (B * n) String containing the decoding
format for the time string contained
in TI MEST. Legal values are H(hour),
M m nute), S(second). For exanple,
"HH: MM SS' woul d produce ' 11:59: 59" .

EXIT: TIMEST (B * n) WIIl contain tine string retrieved
fromcurrent ClR data record.



SIR/XS Host/API 126

ZRCXDT

ZRCXDT, Transfer Date from Cl R Record
ARGS: VDESC, DATEST, ORDI NAL, LENGTH, DATEMP
DESC. ZRCXDT retrieves a date string fromthe specified

Cl R/ data record.

ENTRY: VDESC (D * 8) Variable descriptor of variable to
retrieve. See routines ZDESC and
ZDESCD for creating a descriptor.

ORDI NAL(I * 4) Starting byte nunber in area DATA to
transfer the value to. For a sinple
variable this value is 1.

LENGTH(I * 4) Nunber of characters in strings
speci fied above.

DATEMP(B * n) String containing format for decoding
the date specified in DATEST. Legal
characters are Y(year), Mnonth), or
D(day). Al other characters are
transferred "as is" to DATEST. For
exanple, 'MM DD YY" woul d produce
'12/ 25/ 81" .

EXIT: DATEST(B * n) WIIl contain date string retrieved
fromcurrent Cl R/ data record.



SIR/XS Host/API 127

ZRCXFP

ZRCXFP, Transfer Real from Cl R/ Record
ARGS: VDESC, DATA, ORDI NAL, LENGTH
DESC. ZRCXFP retrieves a real value fromthe specified
Cl R/ data record.
ENTRY: VIDESC (D * 8) Variable descriptor of variable to
retrieve.
ORDI NAL (I * 4) Starting byte nunmber in area DATA to
transfer the value to. For a sinple
variable this value is 1.
LENGTH (I * 4) Nunber of bytes at |ocation DATA
EXIT: DATA (R * n) Wl contain real value retrieved
fromcurrent ClR data record.



SIR/XS Host/API 128

ZRCXIN

ZRCXIN, Transfer Integer from Cl R/ Record
ARGS: VDESC, DATA, ORDI NAL, LENGTH
DESC. ZRCXIN retrieves an integer value fromthe specified
Cl R/ data record.
ENTRY: VDESC (D * 8) Vari abl e descriptor of variable to
retrieve.
ORDI NAL (I * 4) Starting byte nunmber in area DATA to
transfer the value to. For a sinple
variable this value is 1.
LENGTH(I * 4) Nunmber of bytes at |ocation DATA.
EXIT: DATA (I * n) WIIl contain integer value retrieved
fromcurrent Cl R data record.



SIR/XS Host/API 129

ZRCXST

ZRCXST, Transfer a String froma Cl R Record
ARGS: VDESC, DATA, ORDI NAL, LENGTH
DESC. ZRCXST retrieves a character string value fromthe
specified Cl R/ data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
retrieve.
ORDI NAL(I * 4) Starting byte nunber in area DATA to
transfer the value to. For a sinple
variable this value is 1.
LENGTH (I * 4) Nunber of bytes at |ocation DATA
EXIT: DATA (B * n) W1l contain character string
retrieved fromcurrent Cl R data
record.



SIR/XS

ZRCXTM

Host/API 130

ZRCXTM Transfer Tinme from Cl R Record

VDESC, Tl MEST, ORDI NAL, LENGTH, TI MEMP

ZRCXTM retrieves a tine string fromthe specified
Cl R/ data record.

ARGS:
DESC:

ENTRY:

EXIT:

VDESC (D * 8)

ORDI NAL(I * 4)

LENGTH (I * 4)

TIMEMP (B * n)

TIMEST(B * n)

Vari abl e descriptor of variable to
retrieve.

Starting byte nunber in area DATA to
transfer the value to. For a sinple
variable this value is 1.

Nurber of characters in strings
above.

String containing the decoding format
for the time string contained in

TI MEST. Legal values are H(hour),

M m nute), S(second). For exanple,
"HH. MM SS' woul d produce ' 11:59:59".
WIIl contain tinme string retrieved
fromcurrent ClR/ data record.



SIR/XS Host/API

ZRDEL

ZRDEL, Delete Current Record from Dat abase

ARGS: DUMWY

DESC. ZRDEL is called after a record is retrieved to

del ete the current record.

ENTRY: DUMW (I * 4) Dunmmy argunent needed to nake a
syntactically correct FORTRAN
function. Should al ways be 0.

EXI T: None.

131



SIR/XS Host/API 132

ZREXIT

ZREXI T, Term nate Record Processing Level
ARGS: OLDSEED
DESC. ZREXIT is called to term nate a record | evel and pop
back one level in the retrieval stack. It only
term nates the innernost record |evel.
ENTRY: None.
EXI T: OLDSEED(1 * 4) It is set to the current value of the
seed, if the current level is a
PROCESS RECORD | evel with the SAMPLE
option. Oherwise it value is
undef i ned.



SIR/XS

Host/API

ZRFIND

ZRFI ND,
ARGS
DESC:

ENTRY:

EXIT:
RETURN:

Find Record with G ven Key

OPT, LFLAG, DI RECT, BEGQ NR, BEG NK

ZRFIND finds an existent record or creates a new

record with a previously specified key. It is

called after ZRGDMY, ZRGDML or ZRRDMY has created a

dunmy bl ock and after putting values into the record

id variable in the record and ( if OPTis 1) in

other record variables. Wen ZRFIND i s executed,

the values of the record ids are used to create the
record key. |If the record ids variable are

undefined, then the dummy bl ock is converted into a

PROCESS RFC ALL bl ock and the next or previous

record is read. Oherw se, the dumry bl ock ZRGDMY

is converted into a REC 1S block and: a) if OPT is

1, then the undefined values are updated to the

val ues read fromthe found record or b) if OPT is 2

the full current record is replaced by the read

record.

OPT (I * 4) Controls the update/replace of the
R

LFLAG (I * 4) Lock flag.

DIRECT (I * 4) If PROCESS REC then use 1 to get the
next record and -1 to get the
previous record.

BEG NR(l1 * 4) Nunber of record ids to include in
range.

BEG NK (I * 4) Nunber of record ids to include in
starting key.

None.

-4001 if record not found,;

-3026 if record is found but is inconpatible |ocked;

+ 0003 if record is found and has a conpati bl e | ock;

+ 0004 if record is found and avail able for REC IS;

+ 0000 if record is found and avail abl e for PROCESS

REC, negative if error.

133



SIR/XS

Host/API

ZRFRST

ZRFRST, Start-up a Record Level Block and Get First

ARGS:
DESC.

ENTRY:
EXIT:

Recor d

LFI AG

ZRFRST is called after record-block initialisation
and all key creations, and after all key-definition
routines. It starts-up the record block and gets
the first record that nmeets all of the selection
options previously specified. No other record-|evel
function can be called until this block is
successful ly executed. After ZRFRST is executed, no
further key definitions may be nade. The system
checks that the current lock flag is conpatible with
LFLAG and if it is, LFILAG becones the new | ock.
LFLAG (I * 4) The |l ock flag.

None.

134



SIR/XS

Host/API 135

ZRGDMD

ZRGDVD, Set Current Database and initialise Dumy Bl ock

ARGS: RECTYP, DBNAME

DESC: ZRGDVD is called to make DBNAME the current database
and to start creating a dummy bl ock. The purpose of
this call is toinitialise the retrieval stack with
the required i nformation.

ENTRY: RECTYP (I * 4) The record type to be processed.
DBNAME (N * 8) The nanme of the database from which

the record shoul d be sel ected.
EXI T: None.
RETURN: Stack | evel of the newy created bl ock, negative if

error.



SIR/XS

Host/API

ZRGDML

ZRGDML, Start Dumy Record Bl ock Belonging to CIR

ARGS: RECTYP, LEVEL

DESC. ZRGDML is called to start creating a dummy bl ock
that belongs to the CIR at the specified level. The
purpose of this call is to initialise the retrieval
stack with the required information. Potentially,
it can switch databases.

ENTRY: RECTYP(lI * 4) Record type.
LEVEL (I * 4) Level in stack of the CIR block to

whi ch the record bel ongs.
EXIT: None.
RETURN: Stack | evel of the newWly created bl ock, negative if

error.

136



SIR/XS

Host/API

ZRGDMY

ZRGDMWY, Start Dumry Record Bl ock

ARGS: RECTYP

DESC. ZRGDWY is called to start creating a dummy bl ock
that belongs to the CIR at the specified level. The
purpose of this call is to initialise the retrieval
stack with the required information

ENTRY: RECTYP(I * 4) Record type for record bl ock.

EXIT: None.

RETURN: Stack | evel of the newy created bl ock, negative if

error.

137



SIR/XS

ZRIS

ZRI'S,
ARGS:
DESC:

ENTRY:

EXIT:
RETURN:

Host/API

Initialise RECORD | S Bl ock

RECTYP, NEW OLD

ZRIS is the first of a series of routines that can

be called in order to create "RECORD I S" bl ock. The

purpose of this call is to initialise the retrieval

stack with the required infornmation.

RECTYP(lI * 4) The record type to be processed.

NEW (I * 4) NEWis | if a new record can be created
by this level, otherwise it is 0. The
dat abase must have been opened for
UPDATE to all ow a val ue of 1.

QD (I * 4) ODis | if an old record can be
accessed by this level, otherwise it is
0.

None.

Stack level of the newy created bl ock, negative if

error.

138



SIR/XS

ZRISD

ZRI SD,

ARGS:
DESC.

ENTRY:

EXIT:
RETURN:

Host/API

Set Current Database and Initialise RECORD IS

Bl ock

RECTYP, NEW OLD, DBNAVE

ZRISD is called to nake DBNAMF, the current database

and to start creating a "RECORD I S" block. The

purpose of this call is to initialise the retrieval
stack with the required infornmation.

RECTYP(lI * 4) The record type to be processed.

NEW (I * 4) NEWis O if a record cannot be created
by this level. The database nust have
been opened for UPDATE to allow a val ue
of 1.

OD (I * 4) OLDis 0 if an old record cannot be
accessed by this level, otherwise it is
1.

DBNAMVE(N * 8) The nane of the database from which the
record shoul d be sel ected.

None.

Stack level of the newy created bl ock, negative if

error.

139



SIR/XS

ZRISL

ZRI SL,

ARGS:
DESC.

ENTRY:

EXIT:
RETURN:

Host/API 140

Initialise RECORD I S Processing Bl ock Belonging to

CIR

RECTYP, NEW OLD, LEVEL

ZRISL is called to start creating a "RECORD | S"

bl ock that belongs to the CIR at the specified

level. The purpose of this call is to initialise

the retrieval stack with the required infornation.

Potentially, it can sw tch databases.

RECTYP(lI * 4) The record type to be processed.

NEW (I * 4) NEWis O if a newrecord is not |egal
(NEWrecord I1S). 1 if editing record is
| egal (OLD record IS or record IS).

aLD (I * 4) OLDis O0if an old record is not |egal
(OLD record 1S). 1 if a newrecord is
legal (NEWrecord IS or record IS).

LEVEL (I * 4) Level in stack of the CIR block to
whi ch the record bel ongs.

None.

Stack level of the newy created bl ock, negative if error.



SIR/XS

Host/API

ZRLAST

ZRLAST, Start-up Record Level Block and Get Last Record

ARGS:
DESC:

ENTRY:
EXIT:

LFLAG

ZRLAST is called after record-block initialisation
and all key creation, and after all key definition
routines. It starts-up the record block and gets
the last record that neets all of the selection
options previously specified. No other record-|evel
function can be called until this block is
successful ly executed. After ZRLAST is executed, no
further key definitions may be made. The system
checks that the current lock flag is conpatible with
LFLAG and if it is, LFLAG becones the new | ock.
LFLAG (I * 4) The lock fl ag.

None.

141



SIR/XS

Host/API 142

ZRLOCK

ZRLOCK, Cet Lock Type of Innernost Level of Execution
St ack

ARGS: LFLAG

DESC. ZRLOCK returns the lock type at the current
i nnernost | evel of the execution stack.

ENTRY:  None.

EXI T: LFLAG (I * 4) Lock type.

RETURN: O if the level is not wite-Iocked.

1if the level is wite-locked.



SIR/XS Host/API 143

ZRNAMD

ZRNAMD, Cet the Record Nane for Record Type
ARGS: DBNAME, RECTYP, RECNAM
DESC. ZRNAMD | ookups a record type and returns the record
name associated with it.
ENTRY: DBNAME ( N * 8 ) The name of the database to which the
record bel ongs.
RECTYP (I * 4) The record type.
EXI T: RNAME (N * 8) The record name corresponding to
dat abase and record type specified.



SIR/XS

Host/API

ZRNEXT

ZRNEXT, Start-up Record Level Block and Get Next Record

ARGS:
DESC:

ENTRY:
EXIT:

LFLAG

ZRNEXT is called after record-block initialisation
and all key creation, and after all key definition
routines. It starts-up the record block and gets
the next record that neets all of the selection
options previously specified. No other record-|evel
function can be called until this block is
successful ly executed. After ZRNEXT is executed, no
further key definitions may be made. The system
checks that the current lock flag is conpatible with
LFLAG and if it is, LFLAG becones the new | ock.
LFLAG (I * 4) The |l ock flag.

None.

144



SIR/XS

Host/API 145

ZRNUM

ZRNUM  Get Record Nunber for Record Name of Current
Dat abase

ARGS: RNAVE

DESC: ZRNUM | ookups the record nane specified in the
current database and returns the correspondi ng
record type nunber.

ENTRY: RNAME (N * 8) The record name to | ookup.

EXIT: None.

RETURN: Record type nunber, negative if error.



SIR/XS

Host/API 146

ZRNUMD

ZRNUND,
ARGS:
DESC.

ENTRY:

EXIT:
RETURN:

Get Type Nunber for Record Name of Specified

Dat abase

DBNANME, RNAVE

ZRNUMD | ookups a record nane and returns the record
type val ue associated with it for the specified

dat abase.

DBNAME(N * 8) The dat abase in which the record
resi des.

RNAMVE(N * 8) The record nane to | ookup.

None.

The record type nunber associated with the specified
record nanme, negative if error.



SIR/XS

Host/API

ZRPREV

ZRPREV, Start-up Record Level Block and Get Previous

ARGS:
DESC.

ENTRY:
EXIT:

Recor d

LFLAG

ZRPREV is called after record-block initialisation
and all key creation, and after all key definition
routines. It starts-up the record block and gets
the previous record that neets all of the selection
options previously specified. No other record-|evel
function can be called until this block is
successful ly executed. After ZRPREV is executed, no
further key definitions may be nade. The system
checks that the current lock flag is conpatible with
LFLAG and if it is, LFLAG becones the new | ock.
LFLAG (I * 4) The | ock flag.

None.

147



SIR/XS Host/API

ZRRDMY

ZRRDVWY, Term nate Innernost Level and Reset Block to
Dunmy
ARGS: DUMWY
DESC. ZRRDMY term nates all processing at this |evel,
wites the record if necessary, and resets the bl ock
back to dumy status.
ENTRY: DUMMY(I * 4) Dunmy argument needed to nake a
syntactically correct FORTRAN function.
Shoul d al ways be 0.
EXI T: None.

148



SIR/XS Host/API 149

ZRREST

ZRREST, Restore Record from Dat abase

ARGS: LFLAG

DESC. ZRREST is called to replace a record in the
retrieval stack with the corresponding record from
t he dat abase.

ENTRY: LFLAGI * 4) The | ock fl ag.

EXIT: None.



SIR/XS Host/API

ZRSAM

ZRSAM Initialise Record Processing Loop

ARGS: RECTYP, SAMPLE, SEED

DESC. ZRSAM is the first of a series of routines that can
be called in order to create "PROCESS RECORD' bl ock
wi th the SAMPLE opti on.

ENTRY: RECTYP (I * 4) The record type value to be processed.

SAMPLE (R * 4) Sanple size (SAMPLE)
SEED (1 * 4) Starting seed for random nunber
generator. Same seed al ways produces
t he sane random sel ecti on sequence
Any odd val ue can be used for the
seed. See routine ZREXIT for
obtai ning the value of the seed after
the loop is finished
EXIT: None.
RETURN: Stack | evel of the newy created bl ock, negative if
error.

150



SIR/XS Host/API 151
ZRSAMD
ZRSAMD, Set Current Database and Initialise SAMPLE
Recor d- processi ng bl ock
ARGS: RECTYP, SAMPLE, SEED, DBNAME
DESC. ZRSAMD is called to nmake DBNAME the current database
and to start creating a "PROCESS CASE" bl ock with
the SAMPLE option. The purpose of this call is to
initialise the retrieval stack with the required
i nformati on.
ENTRY: RECTYP(lI * 4) Record type.
SAMPLE (R * 4) Sanple size ( 0 SAMPLE 1)
SEED (I * 4) Starting seed.
DBNAME(N * 8) The nanme of the database form which
the record is sel ected.
EXIT: None.
RETURN: Stack | evel of the newy created bl ock, negative if

error.



SIR/XS

Host/API

ZRSAML

ZRSAM_,

ARGS:
DESC.

ENTRY:

EXIT:
RETURN:

Start SAMPLE PROCESS RECORD Bl ock

Bel onging to CIR

RECTYP, SAMPLE, SEED, LEVEL

ZRSAM. is called to start creating a "PROCESS

RECORD" bl ock (with the SAMPLE option) that bel ongs

to the CIR at the specified |l evel. The purpose of

this call is toinitialise the retrieval stack with
the required information. Potentially, it can

swi tch dat abases.

RECTYP(lI * 4) The record type value to be processed.

SAMPLE(R * 4) Sanple size ( 0 SAMPLE 1 ).

SEED (I * 4) Starting seed. The sanme seed al ways
generates the same sequence of random
nunbers.

LEVEL (I * 4) Level in stack of the CIR block to
whi ch the record bel ongs.

None.

Stack level of the newy created bl ock, negative if error.

152



SIR/XS

Host/API

ZRWRIT

ZRWRI T, Replace Mdified Record on Database and Lock

ARGS:
DESC.

ENTRY:
EXIT:

of Bl ock

LFLAG

ZRNWT is called to replace the database version of
the record with the current version in the retrieval
stack. This process is perforned automatically by

t he HOST routines when the next record is retrieved
or the record level is termnated. However the user
may want to wite the nodified record to the

dat abase and change the | ock for further processing.
LFLAG (I * 4) Lock fl ag.

None.

153



SIR/XS Host/API 154

ZSDESC

ZSDESC, Cet Descriptor for Sort-id Variable

ARGS: DBNAME, RECTYP, SI DNUM VDESC

DESC. ZSDESC returns the variabl e descriptor correspondi ng
to a specified sort-id of a given record type.

ENTRY: DBNAVE(N*8) The dat abase nane.
RECTYP(lI * 4) The record type nunber.
SIDNUM | * 4) The sort-id numnber.

EXI T: VDESC (D * 8) The descriptor for the specified

sort-id.



SIR/XS Host/API

ZSECLV

ZSECLV, Return the Current Security Values for a Database

ARGS: DBNAME, RDLEV WRLEV

DESC: ZSECLV returns the read and wite access |evels.

ENTRY: DBNAME N * 8) The dat abase nane.

EXIT: RDLEV (I * 4) The read |l evel for the database.
WRLEV (I * 4) The wite |level for the database.

155



SIR/XS

Host/API

ZSECUR

ZSECUR, Specify Security Passwords

ARGS
DESC:

ENTRY:

EXIT:

DBNAME, RDPASS, WRPASS

ZSECUR specifies the passwords for the read and

wite security levels for a specific database for

the current stream It should be called for each

dat abase used by each stream which needs security

levels different fromthose specified when the

dat abase was initially attached. Oherw se the

default levels specified on the attach call are

assigned. |If the passwords specified by ZSECUR

sel ect security levels less than the default val ues,

then the default val ues are used.

DBNAVE(N * 8) The nane of the database the follow ng
security passwords apply to.

RDPASS(N * 8) Read security password for the current
stream

WRPASS(N * 8) Wite security password for the current
stream

None.

156



SIR/XS

Host/API 157

MAXUSR, TABTYP, TAB1, TAB2
ZSTART initialises all tables needed by the other

It must be called prior to any other

Maxi mum nunber of streans accessing
the HOST systemwithin this job. A
smal | anobunt of space is allocated
for each stream specified regardl ess
of the nunmber of streans currently
active.

Type of table space to be allocated
for use by the HOST system See
Machi ne Specifics docunmentation

for nmore information on use of this
and the next two associ ated
argunents.

The HOST system gets space fromthe
operating systemand returns it when
ZEND is called

Amount of space (in "doubl e-word"s)
to be requested. At the end of the
job the ampunt actually used is
returned so that a better estimate
can be applied next tine.

0. Unused argunent for this type but
must appear on call in order to obey
FORTRAN synt ax rul es.

The calling routine provides an area
to be used by HOST. This area nust
be "doubl eword" aligned and nust be
avail able for use at all tinmes (i.e.
if programis segnmented then this
area nust be in the root segment).
Amount of contiguous space avail abl e
for use by the HOST system (in units
of "dwrds").

Array to be used by the HOST system
In this case the array TAB2 nust

not be nodified in any way unti

after ZEND is called. If any item of
this array is nodified by the user

then the database will probably have
erroneous information witten to it
and HOST actions will beconme unpre-
di ct abl e.

ZSTART
ZSTART, Initialise HOST System
ARGS
DESC:
HOST routi nes.
HOST routi ne.
ENTRY: MAXUSR (I * 4)
TABTYP (I * 4)
=1
TABL (I * 4)
TAB2 (R * 8)
=2
TABL (I * 4)
TAB2 (R * 8)
EXI T: None.



SIR/XS

Host/API

ZSTTKY

ZSTTKY, Enter String Value into Key

ARGS:
DESC:

ENTRY:

EXIT:

DATA, LENGTH
ZSTTKY is called after one of the key initialisation
routines in order to insert a character value into

the next location of the key currently being defined.

DATA (B * n) Character string to insert into key.
LENGTH(I * 4) Number of characters in string.
None.

158



SIR/XS Host/API

ZSTTRC

ZSTTRC, Move String into Cl R Record

ARGS: DATA, LENGTH, VDESC

DESC. ZSTTRC transfers a character string into a CIR or
data record.

ENTRY: DATA (B * n) Character string to transfer to record.
LENGTH(I * 4) Nunber of characters in string.
VDESC (D * 8) Variable descriptor of variable to receive

val ue.
EXIT: None.

159



SIR/XS Host/API

ZSTXKY

ZSTXKY, Enter String Value into Key

ARGS: DATA, ORDI NAL, LENGTH

DESC. ZSTXKY is called after one of the key initialisation
routines in order to insert a character value into

the next location of the key currently being defined.

ENTRY: DATA (B * n) Character string to insert into key.
ORDI NAL(I * 4) Starting byte nunber in area DATA to
transfer the value from For a sinple
variable this value is 1.
LENGTH(I * 4) Nunber of characters in string.
EXIT: None.

160



SIR/XS Host/API

ZSTXRC

ZSTXRC, Move String into Cl R Record

ARGS: DATA, ORDI NAL, LENGTH, VDESC

DESC. ZSTXRC transfers a character string into a CIR or
data record.

ENTRY: DATA (B * n) Character string to transfer to record.

ORDI NAL(I * 4) Starting byte nunber in area DATA to
transfer the value from For a sinple
variable this value is 1.
LENGTH(I * 4) Nunmber of bytes in val ue.
VDESC (D * 8) Variable descriptor of variable to
recei ve val ue.
EXIT: None.

161



SIR/XS Host/API 162

ZTHRU

ZTHRU, Start Creation of THRU Key

ARGS: DUMWY

DESC. ZTHRU starts the creation of a key. It creates a
"THRU' key. That is, a key which is used to select
all CIR/record' s whose key matches or cones before
the key that is currently being defined. It is
normal ly called after one of the case/record |evel
initialisation routines in order to initialise the
key selection options for case or record | oops.
Following a call to ZTHRU ot her routines (described
below) are called to enter values into the key one
at atine. For a case key only one call is nade to
enter the value of the case id. For record keys,
the case id is assunmed to be the sane as the | ast
CIR retrieved or restored. Therefore, only the
record sort ids have to be inserted into the key.
The sort-ids nust be entered in the order of their
appearance in the key being created.

ENTRY: DUMMY(I * 4) Dummy argunment to make routine a

syntactically correct FORTRAN functi on.
Shoul d al ways be 0.
EXIT: None.



SIR/XS Host/API 163

ZTIME

ZTIME, Return Current Date and Time as Integers.

ARGS: | DAYS, | SECS

DESC: ZTIME returns the current date and tinme as standard
julian date and tinme values. It returns the sane
val ues as the DBMS functions TODAY(0) and NOWDO).

ENTRY: None.

EXIT: | DAYS (I * 4) Number of days since Oct 15, 1582.

| SECS (I * 4) Nunmber of seconds since nidnight.



SIR/XS

Host/API

ZTMTKY

ZTMTKY, Enter Time String into Key

ARGS
DESC:

ENTRY:

EXIT:

TI MEST, LENGTH, TI MEMP

ZTMIKY is called after one of the key initialisation

routines in order to insert the value of a tine

string into the next |ocation of the key currently

bei ng defi ned.

TIMEST (B * n) Time string to insert into key.

LENGTH (I * 4) Nunber of characters in strings TlIMEST
and TI MEMP

TIMEMP (B * n) String containing the decodi ng fornat
for the time string contained in
TI MEST. Legal values are 1(ignore),
H(hour), Mmnute), S(second). For
exanpl e: ' HHMVBS' .

None.

164



SIR/XS

ZTMTRC

Host/API

ZTMIRC, Move Tine into Cl R Record

Tl MEST, LENGTH, TI MEMP, VDESC

ZTMIRC transfers the value of a time string into a
CIR or data record.

ARGS:
DESC:

ENTRY:

EXIT:

TIMEST (B * n)
LENGTH (1 * 4)

TIMEMP (B * n)

VDESC (D * 8)

None.

String containing the time value to transfer
to record.

Nurmber of characters in strings TIMEST

and TI MEMP.

String containing the decoding format for
the tine string contained in Tl MEST.

Legal values are I(ignore), H(hour),

M m nute), S(second).

Vari abl e descriptor of variables to receive
val ue.

165



SIR/XS Host/API 166

ZTMXIN

ZTMXIN, Convert Tinme String into Integer
ARGS: Tl MEST, ORDI NAL, TI MEMP, LENGTH
DESC. ZTMXI N converts a tinme string into a tinme integer
val ue.
ENTRY: TIMEST (B * n) Time string to convert.
ORDI NAL(l * 4) First character in string TIMEST to use.
TIMEMP (B * n) String containing the decoding format for
the tine string contained in Tl MEST.
Legal values are I(ignore), H(hour), Mmnute),
S(second). For exanple: 'HHWSS' .
LENGTH (I * 4) Number of characters in strings above.
EXI T: None.
RETURN: The i nteger equivalent of the tinme string (seconds
since mdnight), negative if error.



SIR/XS Host/API 167

ZTMXKY

ZTMXKY, Enter Time String into Key
ARGS: Tl MFST, ORDI NAL, LENGTH, TI MEMP
DESC. ZTMXKY is called after one of the key initialisation
routines in order to insert the value of a tine
string into the next |ocation of the key currently
bei ng defi ned.
ENTRY: TIMEST (B * n) Time string to insert into key.
ORDI NAL(I * 4) Starting byte nunber in area DATA to
transfer the value from For a sinple vari-
able this value is 1.
LENGTH (I * 4) Number of characters in strings above.
TIMEMP (B * n) String containing the decoding format for
the tinme string contained in TIMEST.
Legal values are I(ignore), H(hour),
M m nute), S(second). For exanple:
" HHWMVBS' .
EXIT: None.



SIR/XS Host/API 168

ZTMXRC

ZTMXRC, Move Tine into Cl R Record
ARGS: Tl MEST, ORDI NAL, LENGTH, TI MEMP, VDESC
DESC. ZTMXRC transfers the value of a time string into a
CIR or data record.
ENTRY: TIMEST (B * n) String containing the tine value to transfer
to record.
ORDI NAL(I * 4) Starting byte nunber in area DATA to
transfer the value from For a sinple vari-
able this value is 1.
LENGTH (I * 4) Nunber of characters in strings above.
TIMEMP (B * n) String containing the decoding format for
the tine string contained in Tl MEST.
Legal values are 1(ignore), H(hour),
M m nute), S(second).
VDESC (D * 8) Variable descriptor of variables to receive
val ue.
EXIT: None.



SIR/XS Host/API 169

ZUNTIL

ZUNTIL, Start Creation of UNTIL Key

ARGS: DUMWY

DESC. ZUNTIL starts the creation of a key. It creates an
"UNTIL" key. That is, a key which is used to sel ect
all CIR/record s whose key cones before the key that
is currently being defined. It is normally called
after one of the case/record level initialisation
routines in order to initialise the key selection
options for case or record |oops. Following a call
to ZUNTIL other routines (described below) are
called to enter values into the key one at a tine.
For a case key only one call is nade to enter the
val ue of the case id. For record keys, the case id
is assunmed to be the same as the last CIR retri eved
or restored. Therefore, only the record sort ids
have to be inserted into the key. The sort-ids nust
be entered in the order of their appearance in the
key bei ng created.

ENTRY: DUMMY(I * 4) Dummy argunment to make routine a

syntactically correct FORTRAN functi on.
Shoul d al ways be 0.
EXIT: None.



SIR/XS Host/API 170

ZUPLEV

ZUPLEV, Cet Specified Database Update Level

ARGS: DBNAME

DESC. ZUPLEV returns the current update | evel of the
dat abase prior to this update.

ENTRY: DBNAVE(N*8) The nanme of the database.

EXI T: None.



SIR/XS Host/API

ZUSER

ZUSER, Set to Different Stream

ARGS: USERNO

DESC. ZUSER saves the current streamis retrieval stack and
reactivates the specified stream s stack.

ENTRY: USERNQ(I * 4) The nunber of the streamto process next.

Range is from| to maxnum specified on
HOST initialisation call.
EXIT: None.

171



SIR/XS Host/API

ZVARLB

ZVARLB, Get Label of Variable

ARGS: VDESC, STRI NG, LENGTH

DESC: ZVARLB searches the database and return the variable
| abel for a specified variable.

ENTRY: VDESC (D * 8) The descriptor of the variable.
LENGTH (I * 4) The nunber of characters of the l|abel to

transfer to STRI NG

EXI T: STRING (B * n) The area which will receive the
vari abl e | abel .

RETURN: Number of characters actually transferred, negative
if error.

172



SIR/XS Host/API

ZVERS

ZVERS, Return Version, Revision Numbers and Level s of

HOST

ARGS: VERNUM VERLEV, REVNUM REVLEV

DESC: ZVERS returns the version and revision nunber and
|l evel s of the HOST package that the user is
currently using. It also returns an indication of

whether it is regular or concurrent HOST.
ENTRY: None.
EXIT: VERNUM (I * 4) Version nunber.

VERLEV (I * 4) Version |evel.

REVNUM (1 * 4) Revision nunber.

REVLEV (I * 4) Revision |level.
RETURN: O if regular HOST,1 if concurrent HOST.

173



SIR/XS Host/API 174

ZNNAME

ZVNAME, Cet Nane for Variable Descriptor

ARGS: VDESC, VNAME

DESC. ZVNAME | ooks up a common or record variable

descriptor and returns the variable's nane.

ENTRY: VDESC (D * 8) The vari abl e descriptor.

EXI T: VNAME (N * 8) contains the variable nane
corresponding to the variable
descriptor specified.



SIR/XS Host/API 175

ZNTYPE

ZVTYPE, Cet Type of Variable

ARGS: VDESC, LENGTH

DESC. ZVTYPE returns the type of a specified variable.

ENTRY: VDESC (D * 8) The descriptor of the variable to get

the type for.

EXI T: LENGTH(I * 4) The size of the variable in bytes.

RETURN: The code of the type of the specified variable,
negative if error.

TYPE

String variable

Cat egorical integer variable

Date integer variable

Time I nteger variable

I nteger variable

Real variable

mmbwmpg



SIR/XS Host/API 176

ZWITH

ZWTH, Start Creation of WTH Key

ARGS: DUMWY

DESC. ZWTH starts the creation of a key. It creates a
"WTH' key. ZWTH is used with CASE/ RECORD | S
levels to specify a key for a single CIR/record. It
can also be used with the PROCESS RECORD | evel to
specify the first n sort-ids of a key, which causes
all records with the sanme first n sort-ids to be
selected in order. It is normally called after one
of the case/record level initialisation routines in
order to initialise the key selection options for
case or record loops. Following a call to ZWTH
ot her routines (described below) are called to enter
values into the key one at a tine. For a case key
only one call is mude to enter the value of the case
id. For record keys, the case id is assuned to be
the sane as the last CIR retrieved or restored.
Therefore, only the record sort ids have to be
inserted into the key. The sort-ids nust be entered
in the order of their appearance in the key being
created.

ENTRY: DUMW(I * 4) Dummy argument to make routine a

syntactically correct FORTRAN function.
Shoul d al ways be 0.
EXI T: None.



SIR/XS Host/API 177

Program L ayout

Column four in the typical HOST program layout on below identify options on the basic
steps through which atypical HOST program moves. The comments in the examples refer
to these steps.

A Typical HosT Program Layout

Step 1 Initialise the system Call ZSTART (1.A
and login into MASTER i f Call ZLOG N (1.B)
necessary:

Step 2 Open t he dat abase: Call ZORDB or

Z0sbB
Step 3 Start a case block on the Cal |
st ack: ZCCNT(D) or
ZCl S(D) or
ZCSAM D)
Step 4 If no key processing is done,

skip to step 5.

If a single value is used for Call ZWTH (4.A
the key( "WTH' ) then:
Call key definition routines (4.B)
in the order the sort-ids
appear in schenma definition.
Skip to step 5.

If a range of keys is to be Call ZFROM or (4.0
specified and a low linit is re- ZAFTER
qui r ed:

Cal|l key definition routines (4.D

in the order that the sort-ids
appear in schenma definition.

If no highlimt on the key
range is required, skip to step

5.

If a range of keys is to be Call ZTHRU or (4.E)

specified and a high limt is ZUNTI L

required:
Cal|l key definition routines in (4.F)
the order the sort-ids appear
in schema definition.

Step 5 End the key processing and Cal | ZCNEXT

retrieve one case in range. or ZCPREV or



SIR/XS

Step 6

Step 7

Step 8

Step 9

Host/API

ZCFRST or
ZCLAST
If there are cases to delete Cal | ZCDEL
If there are cases to be
processed then continue with
Step 6, otherwise skip to Step
13 to end the case-bl ock
processi ng.
For the case | evel process-
ings, call routines that trans-
fer data to and fromCIR vari -
abl es.
Start a record processing Cal |
bl ock: ZRCNT(D) or
ZRI S(D) or
ZRSAM D)
If no key processing is done,
skip to step 9.
If a single value is used for Call ZW TH ( 8.A
the key "W TH" then:
Cal | key definition routines in (8.B)
the order the sort-ids appear
in schema definition.
Skip to step 9.
If a range of keys is to be Call ZFROM or (8.0
specified and a |l ow range is ZAFTER
requi red then:
Cal|l key definition routines in (8.D

the order that the sort-ids
appear in schenma definition.
If no high limt on the key
range is required, skip to step 9.

If a range of keys is to be Call ZTHRU or (8.E)
specified and a high limt is ZUNTI L
required:

Call key definition routines in (8.F)

the order that the sort-ids
appear in schema definition.

End the key processing and Cal | ZRNEXT

retrieve one record in range: or ZRPREV
or ZRFRST
or ZRI AST

If there are records to be
processed, then continue
with Step 10. Ot herw se, skip
to Step 11.

178



SIR/XS Host/API

Step 10 Record | evel processings.
Call routines that transfer
data to and fromthe record
vari abl es.

If the record is to be deleted
t hen:
Continue with Step 9 to
process a new record

Step 11 End record-bl ock processing:

Step 12 Perform additional case
processi ng.

If the case is to be deleted
t hen:
Continue with Step 5 to
process a new case.
Step 13 End of case-bl ock processing:
Step 14 C ose the database down:

Step 15 Shut down the whol e HOST
system

Another Typical HosT Program L ayout

(1) Call ZSTART then ZLOG N
(2) Call ZORDB or ZOSDB

(3) Call ZOGDMY

(4) Call routines to transfer values into case-ids variables

(5) Call ZzCFIND
(6) Odinary case processing calls

(10. A)

Cal | ZRDEL (10. B)

Call ZREXIT

Call routines (12.A)
that transfer

data to and from
CIR vari abl es.

Call ZCDEL  (12.B)

Call ZCEXIT
Cal | ZENDDB
Cal | ZEND

(7) If case is brand new and update node: Call ZCOWRI T

(8) Call ZRGDW

(9) Call routines to transfer values Into record-ids

vari abl es
(10) Call ZRFIND

(11) Odinary record processing calls

(12) Krecord is to be witten cal
is to be deleted call ZRDEL
(13) To process a new record cal

continue with (9)

ZRANRIT If record

ZRREST and

(14) Call ZREXIT when record processing is over

(15) O dinary case processing calls

179



SIR/XS Host/API 180

(16) If CIR variables were nodified and/ or records were
added/ del eted call ZCOWRI T
if case is to be deleted call ZCDEL
(17) To process a new case call ZCREST and continue with (4)
(18) Call ZCEXUT when case processing Is over
(19) Call ZENDDB

(20) Call ZEND



SIR/XS Host/API 181

A Noteon Error Checking

This chapter contains several examples of PQL retrieval programs and their FORTRAN
counterparts using HOST subroutine calls. Every HOST function call always returns a value.
In the following examples, thisvalue is stored in variable '|ERR'. Thisvalue should be
checked after each function call in case an error has been detected by the routine. To
continue the program after an error has been generated may damage the databases that the
program accesses.

The examples below do not do this error checking. Thisisfor readability only. It is not
suggested programming practice.

Print the Value of aVariable In a Record

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURI TY RS1, Ws1
C
C PRI NTS THE STATUS OF PATIENT 1 0001.
C THE DATA |'S CONTAI NED | N RECORD TYPE 47
C WTH SORT IDS 3 AND 5
C
RETRI EVAL
OLD CASE IS 10001
OLD RECORD IS 17 (3, 5)
WRI TE ' PATIENT 10001 STATUS IS STATUS1
END RECORD | S
. END CASE IS
END RETRI EVAL

HOST Retrieval Version

IN THE FOLLOW NG ROUTI NE EACH FUNCTI ON RETURNS AN
ERRORVALUE AND THAT VALUE IS STORED IN VARI ABLE 'IERR , IN
COVMON BLOCK ' HERROR' . THE FUNCTI ON NAME | S STORED

IN VARI ABLE ' ZZNAME', | N THE SAME COMMON BLOCK.

OO0

I MPLICI T | NTEGER*4 (2)

CHARACTER* 8 DBNAME

CHARACTER* 8 DBPASS
CHARACTER* S HSPASS

CHARACTER* 8 RDPASS



SIR/XS Host/API 182

CHARACTER* 8 WRPASS
CHARACTER* 8 VNSTAT
C
CHARACTER* 5 PREFI X
CHARACTER* 6 MDSN
CHARACTER* 10 SDSN
C
REAL* 8 VDSTAT
C
| NTEGER* 4 DUMMY
| NTEGER* 4 TSPACE
C
C FOR ERROR PROCESSI NG
C
REAL* 8 ZZNANE
| NTEGER* 4 | ERR
| NTEGER* 4 | DUMMY
COMVON / HERROR/  ZZNAME, | ERR, | DUMWY
C
C
C
DATA DBNAVE /' MOTHERS ' /
DATA DBPASS /' LOVE '/
DATA HSPASS /' HOSTOKAY" /
DATA RDPASS /' RS1 '/
DATA WRPASS /' W81 '/
DATA VNSTAT /' STATUS' /
C
DATA PREFI X/ ' [SIR] ' /
DATA MDSN /' MASTER /
DATA SDSN /' MY_PROGRAM /
C
C START HOST SYSTEM STEP 1. A
C
| F(ZSTART( 1, 1, 5000, 0).LT.0) STOP 300
C
C LOG | NTO MASTER STEP 1.B
C
| F(ZLOG N( MDSN, LEN( MDSN) , SDSN, LEN( SDSN) ). LT. 0) GOTO 200
C
C ATTACH DATABASE NEEDED FOR RUN: STEP 2
C

| F ( ZORDB( DBNANE, DBPASS, HSPASS, RDPASS, WRPASS, 0,
* PREFI X, LEN( PREFI X) ).LT.0) GOTO 200

START A "CASE |'S" LEVEL: STEP 3
| F(ZCI S(0, 1) LT.0) GOTO 200

CREATE A "W TH' KEY: STEP 4. A
| F(ZW TH(0) . LT. 0) GOTO 200

DEFI NE THE KEY: STEP 4.B

| F(ZI NTKY( 10001 ).LT.0) GOTO 200

O 000 000 000



SIR/XS Host/API 183

C GET THE CASE(FOR SURE, IT IS THERE!): STEP 5
© | F(ZCNEXT(0) . LT. 0) GOTO 200
g START A "RECORD |S" LEVEL: STEP 7
© | F(ZRI S(17,0,1 ).LT.0) GOTO 200
g CREATE A "W TH' KEY: STEP 8. A
© | F(ZW TH(0) . LT. 0) GOTO 200
g DEFI NE THE KEY: STEP 8.B
© | F(ZI NTKY(3).LT.0) GOTO 200
| F(ZI NTKY(5) . LT.0) GOTO 200
g GET THE RECORD(FOR SURE, IT IS THERE!): STEP 9
© | F(ZRNEXT(0) . LT. 0) GOTO 200
g BUI LD A DESCRI PTOR FOR VARI ABLE
© | F( ZDESCO( VDSTAT, DBNAME, 17, VNSTAT, 0) . LT. 0) GOTO 200
g RETRI EVE THE VALUE (FOR SURE, | SDEFI NED!): STEP 10. A

| F(ZRCTI N( VDSTAT, 1 ). LT. 0) GOTO 200
PRI NT 100, 1
00  FORMAT(' PATI ENT 10001 STATUS IS',15)

=

END OF RECORD | S LEVEL: STEP 11
| F(ZREXI T(0).LT.0) GOTO 200

END OF CASE |'S LEVEL: STEP 13
| F(ZCEXI T(0).LT.0) GOTO 200

CLOSE THE DATABASE: STEP 14
| F( ZENDDB( DBNAVE) . LT. 0) GOTO 200

SHUT DOWN HOST: STEP 15

OO0 000 000 000

=

50 | F(ZEND( TSPACE).LT.0) STOP 400
GOTO 1000

@]

C ERROR PROCESSI NG SECTI ON

C

200 PRI NT 201, ZZNAME, | ERR

201 FORVAT( 1X, A8," FAILED W TH ERROR CODE' ,14) GOTO 150
1000 STOP

END



SIR/XS Host/API 184

Retrieval Update with RECORD | S Nested within a
PROCESS CASE ALL

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURI TY RS1, W51

Cc PROCESS ALL CASES | N THE DATABASE
C | F VARI ABLE ' SICK' | N RECORD TYPE 16 IS
Cc GREATER THAN O SET 'SICK EQUAL TO 1

RETRI EVAL UPDATE
PROCESS CASES ALL
OLD RECORD | S 16
| FTHEN (SI CK GT 0)
COVPUTE SICK = 1
ENDI F
END RECORD 1S
. END PROCESS CASES
END RETRI EVAL

HOST Retrieval Version

C IN THE FOLLOW NG ROUTI NE EACH FUNCTI ON RETURNS AN
Cc ERROR VALUE THAT IS PROCESSED BY ' ZCALL'.
C
I MPLICI T | NTEGER*4 (2)
CHARACTER* 8 DBNAME
CHARACTER* 8 DBPASS
CHARACTER* 8 HSPASS
CHARACTER* 8 RDPASS
CHARACTER* 8 V\RPASS
CHARACTER* 8 VNSTAT
C
CHARACTER* 5 PREFI X
C
REAL* 8 VDSTAT
C
| NTEGER* 4 DUMWY
| NTEGER* 4 TSPACE
C
C
C
DATA DBNAME /' MOTHERS ' /
DATA DBPASS /' LOVE '/
DATA HSPASS /' HOSTOKAY' /
DATA RDPASS /' RS1 '/
DATA WRPASS /' W81 '/
DATA VNSTAT /' STATUS' /
C

DATA PREFIX /'[SIR] "/



SIR/XS Host/API 185

g START HOST SYSTEM STEP 1. A

g.:OO | ERR= ZCALL(ZSTART(1, 1, 5000, 0), 2, -2, 100, 0, 0)

g ATTACH REQUI RED DBMS FI LES: STEP 2

gOO | ERR= ZCALL( ZORDB( DBNANME, DBPASS, HSPASS, RDPASS,
*WRPASS, L, PREFI X, LEN( PREFI X)), 2, - 2, 200, 0, 0)

C

C GET VAR ABLE DESCRI PTOR OF VARI ABLE ' SI CK'
Cc FOR USE LATER

C

300 | ERR= ZCALL( ZDESCD( VDSTAT, DBNAME, 16, VNSTAT, 0), 2, - 2, 300, 0, 0)
C

C DO PROCESS CASES ALL LEVEL: STEP 3
C

400 | ERR= ZCALL(ZCCNT(-1,1,1),2, -2, 400, 0, 0)

C

C GET THE CASE: STEP 5
C

500 | F(ZCALL(ZCNEXT(0), 2, - 2, 500, - 4002, - 4001) . LT. 0) GOT01100
C

C DO RECORD | S LEVEL: STEP 7
C

600 | ERR=ZCALL(ZRI S( 16, 0, 1), 2, -2, 600, 0, 0)

Cc

C GET THE RECORD: STEP 9
Cc

700 | F(ZCALL( ZRNEXT(L), 2, -2, 700, - 4002, -4001) . LT. 0) GOT01000
Cc
C RETRI EVE VALUE AND UPDATE | T | F NECESSARY:
Cc STEP 10
Cc
800 | F( ZCALL( ZRCTI N( VDSTAT, | SI CK) . 2, - 2, 800, - 5008, (-5005).LT. 0) GOTO
1000
IF (1SICK LE. 0) GOro 1000
I =1
900 | ERR= ZCALL(ZI NTRC(I, VDSTAT), 2, -2, 900, - 5008, - 5005)
Cc

C END OF RECORD |'S LEVEL: STEP 11
fooo | ERR= ZCALL( ZREXI T(0), 2, - 2, 1000, 0, 0)

g CONTI NUE W TH STEP 5

© GOTO 500

C

C END OF PROCESS CASE LOOP: STEP 13
floo | ERR= ZCALL( ZCEXI T(0), 2, - 2, 1100, 0, 0)

g CLOSE THE DATABASE: STEP 14
gzoo | ERR= ZCALL( ZENDDB( DBNAVE) , 2, - 2, 1200, 0, 0)

C CLOSE HOST SYSTEM STEP 15



SIR/XS Host/API 186

Cc
1300 | ERR= ZCALL(ZEND( TSPACE), 2, -2, 1300, 0, 0)

RECORD IS for a Casaless Database

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURI TY RS, W51
C PROCESS ALL RECORD TYPE 16 | N THE DATABASE | F VARI ABLE
C'SICK |S GREATER THAN 0, SET 'SICK' EQUAL TO 1
RETRI EVAL UPDATE
PROCESS RECORD 16
| FTHEN (SI CK GT 0)
COWPUTE SICK = 1

ENDI F
. END RECORD | S
END RETRI EVAL

HOST Retrieval Version

C IN THE FOLLOWN NG ROUTI NE EACH FUNCTI ON RETURNS AN
C ERROR VALUE THAT IS PROCESSED BY ' ZCALL' .

| MPLICI T | NTEGER*4 (2)

CHARACTER* 8 DBNAME

CHARACTER* 8 DBPASS
CHARACTER* 8 HSPASS
CHARACTER* 8 RDPASS
CHARACTER* 8 V\RPASS
CHARACTER* 8 VNSTAT
Cc
CHARACTER* 5 PREFI X
Cc
REAL* 8 VDSTAT
Cc
| NTEGER* 4 DUMWY
| NTEGER* 4 TSPACE
C
C
C
DATA DBNAME /' MOTHERS ' /
DATA DBPASS /' LOVE [/
DATA HSPASS /' HOSTOKAY' /
DATA RDPASS /' RS1 '/
DATA WRPASS /' W81 '/
DATA VNSTAT /' STATUS' /



SIR/XS Host/API 187

DATA PREFIX /'[SIR]"/
g START HOST SYSTEM STEP 1. A
foo | ERR= ZCALL( ZSTART( 1, 1, 5000, 0), 2, - 2, 100, 0, 0)
E ATTACH REQUI RED DBMS FI LES: STEP 2

200 | ERR= ZCALL(ZORDB( DBNANE, DBPASS, HSPASS, RDPASS,
*\\RPASS, L, PREFI X, LEN( PREFI X)), 2, - 2, 200, 0, 0)

C

C GET VAR ABLE DESCRI PTOR OF VARI ABLE' SI CK
C FOR USE LATER

Cc

300 | ERR= ZCALL( ZDESCD( VDSTAT, DBNAME, 16, VNSTAT, 0), 2, - 2, 300, 0, 0)
Cc

Cc DO PROCESS RECORD LEVEL: STEP 7
Cc

600 | ERR= ZCALL(ZRCNT(16,-1,1,1), 2, -2, 600, 0, 0)

Cc

C GET THE RECORD: STEP 9
C

700 | F(ZCALL( ZRNEXT(1), 2, -2, 700, - 4002, -4001) . LT. 0) GOTO 1000
C

C RETRI EVE VALUE AND UPDATE I T | F NECESSARY : STEP10
C
800 F( ZCALL( ZRCTI N( VDSTAT, | SI CK), 2, - 2, 800, - 5008, 5005) . LT. 0) GOTO 700

I
IF (ISICK LE.O) GOTo 700
I =1

I

900 | ERR= ZCALL(ZI NTRC(!, VDSTAT), 2, - 2, 900, - 5008, - 5005)
g CONTI NUE W TH STEP 9

© GOTO 700

C

C END OF RECORD | S LEVEL: STEP 11
fooo | ERR= ZCALL( ZREXI T(0), 2, - 2, 1000, 0, 0)

g CLOSE THE DATABASE: STEP 14
fzoo | ERR= ZCALL( ZENDDB( DBNAVE) , 2, - 2, 1200, 0, 0)

E CLOSE HOST SYSTEM STEP 15

1300 | ERR= ZCALL(ZEND( TSPACE), 2, -2, 1300, 0, 0)

Multiple Nested Network Retrieval

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURI TY RS1, W51



SIR/XS Host/API

RECORD TYPE 1 RECORDS ARE PATI ENTS | N THE STUDY.
RECORD TYPE 2 RECORDS ARE CONTROLS FOR PATI ENTS.

EACH PATI ENT HAS A CONTRCL WHOSE CASE |1 D | S' | DPO NTR
AND RECORD TYPE 2 SORT I D IS RECPO NT' .

PRI NT THE NUMBER OF CONTROLS WHOSE VALUE OF VARI ABLE

O0000000

RETRI EVAL
PROCESS CASES ALL
COWPUTE CNT = 0O
PROCESS RECORD 1
MOVE VARS | DPO NTR RECPO NT PATSTAT
OLD CASE | S | DPO NTR
OLD RECORD IS 2 ( RECPO NT)
| FTHEN ( CNTLSTAT LT PATSTAT)
COMPUTE CNT = CNT + 1
ENDI F
END RECORD | S
END CASEI S
END PROCESS RECORD
END PROCESS CASE
VRI TE CNT ' CONTROLS ARE BETTER THAN CURRENT PATI ENTS.'
END RETRI EVAL

HosT Retrieval Version - Function C

N THE FOLLOW NG ROUTI NE EACH FUNCTI ON RETURNS A CALL

H' S VARI ABLE SHOULD BE CHECKED SOVEHOW AFTER EACH
FUNCTI ON CALL, HOWEVER, | N ORDER TO | MPROVE THE
C READABI LI TY OF THE EXAMPLE THE TEST HAS BEEN OM TTED.
| MPLICI T | NTEGER*4 (2)

Cc
C
Cc
C

CHARACTER* 8 DBNAVE

CHARACTER* 8 DBPASS
CHARACTER* 8 HSPASS
CHARACTER* 8 RDPASS
CHARACTER* 8 V\RPASS
CHARACTER* 8 VNI DPT
CHARACTER* 8 VNRECP
CHARACTER* 8 VNPATS
CHARACTER* 8 VNCNTL
C
CHARACTER* 5 PREFI X
Cc
REAL* 8 VDI DPT
REAL* 8 VDRECP
REAL* 8 VDPATS
REAL* 8 VDCNTL
C
| NTEGER* 4 DUMWY

| NTEGER* 4 I ERR

" CNTLSTAT' 1S LESS THAN THE PATI ENT' S VARI ABLE' PATSTAT" .

I
ERROR VALUE AND THAT VALUE | S STORED IN VARI ABLE' | ERR' .
n

188



SIR/XS Host/API 189

| NTEGER* 4 TSUSED

OO0

DATA DBNAME /' MOTHERS' /
DATA DBPASS /' LOVE'/
DATA HSPASS /' HOSTOKAY' /
DATA PREFIX /'[SIR "/
DATA RDPASS /' RS1 '/
DATA WRPASS /'Ws1 '/
DATA VNI DPT /' 1 DPO NTR /
DATA VNRECP /' RECPO NT' /
DATA VNPATS /' PATSTAT' /
DATA VNCNTL /' CNTLSTAT' /

START HOST SYSTEM STEP 1
| ERR = ZSTART(1, 1, 5000, 0)

ATTACH REQUI RED DBMS FI LES: STEP 2

OO0 o000

| ERR = ZORDB( DBNAME, DBPASS, HSPASS, RDPASS, WRPASS,
*0, PREFI X, LEN( PREFI X)

GET VARI ABLE DESCRI PTORS FOR REQUI RED VARI ABLES CONCE

OO0

| ERR
| ERR
| ERR
| ERR

ZDESCD( VDI DPT, DBNAME, 1, VNI DPT, 0)
ZDESCD( VDRECP, DBNAME, 1, VNRECP, 0)
ZDESCD( VDPATS, DBNAME, 1, VNPATS, 0)
ZDESCD( VDCNTL, DBNAME, 2, VNCNTL, 0)

DO PROCESS CASES ALL LEVELR
STEP 3
| ERR = ZCCNT(-1, 1, 1)

O o000

STEP 5

=

000 |ERR = ZCNEXT(0)
CNT = 0

I F NO CASES LEFT, SKIP TO STEP 13
IF (I ERR LT.0) GOTO 6000
DO PROCESS RECORD 1 LEVEL

STEP 7
| ERR

ZRONT(1, -1, 1, 1)
STEP 9

o
o
o

| ERR

ZRNEXT( 0)
| F NO RECORDS LEFT, SKIP TO STEP 11
I F (1 ERR LT.0) GOTO 5000

DO MOVE VAR STATEMENT

OO0 O000OdNMO O0O000O 000



SIR/XS Host/API 190

C STEP 10. A
| ERR = ZRCTI N( VDI DPT, | DPNTR)
| ERR = ZRCTI N( VDRECP, RCPNTR)
| ERR = ZRCTFP( VDPATS, PATSTT)

C

C DO CASE | S STATEMENT

C STEP 3
| ERR = ZCl S(0, 1)

C STEP 4. A
| ERR = ZW TH(0)

C STEP 4.B
| ERR = ZI NTKY( | DPNTR)

C STEP 5
| ERR = ZCNEXT(0)

C

C I F NO CASES LEFT, SKIP TO STEP 13

C
IF (1 ERR LT.0) GOTO 4000

C

C DO RECORD |'S STATEMENT

C STEP 7
|ERR = ZRI S(2, 0, 1

C STEP 8. A
| ERR = ZW TH(0)

C STEP 8.B
| ERR = ZI NTKY( RCPNTR)

C STEP 9
| ERR = ZRNEXT(0)

C

C I F NO RECORDS LEFT, SKIP TO STEP 11

C
IF ( 1ERR LT.0) GOTO 3000

C

C | NCREMENT CNT AFTER TEST

C

C STEP 10. A
| ERR = ZRCTFP( VDCNTL, CNTSTT)
| F (CNTSTT. LT. PATSTT) CNT = CNT + 1

C

C DO END RECORD |'S

C

C STEP 11

3000 [|ERR = ZREXI T(0)

C

C DOEND CASE IS

C

C STEP 13

4000 | ERR = ZCEXI T(0)

C

C LOOP OVER | NNER CASE BLOCK

C
GOTO 2000

C

C DO END PROCESS REC

C STEP 11

C



SIR/XS Host/API 191

5000 | ERR = ZREXI T(0)
C
C CONTI NUE W TH STEP 5 TO PROCESS A NEW CASE
C
GOTO 1000

DO END PROCESS CASE
STEP 13

000 |ERR = ZCEXI T(0)

END OF RETRI EVAL PRI NT RESULT

O0020000

PRI NT 100, CNT

100  FORMAT(16,' CONTROLS ARE BETTER THAN CURRENT PATIENTS. ')
C STEP 14
C
| ERR = ZENODB( DBNAME) STEP 15
C
| ERR = ZEND( TSPACE)



SIR/XS Host/API 192



SIR/XS

Host/API

193

Reserved Entry Point Names and Common Blocks

The following names are reserved for use by HOST and should not be used in any
application program:

ABCORT

CACHST
CvB232
CPYREC
CVTGER

ENDKEY
FBREAK
GETKEY
I NTJUL
I SI RPT

| SPFI O

| SPSKP

| STRPT
LOCATE

L ODIVAP

MOVEAL

MOVECB
MOVERA
Mv0832
OPSYSA
Pl BBRK

PRI NTC
PSBDTM
PSBSTQ
PUTRCX
REMRKN

RSTRDT
SETI SF
SPI SAV
SPSSAV
SYSACT

TFCCLO
TFCGPR
TFCPI 4
TFCRPR
TFFCLO

TFFFRC
TFFPUR
TFFVDB

ADDRES
CACHXX
CvPCL

CPYWDS
CVTPUT

ENDRUN
FI LKEY
GETRCX
I NVERT
| SKPRC

I SPFVWD
| SRTC
| STRSB

L CDNAM
MOVEAR

MOVECT
MOVEUA
MW3232
OPSYSD
Pl BCUR

PRI NTK
PSBDTX
PSBSTR
PUTREC
REMRKV

RSTREC
SETMEM
SPSCLS
SPSZD
TFAST

TFCCPS
TFCGR8
TFCPMS
TFCSBT
TFFCPL

TFFGBK
TFFPUT
TFFVEN

ALLOC
CANEXT
CWPI 4

CRACI Q
DALLOC

ESCAPE
FRANF
GETREC
I NVR
I SKPVWWD

| SPFWO
| SRTE
JNTJUL

LRECL
MOVEB

MOVED
MOVEZB
NCRYPT
OPSYSE
Pl BDTX

PRI NTR
PSBFAM
PSBSW
PUTWDS
RECPEN

RSTSER
SHUTDN
SPSECQL
SRTNXT
TFCO1

TFCCRE
TFCGRC
TFCPOS
TFCSKB

ASS| GN
CHKLOK
CVPRS
CRACKD
DBVRI

BST

CHNGDB
COVPRS
CRACKE
DCLEXT

EXCRPV
FREECH
GIABNM
| OPENX
| SOPEN

EXI TTK
GERATR
GTAWDS
| RWEF

| SPCHR

| SPVAP
I SRTO
JRNOCGOD

| SPVMEM
| SRTR
JRNOPN

MATCHL
MOVEB1

MATCH2
MOVEBA

MOVEDA
MOVEZD
NL32

OPSYSM
Pl BSTR

MOVEDN
MOVREV
NLCO8

OPSYSP
Pl BTAB

PRNTCA
PSBFMI'
PSBTAB
RDI SF

REW ND

PRNTTA
PSBI
PSBTI M
READ1
RMT1 O

RSTTRN RWRI SF
SI RACT SKPI SF
SPSI NO SPSI NT
SRTOPN SRTPCS
TFCADR TFCC

TFCDLR TFCDUM
TFCGS TFCGSP
TFCPR TFCPR8
TFCSKR TFCSTC

TFFCPM TFFCPW TFFCRE

TFFGET
TFFRBK
TFI ADD

TFIEIC TRIFRM TFITIT

TFI RET

TFI THR

TFI UNT

TFFI NT TFFICQU
TFFRDB TFFREN
TFI AFR TFI Al 'V
TFI I ND TFI LCD
TFIWTH TFMR

BSTN
CL32
CONSTR
CRACKF
DCRYPR

EXPC
GERATX
HELP
I SFI'TL
| SPEVD

| SPNAM
| SST
JULI NT

MATCHC
MOVEBC

MOVEDO
VRKDLT
ONVRT

OPSYSR
PI BTI M

PROVPT
PSBI D
PSBTMX
READB
RMIKY

SBYTPR
SLEEP
SPSI SF
SRTWRT
TFCC2

TFCFI R
TFCGST
TFCPS

TFCSTX
TFFCS1

TFFIST
TFFRET
TFI ARS
TFI MKY
TOGGLE

BYRSI Z
CLI SF

CONSTX
CRACKP
DEBUGT

EXPHO
GERHLP
| BREAK
| SFPDL
| SPF

I SPNUM
| ST
KEYCOM

MATCHF
MOVEBI

MOVEHD
MJT

OPAUSE
OPSYST
Pl BTMX

PSBBAK
PSBVEM
PSBTRM
READC

RSTCLO

SCPFLT
SPI OPN
SPSI SN
STARTS
TFCCI

TFCGFR
TFCGTR
TFCPST
TFCSTY
TFFCSC

TFFIVR
TFFTBN
TFI AS
TFI OP
TS1STR

CACHFL
CLCS

CPJA N
CRACKS
DEBUGU

EXPI 4

GERMVEM
I CHECK
I SFSEO
| SPFAM

| SPREL
I STN
LDDUMR

MATCHR
MOVEBL

MOVEI B
MUTN

OPENDB
OPSYSX
Pl SDAT

PSBCHI
PSBPAR
PSBWRC
READK
RSTLCD

SCPI NT
SPI OPR
SPSI SO
STI MER
TFCCKR

TFCG 4
TFCLAS
TFCPUR
TFOWMT
TFFCSP

TFFLSH
TFFTFN
TFI CKY
TFI PCS
TS2STR

CACHVS CACHSH
CMD808 CMD832
CPYFI L CPYI ND
CREATK CRKGRP
DSSI GN DUMPDB

EXPRS EXTND

GERMOR GERWDS
I CLGSE | | SRTW
I SIRCM | SI RGT
I SPFI | SPFI L

| SPSKB | SPSKC
| STRBE | STRCM
LDESORT

MOVEAA
MOVEBN

MOVEAB
MOVECA

MOVELA
Mv0101
CPI SF

PCNSTR
POSREC

MOVELC
Mv0808
OPSYMA
PCNSTX
PRI NTB

PSBCHR
PSBQOT
PUTBLK
READN

RSTOPN

PSBDAT
PSBSTI
PUTKEY
REMARK
RSTRD

SCRTCH
SPI OPS
SPSLDI
SVJPCS
TFCCKS

SDLI SF
SPI RES
SPSRES
SWRI SF
TFCCLN

TFCGLR
TFCO
TFCR
TFF20
TFFCSV

TFCG\R
TFCOP

TFCRET
TFFAJR
TFFFRB

TFFOP
TFFTIN
TFI CRE
TFI PUR
TS3STR

TFFOPN
TFFWBK
TFI DEL
TFI R

TSACOL



SIR/XS Host/API

TSAWN TSAM/S TSATAB TSAVLM TSAVLN
TSLFH TSLIVN TSLIVS TSLMN TSLMWS
TSLVLS TSSCHR TSSFH TSSI VM TSSI VN
TTI MER UAREXE UARSET UARTST UC0808
VCNDLC VCNGUN VCNRED VCNRST VCNSET

VHSTNO VEOR  WRI TC XBYTGI XFER
YATTR YBEG N YBLTRC YCACHE YCCNT
YCGMWY YCIS YCISD YCLAST YCLEAR
YCREST YCSAM YCSAMD YCWRI T YDESC
YDTXI N YDTXKY YDTXRC YEND  YENDDB

YI NXDT YI NXKY YI NXRC YI NXTM YLABEL
YNCASE YNEW  YNOR  YNORD YNRECS
YORDBI YOSDB YRCFFP YRCFST YRCNT

YRCXI N YRCXST YRCXTM YRDEL YREXIT
YRIS YRISD YR SL YRLAST YRLOCK

YRPREV YRRDMY YRREST YRSAM YRSAMD

YSTART YSTMDT YSTMIM YSTXKY YSTXRC
YUNTI L YUPLEV YUSER YVARLB YVERS

Common Blocks

TSAVLS

TSEAR

TSLNUM TSLSTR

TSSI VS
uc0832
VCNVRT

XFERFV
YCCNTD
YCLOCK
YDESCB
YERMSG

YLABLN
YNSI DS
YRCNTD
YRFI ND
YRMXRC

YRSAML
YTHRU
YVNANVE

The following names are reserved as common blocks:

TSSNUM
uC3232
VEDESC

XFERTV
YCDEL
YCMPTB
YDESCD
YEXI T

YLABLS
YNVARS
YRCNTL
YRFRST
YRNAMD

YRWRI T
YTI ME
YVRYPE

ACCESS CACHMS CMSOVD COMMON COMO  COMTB  DETI ND
| SFCOM MASKS

HERROR HLPHDR HSPACE HSTCOM | NDEX

PCI NDX PI BSAV PSBSAV RESBLK RMIBLK STRI NG TABLE TFLCOM

TSEND
TSLSW
TSSSTR
UNW ND
VHNAME

XVAP
YCEXI T
YCNEXT

194

TSLCHR TSLCCL
TSLVLM TSLVLN
TSSSW TSTFNC
UPDATE VCNALC
VHST  VHSTNM

XPI ABS YAFTER
YCFI ND YCFRST
YCPREV YCRDMY

YDESCM YDETAL YDTMST

YFPXKY

YLOG N
YOPEN

YRCTRC
YRGDNVD
YRNEXT

YSDESC
YTMVBT
YW'H

ENVI RO
MONTHS

YFPXRC YFROM

YMSLAB YMSTRC
YOPT  YORBD
YRCXDT YRCXFP
YRGDML  YRGDMY
YRNUM  YRNUMD

YSECLV YSECUR
YTMXI N YTMXKY
ZAFTER ZATTR

FCBS  GLOBAL
CLDI ND PATBLK



