
SIR/XS What’s New 1

Welcome to SIR/XS
SIR/XS has many major new features including:

• Extended syntax allowing names up to 32 characters
• Non-standard names
• Enhanced standardised syntax
• STANDARD SCHEMA and STANDARD VARS
• New Common Vars definition
• New variable documentation
• New write schema options
• Upgraded record schema modification
• ADD VARS, DELETE VARS, MODIFY VARS, RENAME VARS
• Multiple Data Files
• New Batch Data Utility features including CSV Input/Output
• New Journaling and Recovery
• New XML Procedure
• New GUI Debugger
• New PQL Server
• Regular Expressions
• SEEK function to control file position
• Timestamp functions
• Extended syntax on PROCESS CASE
• CAT VARS in VisualPQL
• PQLForms update
• Encryption
• Enhanced date and time format specification
• Enhanced picture specification on WRITE and PFORMAT
• New GUI Controls
• IN=stdin and OUT=stdout on sirbatch execution command

SIR/XS accepts existing maintained SIR2000/SIR2002 licenses. If you are using any
older version of SIR please contact us for license details.

File formats have changed significantly in SIR/XS from older versions of SIR and are not
binary compatible. You need to export databases and tabfiles using your current version
of SIR and import these using XS.

SIR/XS What’s New 2

The menu system has been updated to reflect the new features.

Extended syntax names

Standard names in SIR/XS are from 1-32 characters, do not start with a number, are
automatically capitalized and can contain letters, numbers and the four characters $, #, @
and _. For example NAME and EMPLOYEE_NAME are valid standard names. If a name is
referenced in lower or mixed case, e.g. Employee_Name it is automatically translated to
upper case.

Non-standard names can be used that do not obey these rules in some respect e.g. they
contain lower case letters or special characters such as spaces. Specify a non-standard
name by enclosing from 1 to 30 characters in curly braces {}. The name can contain any
characters except curly braces and no translation is done on it. Non-standard names are
stored without the braces and appear in sorted lists at the appropriate sort sequence. For
example {$100 dollars} and {Employee_Name} are valid references to non-standard
names.

The extended syntax for names applies to all named entities in SIR/XS. These are:

• Database Names

• Record Names

• Variable Names

• Index Names

• Passwords

• Tabfiles and Tables

• Families

• Members

• VisualPQL Variables

• Sub-routines

• Sub-procedures

• Labels

• Buffers

SIR/XS What’s New 3

• Files (Attributes)

Non-standard names in functions

If you are using non-standard names as strings in VisualPQL functions, then the name in
the string needs to be wrapped in curly brackets e.g. VARLABSC(1,"{Employee Name}").
The functions that pass names back to the program wrap any non-standard names in curly
brackets automatically. However, please note an exception because buffer names have
been allowed to have non-standard formats in earlier versions of SIR. In order to
maintain compatibility with existing systems using non-standard buffer names that are
enclosed in quotes, the BUFNAME function does not wrap curly brackets and the buffer
references in commands continue to expect names in quotes without curly brackets.

There may be occasions when you want to create commands or other output using non-
standard names and need the brackets. The new STDNAME function checks a name and
wraps curly brackets around if it is a non-standard name.

Note: DO REPEAT; The parameter list in a DO REPEAT has always defaulted to a list
of NAMES and been converted to UPPERCASE. To prevent text in a parameter list from
being converted to uppercase, enclose it in delimiters using either quotes or dollar signs.
If you use quotes as a delimiter, these are passed to the substitution as part of the text. If
you use dollar signs as the delimiter, these are stripped out before the substitution and the
case of the substitution text is preserved. If you need a non-standard name as the
substitution text, specify it with curly braces as you would in a program; there is no need
for additional delimiters.

GET VARS PREFIX|SUFFIX

The syntax of GET VARS has been extended to allow the generation of new local variable
names by appending a prefix or a suffix to the original record or table variable names.
e.g. GET VARS ALL PREFIX 'EMPLOYEE_'

SPSS

There is a new keyword SHORTNAME in the SPSS SAVE FILE procedure. This specifies
that long names are truncated to eight characters for compatibility with older versions of
SPSS.

Enhanced Standardised Syntax

Deprecated use of Slash /

The slash / has been used in previous versions of SIR as a separator for multiple clauses
on commands. This use has been made optional for all commands. Slash still retains

SIR/XS What’s New 4

meaning in various commands such as indicating a new line on a WRITE command, or as
a delimiter on the misschar clause when the character is a blank.

Standardised Variable List Syntax

The PQL Procedures all allow variables to be specified that are to be used in the
procedure, however there were some inconsistencies in the way that was done in different
procedures. There is a new standard way to specify variable lists.

• The list may be a list of individual summary variable names or pairs of variable names
joined with the TO keyword. Use of TO includes all variables from the first to the second.

• The procedure may output a variable using a different name. Specify this in the list
either with the AS keyword or by following the variable name with the new name in
quotes. e.g. S(1) AS SALARY or S(1) 'SALARY'

• The list may be the single keyword ALL to use the default procedure variables. This is
essentially documentation as it has the same effect as omitting the VARIABLES
specification completely.

• The overall list may be enclosed in brackets. If the list is enclosed in brackets, then the
closing bracket indicates the end of the list. For example:

SPREAD SHEET VARIABLES = (NAME GENDER SSN DIVISION)
 TITLE = "EMPLOYEE LOCATION TABLE"

If the list is not enclosed in brackets then the end of the list is reached under three
conditions:
There is no more input for the command.
A special character is read; slash is valid, others may be depending on the command.
A name is processed that is not a summary variable.

New Tabulate Syntax

The syntax for TABULATE allows new keywords to specify the individual dimensions of a
table rather than this being done positionally.

Old syntax was:

TABULATE [[Wafer,]Stub,]Header /
 OPTIONS

SIR/XS What’s New 5

New syntax is:

TABULATE HEADER = (EXP)
 STUB = (EXP)
 WAFER = (EXP)
 OPTIONS

New Schema Syntax

There are a number of new features in schema syntax.

Standard Schema.

There is a new schema command STANDARD SCHEMA that is similar to a RECORD SCHEMA
command in that it signifies the start of a set of variable definitions. The set is ended with
an END SCHEMA command. Variables are defined using a DATA LIST command together
with any of the normal variable definition commands such as MISSING VALUES, VALUE
LABELS or VAR RANGES. e.g.

STANDARD SCHEMA
DATA LIST
 POSITION * (I1)
 SALARY * (I2)
 SALDATE *
(DATE'MMIDDIYY')
VAR RANGES POSITION (1 18)
 SALARY (600 9000)
VAR SECURITY SALARY (30,30)
MISSING VALUES POSITION
 TO SALDATE (BLANK)
VALUE LABELS POSITION (1)'Clerk'
 (2)'Secretary'

VAR LABEL POSITION 'Position'
 SALARY 'Salary'
 SALDATE 'Date Salary Set'
END SCHEMA
Once a variable has been defined in the standard schema it can be referenced in any
normal record definition with the new STANDARD VARS command. The benefit of this is
that coding does not have to be repeated for the variable when it occurs in multiple
records. Changes to the standard definition (for example updated value labels) are
reflected in all the record variables that reference the standard.
Note that the extended batch data input processing definitions of ACCEPT REC,REJECT
REC,COMPUTE,IF and RECODE are not specific to a variable and thus cannot be specified as
standard and copied in.
The STANDARD VARS command optionally allows a variable to be renamed when used in a
record e.g.

RECORD SCHEMA 1 EMPLOYEE
DATA LIST
 ID 1 - 4 (I2)

SIR/XS What’s New 6

 NAME 6 - 30 (A25)
 GENDER 31 (I1)
 MARSTAT 32 (I1)
 SSN 33 - 43 (A11)
 BIRTHDAY 44 - 51
(DATE'MMIDDIYY')
 EDUC 52 (I1)
 NDEPENDS 53 - 54 (I1)
 CURRPOS 55 - 56 (I1)
STANDARD VARS CURRPOS AS POSITION

New Common Vars Definition

Common Vars are now defined in a RECORD SCHEMA 0 CIR block. This can contain
normal variable definition commands. e.g.

TASK NAME Record Definition for CIR
RECORD SCHEMA 0 CIR
DATA LIST
 ID * (I2)
MISSING VALUES ID (BLANK)
VAR LABEL ID 'Identification
Number'
END SCHEMA
SIR FILE DUMP and the batch data input utilities now support a separate input for CIR
variables. That is, SIR FILE DUMP can write a record 0 in an appropriate format and the
batch data input utilities can process that record. You can specify input format definitions
for the CIR or simply allow these utilities to use default values. Note that when the batch
data input utilities process a CIR, they do not expect or support the extended batch data
input processing definitions of ACCEPT REC,REJECT REC,COMPUTE,IF or RECODE.

Record Label

The RECORD SCHEMA now allows you to specify a short label for the record type. The
label is enclosed in quotes and is up to 78 characters. e.g.

RECORD SCHEMA 3 OCCUP 'Position Details'
The RECDOC function with a documentation line number of zero returns the label.

Variable Documentation

There is a new VAR DOC command that allows multiple lines of text to be stored on the
schema to describe the variable. e.g.

RECORD SCHEMA 1 EMPLOYEE
VAR DOC CURRPOS The current position is a coded field
 using a copy of the standard var POSITION.
 It is the most recent permanent position of
 the employee.

SIR/XS What’s New 7

Extended Label Lengths

Labels lengths have been standardised to 78 characters. This applies to all labels,
specifically variable labels and value labels.

Sequence Commands

The SEQUENCE CHECK and SEQUENCE COLS commands are obsolete.

New Write Schema options

TO format

When SIR/XS writes a schema, by default it writes one command for multiple variables
and uses the TO construct where a sequence of variables has the same definition. e.g.

MISSING VALUES NAME
 TO NDEPENDS (BLANK)
The NOTO option on EXPORT or WRITE SCHEMA suppresses the TO constructs.

Variable sequence format

The VARSEQ option on EXPORT or WRITE SCHEMA means that the schema definition for
each variable is written as a set, that is all commands that apply to one variable are
written, then all commands for the next variable are written, etc. e.g.

VAR LABEL GENDER 'Gender'
VAR RANGES GENDER (1 2)
MISSING VALUES GENDER (BLANK)
VALUE LABELS GENDER (1)'Male'
 (2)'Female'
VAR LABEL MARSTAT 'Marital status'
VAR RANGES MARSTAT (1 2)
MISSING VALUES MARSTAT (BLANK)
VALUE LABELS MARSTAT (1)'Married'
 (2)'Not married'

Common Vars repeated definitions

SIR/XS writes a new RECORD SCHEMA 0 CIR for any case structured database which
contain the definitions for all common variables. The only reference needed for common
vars in other record definitions is an entry in either the DATA LIST or VARIABLE LIST
commands. Specify the keyword COMMON if you want complete definitions for common
vars written in individual record definitions where they are referenced.

VARIABLE LIST/INPUT FORMAT

SIR/XS What’s New 8

The standard style of schema output is to write variable names and input definitions as a
DATA LIST. VARLIST on EXPORT or WRITE SCHEMA specifies that variable names are
written as a VARIABLE LIST command followed by input definitions as an INPUT
FORMAT, command. e.g.

VARIABLE LIST ID NAME GENDER MARSTAT ...
INPUT FORMAT (I4,T6,A25,I1,I1,...

Updated schema modification

The way that existing record schemas are modified has been upgraded in SIR/XS. The
MODIFY SCHEMA command is now simply a synonym for RECORD SCHEMA. The CLEAR
commands and EDIT LABELS commands that were specific for a MODIFY SCHEMA are now
accepted in a RECORD SCHEMA and behave as before. If a schema exists and a RECORD
SCHEMA command references it, then it is updated.

The definition of a variable can be updated with the normal set of definition commands
such as MISSING VALUES.

Adding/Deleting Variables

Variables can be added to the schema with the new ADD VARS command and can be
deleted from the schema with the new DELETE VARS command. The input position or data
format of a variable can be modified with the new MODIFY VARS command. These three
new commands are similar in syntax to the DATA LIST command and are used in place of
it when modifying an existing schema. If a DATA LIST command is submitted, this
completely replaces all variables in the existing definition.

The names of variables can be changed with the new RENAME VARS command which
changes the names of existing variables while retaining all other definitions

Multiple Data Files

In SIR/XS, you can specify that a database has multiple data files, that is the .sr3 file is
split into a number of files that may be in different directories.

The new DATA FILES command defines either a single data file or multiple data files.
The command can be used to create a data file that can be in a different directory from
the other database files and named something other than the database name with a .sr3
extension.

The command can be used to create multiple data files based on key values. If the
database is a case structured database, the files are primarily defined by case id values. If
the database is a caseless database, the files are primarily defined by record types. For
example:

SIR/XS What’s New 9

DATA FILES 'company.s31'
 FROM (500) 'company.s32'
 FROM (1000) 'company.s33'

Batch Data Input

CSV

SIR/XS can process Comma Separated Variable (CSV) files as input to the batch data
input utilities. There is a new keyword CSV on all five of the data input utilities READ
INPUT DATA, ADD RECORDS, UPDATE RECORDS, REPLACE RECORDS and EVICT
RECORDS.

The input file is a text file with values for each record in a valid CSV format. The fields
must be in the correct sequence that matches the sequence of fields on the database
record. A file may either contain records for a single record type, in which case, specify
the record type on the utility command or may contain multiple record types, in which
case the first field on each input record is the record type.

SIR FILE DUMP can now write CSV files and there is a new keyword CSV to specify this.
This utility has an additional keyword DPOINT which specifies that explicit decimal points
are written for numeric fields.

Automatic I/O columns

In previous versions of SIR, if you did not assign input/output columns to variables in a
record type, they were ignored for batch data input and for file dump. These utilities have
been upgraded in SIR/XS and automatically assign default columns at the end of any
manually specified columns and so process these variables. This allows the use of file
dump and batch data input for database maintenance tasks. There is a new keyword
NOAUTO on the utilities to stop this processing if required.

BLANK as UNDEFINED

There is a new keyword option BLANKUND for READ INPUT DATA, ADD RECORDS and
REPLACE RECORDS. BLANKUND specifies that blank numeric fields on the input file result
in UNDEFINED on the record. If this option is not specified, then blanks on input for a
numeric field result either in a zero value or in a missing value if a BLANK missing value
is defined in the schema.

Processing CIR

SIR FILE DUMP has a new keyword CIR which specifies that a separate record (type 0) is
written containing all common vars. The batch data input utilities recognise record type

SIR/XS What’s New 10

0. If input formats have not been defined specifically for the CIR, these utilities
automatically allocate columns for fixed format style processing.

New Journaling and Recovery

The journal process has been rewritten and the structure of journals and unload files is
completely different in SIR/XS from previous versions. Both these files have a similar
structure.

The journal file consists of a linked set of entries one entry per update run. Each entry
consists of a set of images of updated records in that run. The images consist of before
and after images of updated records.

Unload files can contain multiple unloads of the same database and each unload is a
linked entry where the entry consists of after images of all the unloaded records.

There is a new JOURNAL ROLLBACK utility that removes updates and is intended for use if
an update run is interrupted and does not complete properly.

When a database is connected, its status is checked to see if it was not closed properly
when being updated e.g. the system 'crashed' while the database was open for update. If
this is found to be the case, you are asked if you wish to automatically recover. If you
choose to try to recover, a journal rollback is done.

There are new features in VisualPQL to assist in user processing of journals and unload
files. The PROCESS JOURNAL command allows you to get information about the various
entries on the file and to select one or more entries to process. When processing through
an entry, data records are read in sequence from the earliest to the latest. Within the
PROCESS JOURNAL block, a JOURNAL RECORD IS command starts a block that processes a
specific record type. This block is given control when a record of that type is read. Within
this block, you can use normal VisualPQL to access the data from the journaled record
using the record variable names. viz

PROCESS JOURNAL
. JOURNAL RECORD IS record_type
. PQL access to record variables
. END JOURNAL RECORD IS
END PROCESS JOURNAL
There is a new parameter SIRUSER that you can specify on start up and this is logged to
the journal file whether updates are done as a single user or through Master. This can be
obtained when processing the journal and it may be of interest if producing audit trails.
This can be set in a VisualPQL program with the new SIRUSER function.

New XML Procedure

SIR/XS What’s New 11

Extensible Markup Language, abbreviated XML, describes a class of data objects called
XML documents. The SIR/XS XML Procedure produces a file that is an XML document.
The XML File is a text file and consists of a hierarchical set of tags that enclose lower
levels of tags and, at some point, enclose data. It resembles HTML, only it uses tags
defined by users. Many products can now deal with XML based files. (Note. Statements
in this document do not purport to describe XML or make comprehensive statements
about the language but some explanation is necessary to describe the clauses on the
procedure command. There are published standards for XML for those interested.)

XML has its own standard for names (which is different to SIR/XS) and any names that
are generated by this procedure must meet this standard. XML names begin with
alphabetic character (or underscore _) and should not start with XML. They are case
sensitive and allow letters, numbers plus some special characters but no spaces.

An example bit of XML from within a document might be:

<company>
 <person>
 <name>John D Jones</name>
 <salary>2150</salary>
 <birthday>1986</birthday>
 </person>
 <person>
 <name>James A Arblaster</name>
 <salary>1500</salary>
 <birthday>1981</birthday>
 </person>
</company>

XML SAVE FILE Procedure

The procedure has a number of standard clauses, common to most procedures:

FILENAME = filename
BOOLEAN = (logical expression)
MISSCHAR = character
SAMPLE = fraction
SORT = variable,....
It also has a number of specific clauses

ROOT = 'string'
BREAK = break_variable (TAG = 'string',
 ATTRIBUTES = (varname (format)),...),
ELEMENTS = (varname (format)),...)),
 break_variable
DTD [= filename]
SCHEMA [= filename]
The XML file consists of a well formed hierarchy and the ROOT is the top-level outermost
component of this. This defaults to SIR_XS_ROOT if not specified. Specify a valid XML
name as the root that the processing application expects.

SIR/XS What’s New 12

The BREAK clause must be specified and determines the hierarchy of the XML document.
Each variable listed on the clause means one further level of nesting. The first variable is
the outer level. By default the variable name is used as the tag. Specify a TAG = to
override this.
There are two ways in which data can be included in a hierarchical level. You can specify
individual data ELEMENTS or a set of ATTRIBUTES. Both of these name data variables but
they appear in a different way in the output. Elements appear as individually tagged items
whereas attributes appear within the start tag. For example, if there are three data
variables for a person Name, Salary, Birthday then using elements, the output looks
like:

 <person>
 <NAME>John D Jones</NAME>
 <SALARY>2150</SALARY>
 <BIRTHDAY>01 15 78</BIRTHDAY>
 </person>
 <person>
 <NAME>James A Arblaster</NAME>
 <SALARY>2650</SALARY>
 <BIRTHDAY>12 07 82</BIRTHDAY>
 </person>
Using attributes the output looks like:

 <person NAME="John D Jones" SALARY="2150" BIRTHDAY="01 15 78">
 </person>
 <person NAME="James A Arblaster" SALARY="2650" BIRTHDAY="12 07 82">
 </person>
If designing an XML application from scratch, this may be a matter of style and choice. If
supplying a file to an existing application, then it is a matter of matching a specification.

The name of the element or attribute is the variable name. If this does not match the tag
required, you can alter this as per the standard method for specifying variable lists in
procedures (e.g. S(1) AS SALARY or S(1) 'SALARY'). Specify any formatting to be
applied to the data as per the normal formats specified on a WRITE command.

One or two additional files may be produced that describe the XML file written. You can
specify a DocumentType Definition or DTD. XML provides an application independent
way of sharing data. With a DTD, independent groups of people can agree to use a
common DTD for interchanging data. Your application can use a standard DTD to verify
that data that you receive from the outside world is valid. You can also use a DTD to
verify your own data. If you specify the DTD keyword, the default filename is the name of
the main XML file produced with the extension .dtd

XML Schema is an XML based alternative to DTD. You can also produce an XSD file
that describes the XML. If you specify the SCHEMA keyword, the default filename is the
name of the main XML file produced with the extension .xsd.
Specifying either Schema or DTD changes the header information written to the main

SIR/XS What’s New 13

XML file and so informs other processes that a descriptive file exists. You may find other
applications that process the XML need a certain style of descriptive file.

Example XML procedure

RETRIEVAL /PROGRESS
. PROCESS CASES ALL
. get vars id
. PROCESS RECORD EMPLOYEE
. GET VARS NAME BIRTHDAY SALARY
. PERFORM PROCS
. END PROCESS RECORD
. END PROCESS CASES
XML SAVE FILE
 FILENAME = "c:\sirxs\alpha\XML2.XML"
 ROOT = 'company'
 BREAK = ID (TAG = 'person' ATTRIBUTES = (name salary birthday))
 SORT = ID
 schema
END RETRIEVAL

New PQL GUI Debugger

The old execution window debugger is obsolete and there is a new GUI debugger.
The DEBUG clause on PROGRAM/RETRIEVAL/SUBROUTINE is altered. The words MONITOR
or FULLMONITOR are obsolete. The clause is now:
[DEBUG [= name]]
This causes a debug version of the module to be stored as a subroutine on the procedure
file. If you are compiling a real subroutine, the name need not be specified. If the name is
not specified on a PROGRAM or RETRIEVAL, it defaults to SYSTEM.DEBUG To debug a
program, start the GUI debugger from the menu system. This allows you to select a
module for debugging and provides various windows to list source code and current
position, to set breakpoints, to list variables, inspect and alter values and to set
watchpoints and to step through modules, into and out of subroutines.

To start the debugger, first compile a program with the DEBUG keyword then select
Debug... from the Program menu. Select the compiled object (SYSTEM.DEBUG:O is the
default) from the member list.

SIR/XS What’s New 14

The VisualPQL Debugger

Please see the VisualPQL GUI Debugger for instructions on debugging a routine.

New PQLServer

The SIR/XS PQLServer is a new executable that allows another standard SIR/XS session
to connect as a client and to transmit commands to the server, execute those commands
remotely and retrieve output. This is done with a set of PQL functions. The PQLServer
must be started to enable clients to communicate to it across the network. The client
processes do not require any access to files or databases that are local to the server and
the two processes (client/server) may be using different hardware/operating systems e.g.
client on windows, server on Unix.

From the client point of view processing is as follows:

• Client logs on to server and establishes a connection with the server that is is used
in all subsequent server functions.

SIR/XS What’s New 15

• Client sends any number of lines of text that would include SIR commands.
• Client starts execution of previously sent commands. Any settings or output from

a previous execution from the same client are reinitialised, the commands are run
and a completion code is returned at which point any output is waiting on the
server. Commands can include all SIR commands and can use procedures, etc.
Note that commands must include connecting any databases/tabfiles/procedure
files needed each time commands are submitted and executed. There are no saved
settings between executions. The process may read/write files, update databases
and generally do anything that a batch run of SIR could do. While executing, no
communication is happening with other possible clients. It is thus good practice to
keep execution streams as short as possible.

• The client may choose to wait for the execution to finish or to carry on processing
locally and subsequently test to find if the execution has completed successfully.

• Client gets count of number of lines of output and can then get each text line or
skip over unwanted lines. The server transmits lines in groups. If skipping lines
and the lines have not yet been transmitted, they are skipped on the server. Lines
once returned or skipped are no longer available. The client can get a count of the
number of lines available at any point.

• Client can repeat the process.
• Client logs off when finished.

e.g.

program
compute rc = serlog ('TONYDELL:4000','')
write rc
compute x = sersend ('PROGRAM')
compute x = sersend ('WRITE "HELLO WORLD"')
compute x = sersend ('END PROGRAM')
compute rc = serexec (1)
write 'rc = ' rc
compute olines = serlines(x)
write 'lines ' olines
for i=1,olines
. compute line = serget (0)
. write line
rof
compute client = serlog ('','')
end program

Client Functions when using PQLServer

SERADMIN Various server administration capabilities (returning numeric values)

SERADMIS Various server administration capabilities (returning string values)

SEREXEC Instructs server to execute previously sent commands

SERGET Gets a line of output from server

SIR/XS What’s New 16

SERLINES Asks server how many lines of output are left

SERLOG Logs on to the server

SERSEND Sends a string to the server

SERSENDB Sends a buffer to the server

SERTEST Asks server if execution has completed

PQLServer Functions

(These have no effect if used in a program that is not running on the server)
SERNOOUT Suppresses server output

SERWRITE Writes a line of output from server

New PQLServer commands

CLEAR SERVER NOOUTPUT
SET SERVER NOOUTPUT
These can be used anywhere in the command stream to selectively control what output is
made available for retrieval by the client. SET means that any output directed to standard
output is thrown away. If this command is embedded in a PQL program, it affects any
compilation listing. Use the SERNOOUT(n) function for execution time control.

Regular Expressions

There are two new functions that allow you to manipulate strings with Regular
Expressions. A regular expression is one where symbols describe the matching that is
required. The meaning of the symbols needs to be specified and there is a standard for
regular expressions used by many packages. SIR has had its own regular expression
processor and these functions allow you to choose whether to use PERL standard
expressions, POSIX standard expressions or SIR expressions.

REGEXP searches a string using a regular expression and returns whether the nth
occurrence of the string has been found and the position in the string of the start of the
match.

REGREP takes a string and two regular expressions and replaces matches from the first
expression with text specified by the second.

SEEK function

The new SEEK function sets a position on an open file.

SIR/XS What’s New 17

Timestamp functions

There are new timestamp functions. DTTOTS takes a date and time integer and returns a
timestamp. A timestamp is a real*8 representation and is the number of seconds since the
start of the SIR/XS calendar. You can do calculations between timestamps and the
individual date and time components can be extracted using the TSTODT and TSTOTM
functions before using any other date and time functions e.g. for print formatting.

Extended syntax on PROCESS CASE

The COUNT and SAMPLE options on PROCESS CASE now allow variables and expressions as
parameters rather than requiring explicit integer variables.

CAT VARS in VisualPQL

Local categorical variables can now be defined in VisualPQL.

PQLForms Update

There is a new clause TITLE on the SCREEN command. This allows you to specify PQL
that constructs screen titles on single and multi-page screens.

There is a new sub-clause FONT as part of the PQLForms general clauses that allows
specification of non-standard fonts including color. This has also been implemented in
the forms screen painter allowing easy use of fonts.

The IF sub-clause has been implemented for FBUTTON which allows the button to be
enabled or disabled (greyed out) according to specific conditions.

Encryption

There is a new schema command ENCRYPT [ON |OFF]

ENCRYPT turns on data encryption for this database. This means that all data records in the
database are encrypted on disk and are thus protected against scrutiny from software
other than SIR/XS. The encryption method used is a version of the publicly available
Blowfish algorithm using a 256 bit key.

All data records are encrypted, however keys in index blocks are held in unencrypted
format. Do not use names or other recognisable strings as keys if this data is sensitive and
requires protection. Unloads and journals for encrypted databases are themselves
encrypted. Text files are all unencrypted. Schemas and procedures are unencrypted.

SIR/XS What’s New 18

ENCRYPT OFF turns encryption off for a database. Encryption can be turned on and off
without ill effect. Records are written according to the current setting; records are read
and recognized as to whether they require decryption.

Passwords and security levels are encrypted on all databases. There are
encryption/decryption functions in VisualPQL if users need to encrypt data for
themselves but these use a user specified key - the SIR/XS system key is used for
database encryption.

CRYPTKEY Sets the key for the encryption functions.
DECRYPT Decrypts an encrypted string.
ENCRYPT Encrypts a string.

Enhanced date and time format specification

Variables can now be defined with extended date and time formats. These formats allow
output formats which retain specific separators such as '/' and allow days of the week and
12 hour times to be specified. See date and time formats for a complete description.

Enhanced picture specifications

Numeric variables with an output specification on the WRITE command or formatted by
PFORMAT have a picture specification that describes the required format. This now has
additional capabilities for floating dollar sign and negative numbers. The documentation
has been upgraded to cover all picture specification features.

Improved VARMAP summary

The summary information produced by the VARMAP keyword on
RETRIEVAL/PROGRAM has been improved to make it more readable.

New GUI Controls

Tree Control

A tree control can display a hierarchical list of items such as the structure of a database or
the data within that database. The items in the tree list can have child items and, if they
do, then they have a button that shows or hides the child items.

Slider Control

A slider or trackbar control displays a scale with a movable knob. If the height is greater
that the width then the slider is drawn vertically, otherwise it is drawn horizontally.

SIR/XS What’s New 19

Spin Control

A Spin or Up/Down control displays a numeric edit box with a pair of arrows. The up
arrow increments the value in the edit control and the down arrow decrements it.

Progress Control

A Progress control displays a read only progress meter. The meter can be horizontal or
vertical depending on the height and width settings.

ComboBox Control

A ComboBox control is a combination of an edit and a choice control and can use the
same functions and commands as these controls.

Other New GUI Features

Images on buttons

Buttons can now have images rather than text. Define a button as per standard buttons
and then use the SET IMAGE command to specify a bitmap to use for the button.

Images can optionally be centred or resized to fit the image control.

Functions

SETRANGE Sets the minimum and maximum possible values for the a slider, spin or
progress control.

BRANCH Adds a new node to a tree. The node is added as a child node of the parent.

BRANCHD Deletes the node from a tree.

NBRANCH Returns the number of child nodes of the given node.

BRANCHN Returns the node number of the nth child nodes of the given node.

SCROLLAT Gets a position in a gui scrollable item

SCROLLTO Sets a position in a gui scrollable item

CLIPAPP Adds text to the clipboard.
CLIPGET Gets text from the clipboard.
CLIPLINE Gets count of lines in the clipboard.
CLIPSET Clears the clipboard and adds text to the clipboard.

SIR/XS What’s New 20

Messages

message VSCROLL m_id, m_arg1
m_id contains the id of the list or text control that has been scrolled;
m_arg1 contains the position of the item that is the top most visible in the list.
This message could be used to syncronise the scrolling of two related lists.

message RMOUSE m_id, m_arg1, m_arg2
m_id contains the id of the control where the right mouse button was clicked. If the
mouse was not over a control then -1 is sent.
The information in m_arg1 and m_arg2 depends on the type of control:
List controls send the position of the item in the list and a double click indicator.
Otherwise the x,y coordinate relative to the top left of the control is returned.

Interface Enhancements

There have been many enhancements to the default menu system and dialogs. These
include:

• Larger lists, both to take account of longer names and for easier readability;
• Search Help allows you to search the help system for particular words that may

not necessarily be indexed;
• More Procedures... under the procedures menu lets you store and document

commonly used programs. There are some "system" procedures provided. User
Procedures can be stored with a specific database or on a standalone procedure
file.

• Data Entry menu item starts a default form or can be set to start any form (or
program) using the Data/Forms... dialog.

• More preference settings including the maximum height of the dropdown list in
choice/combo controls; the size of the internal editor, dbms command and debug
dialogs;

• Enhancements to the dialog/forms painter including fast page navigation with
PgUp PgDn Home and End; WYSIWYG font attributes.

Other New Features

The default length of a string variable has changed from 20 to 32 characters.

Several values returned by the SYSTEM function have become obsolete and replaced
with new codes:

• SYSTEM(3) now returns the update level of the current record (was not used);
• SYSTEM(44) returns DB encryption indicator (was Template Storage);
• SYSTEM(54) returns the number of data files defined (was Message Level);
• SYSTEM(79) lines in def member (was Execution Window rows);
• SYSTEM(80) window paging on / off (was Execution Window columns);

SIR/XS What’s New 21

Automatic disconnection of idle master clients. The new SETAKL function (Set AutoKill
Limit) allows setting of a time limit for clients of master. If a client is idle for the given
number of minutes then they will be automatically disconnected.
COMPUTE RC = SETAKL(minutes,password)

Compatibility Issues

If you have existing SIR systems, export your existing databases and tabfiles and import
into the new version. You should make sure your production applications operate
correctly on any new version of the software before stopping use of existing versions.

SIR/XS databases are NOT backward compatible with SIR2002 and earlier but can be
exported and re-imported if needed to be used with older versions but the OLD option
must be used with the export to avoid creating new schema constructs that are
incompatible with earlier versions. (Note. Using specific SIR/XS features such as non-
standard names may result in incompatibilities anyway.)

Since SIR/XS now supports non-standard names using {} as delimiters, the use of double
quotes in SQL as delimiters for non-standard names is not recommended but is still
supported.

Old text style screens are no longer supported in DBMS/VisualPQL. The following text
style screen commands are no longer supported:

ACCEPT CHARACTER
BELL
BOX
CURSOR
CONNECT TEMPLATE
CREATE TEMPLATE
DELETE TEMPLATE
ERASE TEMPLATE
DISPLAY TEXT
EXPORT TEMPLATE
ERASE SCREEN
FIELD INPUT
FILL
HORIZONTAL MENU
KEYPAD ON
LINE ATTRIBUTE
LINE CHARACTER
MAPKEY
MODIFY TEMPLATE
MOUSE
POP TEMPLATE
PUSH TEMPLATE
PURGE TEMPLATE
REFRESH SCREEN
RESTORE TEMPLATE
SCREEN GRAPHICS

SIR/XS What’s New 22

SCROLL TEMPLATE
SENSE MOUSE
SOUND function
STORE TEMPLATE
VERTICAL MENU
Forms is still supported although it is not being developed further and does not have
constructs to use any database secondary indexes. Forms is now the only component of
SIR/XS to use a text style full screen.

The default screen font used in SIR/XS is different to that used in 2002 and this may
cause some size differences in dialogs. The font used to be MS Sans Serif but this is no
longer included by default in windowsXP and this font doesn't have all the characters
available in other fonts (eg "…"). The default font is now Arial. To alter the default font,
set sir.fnamm to a fontname either manually by editing the sir.ini file or with UPSET in the
start menu. e.g.

UPSET("sir.fnamm","MS Sans Serif")
This sets the font to be the same as used in SIR2002.

IN=stdin and OUT=stdout on sirbatch execution
command

When running sirbatch you can use stdin and stdout as the filenames for the IN= and
OUT= parameters.
IN=stdin takes input from the standard input stream. This could be the keyboard, a pipe
or redirected input using "<". The PROMPT execution parameter will cause a prompt to be
written to the screen each time an input line is read.
OUT=stdout sends output to the standard output. This could be the screen, a pipe to
another command or redirected output using ">".

