
SIR/XS SQL 1

Overview... 5
Databases & Tabfiles .. 7

Databases .. 7
Tables and Tabfiles ... 7
Views .. 7

Syntax Rules ... 9
Names ... 9
Non-standard names.. 9
Single v Double Quotes .. 10
Qualified Record and Table Names.. 10
Qualifying variable names .. 10
Alias .. 10
Filenames .. 10
Numeric Constants.. 11
Character Strings... 11
Expressions ... 11
Date Formats... 11
Time Formats .. 12
Functions... 12
Comments ... 12

SELECT.. 13
Output ... 15
Aggregation... 16
Variable List.. 18

Computing New Values.. 18
Functions... 18

FROM ... 19
Referencing Multiple Tables... 19

PATHS.. 20
Path Mode and Case Mode ... 20

Keywords .. 24
FORMAT.. 25
Column References... 26
Column Formats.. 27
GROUP BY .. 29
ON... 31
ORDER BY .. 32
OUTER ... 33
UNION.. 34
WHERE .. 35

Relational operators .. 35
Subqueries... 37
Display .. 39
EXCLUDE and INCLUDE... 40
Formatting Commands.. 41
Headings and Footings.. 42

SIR/XS SQL 2

Grouping and Totalling... 44
BREAK... 44
GROUP... 45
OFF | ON... 45

SUBTOTAL.. 46
TOTAL ... 48
PRINT and WRITE... 49
Setting Parameters .. 50
Parameter List ... 51
Control Commands ... 61
CALL .. 62
CONNECT DATABASE ... 63
CONNECT TABFILE .. 65
CREATE ATTRIBUTE.. 67
CREATE SYNONYM.. 68
DISCONNECT ... 69
DROP.. 70
END .. 71
GET... 72
SAVE... 72
Execution Statement ... 73

Batch Parameters .. 73
Format File.. 74
Database Parameters ... 75
Tabfile Parameters .. 76
Environment Parameters ... 77

SirSQL User Interface... 78
File Menu.. 80
Connect database .. 81
List of connected databases .. 82
Database structure... 83
Create tabfile ... 84
Connect tabfile .. 85
List of connected tabfiles .. 86
Tabfile structure .. 87
Indexes .. 88
Create index .. 89
Select... 90

From.. 91
What.. 92
Where.. 93
Order by .. 94
Group by ... 95

Verify tabfile ... 96
Export tabfile .. 97
Backup tabfile ... 98

SIR/XS SQL 3

Restore tabfile ... 99
Data Entry and Modification .. 100
DELETE FROM ... 101
ENTER INTO ... 102
INSERT INTO.. 103
UPDATE... 105
Paths and Views.. 106
Paths.. 106
View.. 107
CREATE PATH.. 108
CREATE VIEW.. 111
RENAME VIEW COMMAND.. 113
Tabfiles and Tables ... 114

Table ... 114
Index ... 114
Commands .. 114

CREATE TABFILE.. 116
CREATE TABLE ... 118

Column Data types.. 120
Column Options .. 122

CREATE INDEX.. 126
Permissions ... 127
GRANT... 128
REVOKE .. 132
EXPORT... 134
VERIFY .. 136
BACKUP TABFILE... 137
RESTORE TABFILE ... 138
DISPLAY JOURNAL .. 139
SQL Functions .. 140
Standard Functions.. 141
Aggregation functions... 146
System Tables ... 148

Database System Tables ... 148
Tabfile Views and Tables ... 149

$COL - Table Columns Schema ... 151
$DBCASE - Database Case Schema .. 154
$DBDOC - Database Documentation... 156
$DBSTATS - Database Statistics ... 157
$INDEX - Tabfile Index Definitions .. 160
$INDEXCOL - Tabfile Index Column Definitions .. 161
$PASSWORD - Group User Names... 162
$REC - Database Record Schema... 163
$SECURITY - Tabfile and Table Permissions ... 164
$SORTID - Sort Id Variables ... 166
$TAB - Tables... 167

SIR/XS SQL 4

$TFSTATS - Tabfile Statistics ... 169
$TRANGE - Tabfile Column Ranges... 170
$VALLABEL - Database Value Labels ... 171
$VALUE_LABEL - Tabfile Value Labels ... 172
$VALVALUE - Database Valid Values... 173
$VAR - Database Variables.. 174
$VARLABEL - Database Variable Labels... 176
Reserved Keywords .. 177
Pattern Matching... 179

Symbols... 179

SIR/XS SQL 5

Overview

SQL stands for "Structured Query Language" and is an industry standard language which
allows you to query existing data, modify that data and to define new tables, indexes and
views.

The SQL module of SIR/XS implements the data retrieval, update and definition
capabilities defined by "American National Standard X3.135-1986 Database Language
SQL." In addition, SIR/XS has implemented many enhancements to simplify the
interactive use of SQL and to take advantage of SIR/XS database structures.

The primary function of SQL is to select data from records and tables where particular
conditions are true. The selected data always creates a new table. The data from a table
can be then be displayed in a simple and straightforward manner. Tables can also be used
by the other SIR/XS components such as VisualPQL to produce more complex analyses
and outputs.

SQL creates and populates new tables and can also be used to create indexes and views to
tables.

SQL can be used to update and modify databases and tables and can update whole sets of
data which match particular conditions. While SQL also has some direct data entry
functions, these are limited and data entry is better handled in other SIR/XS modules.

The SirSQL interface is a menu driven system, which, since SQL is a command based
language, generates commands.

The main SQL command is SELECT, which selects data according to particular
conditions, creating a new set of data on a new table. There are various formatting
options for individual columns.

There are commands such as UPDATE which updates individual records or sets of
records and CREATE which defines new tables.

The SQL settings such as the connected databases and tabfiles, the limits on reading and
writing records, any synonym definitions, path definitions, etc. make up the workspace.
The SAVE and GET commands save the workspace and get it again in subsequent
sessions. SQL uses a default workspace file, called SirSQL.wsp which is loaded when
you access SQL. You can modify and save the default workspace, or create and use any
number of different workspace files.

A simple editor is used to enter commands into a command area. SQL commands can be
created and saved for subsequent execution. Commands can be kept as members in the

SIR/XS SQL 6

procedure file of a database or as operating system files. Commands can be run as a batch
process.

Online help is available for explanation and syntax of all commands, options and clauses.

SIR/XS SQL 7

Databases & Tabfiles

Databases

SQL can operate on multiple SIR/XS databases. Before working with a database, the
database must be connected. The last database connected is the default database which is
used whenever a particular database is not specified.

Queries are optimised to take advantage of database case structures and records with
common keys, simplifying the required query specifications and making the retrieval
more efficient. All quality controls, including security, defined in the database schema
are applied when using SQL for data entry or modification.

SQL can operate concurrently with other SIR/XS modules when reading data and through
Master for concurrent update.

Tables and Tabfiles

SQL can read, write and create tables. A table holds a single type of record and is
equivalent to a database record. Tables can be used by VisualPQL and FORMS as well as
by SQL. Tables can only be used for update by one user at once. Tables are held on a
Tabfile.

A tabfile contains tables, indexes to the tables plus System tables which hold information
about other tables. A single tabfile can contain multiple tables. Tabfiles can contain
security controls and authorised users may grant or revoke permissions for operations on
a tabfile or on specific tables within a tabfile.

SQL can operate on multiple tabfiles. Before working with a tabfile, the tabfile must be
connected.

A temporary system tabfile ($SYSTEM) is the default used for creating temporary tables.
This is created and deleted per session and is not normally listed on displays of tabfiles.
The $ as the start character in a name is used by the system to recognise system generated
names and so should not be used except for this purpose.

The system expects a file extension of .tbf to be used for tabfiles.

Views

A View is a logical table created within SQL. A logical table is a table which does not
physically exist; it is created 'on the fly' from other tables and records. Once defined, a

SIR/XS SQL 8

view may be used and referenced in the same way as other tables. Views can only be
used by SQL.

SIR/XS SQL 9

Syntax Rules

SQL is primarily a command based system so there are rules for the syntax of the
commands. The syntax is intended to be English like and as natural as possible. SQL
translates all commands, keywords and names (unless a non-standard name) to
uppercase.

A command normally ends at the end of a line. To specify that a command continues on
the next line, put a hyphen (continuation character) after all the text on the line to be
continued.

SELECT NAME SALARY -
FROM EMPLOYEE -
WHERE GENDER EQ 1
You can submit multiple commands at one time. To do this, start each command on a
new line. The starting position of a command on a line is unimportant.

Names

 Names are normal SIR/XS names. Standard names are 1 to 32 characters long with no
spaces. The first character must be alphabetic. Characters can be letters, digits or four
characters ($, #, @,_). Names are translated to upper case so uppercase and lowercase
letters are equal. A name cannot be an SQL reserved word. The following are examples
of valid names:
A PART_NUMBER NAME1

Non-standard names

If you wish to use a name which does not conform to these rules, enclose the name in
curly braces {} as per other SIR/XS references to non-standard names. (Note: for
compatibility with previous versions and with the SQL standard, the SIR/XS SQL
module also supports the use of double quotes "" as delimiters on input for non-standard
names, but these will be translated to curly brackets on output.)

A non-standard name can contain blanks or use lowercase letters. Non-standard names
might be:

{On hand} {SELECT} {part*}

Suppose a column is created with a SELECT such as:

SELECT ... max(salary)*1.1
If this column is referred to in a subsequent SELECT, the column name is not a valid SQL
name and must be enclosed in curly brackets. This name was not specified as a non-

SIR/XS SQL 10

standard name when originally created and was thus mapped to upper case, so the
reference would be:
SELECT {MAX(SALARY)*1.1}
Note: It is possible to specify new column names with the FORMAT COLUMN NAME
command and it is possible to refer to columns by a column number. This minimises the
need to have non-standard column names, even where these have been derived from a
calculation. For example:
SELECT id salary*1.3 FORMAT COLUMN 2 NAME newsal

Single v Double Quotes

Strings inside single quotes are constants; strings inside double quotes are names. (This is
according to the SQL standard and is thus different from other SIR/XS modules standard
behaviour.) When creating a table, it is possible to specify constants as columns, so you
must use single or double quotes correctly. For example, suppose the following:
SELECT 'MAX(SALARY)*1.1'
Because this command has single quotes, it creates a character constant with the value
MAX(SALARY)*1.1 rather than looking for a column with this name.

Qualified Record and Table Names

Unless using the default database or tabfile, qualify record and table names with the
appropriate database or tabfile name. Separate the names by a period. For example:
SELECT NAME FROM COMPANY.EMPLOYEE ON MYTFILE.TABLE1

Qualifying variable names

 Variables within a record or table always have unique names. However, variables in
different records may have the same name. If referring to two variables with the same
name from different records or tables, qualify the name by preceding it with the record or
table name. Separate the names by a period. For example:
SELECT EMPLOYEE.ID DEPT.ID FROM EMPLOYEE DEPT

Alias

Sometimes you may need to qualify the record or table by a database or tabfile name.
However, qualification at two levels (A.B.C) is not a valid SQL format. In this case (or
when joining a record to itself) specify an alias. Specify a single name after the qualified
record or table name, optionally using the AS keyword and then specify this to qualify
individual variable names used in the select, where, order by or other clauses. For
example:
SELECT A.ID B.ID FROM COMPANY.EMPLOYEE AS A, OLD.EMPLOYEE AS B -
WHERE A.ID = B.ID

Filenames

When specifying filenames in SQL, use the standard short or long SIR/XS Filenames.

SIR/XS SQL 11

Numeric Constants

Specify integer constants as a series of digits without any embedded blanks or commas.
They may be preceded by a + or - sign to indicate whether they are positive or negative.
No sign is an indication of a positive number. For example:
1 134 999 +333 -9322
Specify real constants as a series of digits followed by a decimal point and another series
of digits. They may be preceded by a + or - sign. Either the initial or terminal series of
digits may be absent but not both. Specify a power of 10 exponent by suffixing the
number by the character 'E' followed by the power of ten. There can be no embedded
blanks or commas in the number. For example:
1. .44 +1.4 -.44433 123.456E3 333.432E-3

Character Strings

Specify character strings within single quote marks. To include a single quote within the
character string, enter the single quote twice in succession for each occurrence required.
For example:
'aaa' 'THIS is A string' 'Bill''s job'

Expressions

Expressions are a combination of variables and operators which produce a new value.
There are numeric expressions and string expressions. For example, adding two numeric
variables produces the sum; concatenating two string variables produces a longer string.

There are functions in SQL which convert numbers to strings and vice versa.

Dates, times and categorical variables can be either integers or strings and SQL decides
which format to use from the expression that uses the variable. If a string is called for, the
string is used; if a numeric value is called for, the integer value is used. For example, a
time can be an integer (the number of seconds since midnight) or a character string such
as '11.15AM'.

Numeric expressions consist of numeric variables, constants, all of the normal arithmetic
operators (+, -, /, *, **), numeric functions, and parentheses. Expressions are evaluated
according to normal precedence and parentheses can be used. Within equal precedence
they are evaluated from left to right. Example numeric expressions are:

2 * 5 - 4 2 * (5 - 4) SALARY * 52 / 12
String expressions consist of string variables, string constants in single quotes, string
functions, the concatenation operator (+) and parentheses. Example string expressions
are:
'ABC' + 'DEF' SBST('ABCDEF',4,3) TIMEC(NOW(0),'HH:MM:SS')

Date Formats

SIR/XS SQL 12

Specify a date format for dates. See date formats for a complete description of date
formats.

Time Formats

Specify a time format for times. See time formats for a complete description of time
formats.

Functions

A function is a keyword followed by one or more arguments enclosed in parentheses.
Arguments may be either variable names, constants or expressions. The function operates
on the arguments and returns an appropriate value for each record selected. For example,
RND is a function which returns a number rounded to the nearest whole integer;
SELECT NAME RND(SALARY*12/52) FROM EMPLOYEE

Comments

 Comments can be included in commands using the exclamation character (!).
When this character appears on a command line and is not enclosed in quotes, then that
character and the remainder of the input line are ignored. The continuation character,
must be the last character on the line.
Example:

SELECT NAME ! get the full name -
RND(SALARY*12/52) ! and weekly salary -
FROM EMPLOYEE ! for each employee

SIR/XS SQL 13

SELECT

SELECT [DISTINCT] variable_list
FROM [tabfile.] table_name, |
 [tabfile.] view_name , |
 [database.] record_name, |
 [database.] CIR , |
 path_name , |
 [AS] alias_name,
Keywords:
 CASELIM n
 COMPILE_ONLY
 DBMS [filename]
 OUTPUT filename
 RECLIM n
 SAMPLE proportion [, seed]
 SELLIM n
Clauses:

FORMAT
GROUP BY
ON
ORDER BY
OUTER
UNION
WHERE

The SELECT command takes data from one or more existing records or rows and creates a
new table with the selected data in it. The definition of data in the new table is copied
from the existing definition. The number of rows in the new table depends on the number
of rows in the input and the particular clauses specified. (See Output from SELECT.)

The variable list and the FROM clause are required. All other clauses are optional.

The result of the SELECT is a new table containing the selected variables. Tables created
with the SELECT command are exactly the same as tables created in any other way. The
SELECT command also controls the display format of the variables in the created table.
The display format of the table can be modified with the display processor. Formatting
can be specified on the SELECT with the FORMAT option.

The basic form of the command is:

SELECT variable_list FROM record_list WHERE condition
The variable list specifies the variables to be saved in the new table; the FROM clause,
lists the records and tables which contain the input data and the WHERE clause, specifies

SIR/XS SQL 14

the conditions under which records or rows are selected.

SIR/XS SQL 15

Output

One occurrence of the set of selected variables is one row in the output table. The clauses
and keywords specified in the SELECT affect the way in which the output table is
constructed. If variables are selected from a single record or table, one output row is
written for every individual data record or row which satisfies the WHERE clause.

If variables are selected from multiple records or rows, one output row is written for each
individual data record or row which exists and which meets the selection criteria. For
example the following results in one output row per combination of employee and
review:

SELECT NAME POSITION RATING -
FROM EMPLOYEE REVIEW -
WHERE EMPLOYEE.ID = REVIEW.ID
This is sometimes referred to as an inner join. There is no output for instances where a
record of one type exists but not the other. A join which produces an output row
regardless of whether the joined record or row exists is known as an outer join. Specify
the OUTER keyword following the FROM clause. Follow OUTER with one or more record or
table names. For example;
SELECT FROM A B OUTER B
SELECT FROM A B OUTER A
SELECT FROM A B OUTER A B
All these examples generate an output row for every combination of A and B; the first
example adds all occurrences of A where B does not exist; the second example adds all
occurrences of B where A does not exist; the third example takes both occurrences of A
with no B and occurrences of B with no A. These are sometimes referred to as a RIGHT
outer join, a LEFT outer join and a SYMMETRIC outer join.

DISTINCT

 The DISTINCT keyword specifies that one output row is written for each distinct or
unique set of values selected. For example;
SELECT DISTINCT SALARY FROM EMPLOYEE
lists each salary that one or more people are earning. There is only one output row per
value of salary, regardless of how many people earn that salary. The keyword UNIQUE
(abbreviation UNQ) is a synonym for DISTINCT.

SIR/XS SQL 16

Aggregation

 Aggregation functions compute single values from multiple records and change the
number of rows that are created. An aggregation function returns a single value to
represent a calculation (such as an average) across multiple records. For example:
SELECT AVG(SALARY) FROM EMPLOYEE
This returns one value, the average salary of all the employees; correspondingly, only one
row is created in the output table.

The following functions are aggregation functions and alter the number of output rows
produced:

SUM
Sum of values selected

AVG
Average of values selected

STD
Standard deviation of values selected

MAX
Maximum value selected

MIN
Minimum value selected

FIRST
First non-missing value selected

LAST
Last non-missing value selected

COUNT
Count number of values

SUM, AVG and STD operate only on numeric data. Other aggregation functions operate on
any type of data.

GROUP BY

The GROUP BY clause specifies that one output row is written for each unique value of the
variables specified . For example,
SELECT FROM EMPLOYEE GROUP BY CURRPOS
produces one output row per value in the CURRPOS variable. Since this is a grouping of
data, individual data items cannot be selected; the only legal expressions that can be used
in the variable list when GROUP BY is specified are aggregate data or the variables in the
GROUP BY clause. For example, to produce a count of people and a total salary in each
position.
SELECT CURRPOS COUNT(SALARY) SUM(SALARY) FROM EMPLOYEE -

SIR/XS SQL 17

GROUP BY CURRPOS
The table that results from aggregation has one entry per aggregation level. To produce a
table with individual values for a column plus subtotals and totals (sums, averages,
counts, or other statistics) , use the Format clauses.

SIR/XS SQL 18

Variable List

The variable list in the SELECT is a list of variable names and expressions. When a
variable name is specified, the definition of that variable is copied from the existing
definition. If variables have the same name on different records or tables, qualify the
variable name by the name of the record or table. Qualified names are separated by a
period.

An asterisk (*) specifies all of the variables in all of the records or rows referenced in the
FROM clause. For example,

SELECT ID NAME FROM EMPLOYEE
SELECT * FROM REVIEW
SELECT EMPLOYEE.NAME FROM EMPLOYEE

Computing New Values

Expressions may be specified in the variable list. For example, the following query
computes the weekly salary by multiplying monthly salary (SALARY) by 12 and dividing
by 52.
SELECT ID NAME SALARY*12/52 FROM EMPLOYEE
The name of the computed variable in the output table is the first 32 characters of the
expression used to calculate it.

Numeric expressions may use numeric constants, numeric variables, the arithmetic
operators (+ , - , / , * , **), SQL functions, and parentheses to denote the order of
operations.

Character expressions may use quoted strings, variables which are strings, the "+"
character to join strings, SQL string functions, and parentheses to denote the order of
operation. Enclose strings in single quotes.

Functions

Functions are specified as a keyword followed by one or more arguments enclosed in
parentheses. Arguments may be variable names, constants or expressions. The function
operates on the arguments and returns a single value for each record selected.

For example, RND is a function which returns a number rounded to the nearest whole
integer:

SELECT NAME RND(SALARY*12/52) FROM EMPLOYEE

SIR/XS SQL 19

FROM

 The FROM clause is required on the SELECT and specifies the records, paths, views and
tables to be accessed. Database records may be specified by name or number. If more
than one record or table is specified on the FROM clause, a join is performed.

Referencing Multiple Tables

A join retrieves data from two or more records or tables with one query. A join is implied
whenever the FROM clause references more than one source for the data.

There must be common values in some corresponding columns between the data sources
in the FROM clause. For example, to create a table of employee name and position level for
each position ever held by the employee:

SELECT NAME POSITION FROM EMPLOYEE OCCUP -
WHERE EMPLOYEE.ID = OCCUP.ID
This uses ID to form the relationship between the records in the WHERE clause. Use the
record name as prefix to differentiate between column names which are the same in
different records or tables. That is, EMPLOYEE.ID refers to the value of ID in the
Employee record, while OCCUP.ID refers to the value of ID in the Occup record.

In a case structured database with case mode enabled (the default), there is an automatic
relationship between records. A query automatically joins records for the same case. The
automatic relationship has the same effect as the WHERE clauses matching each record on
the case ID. For example, referencing data from multiple records on the COMPANY
database, has the following implicit WHERE clause:

SELECT ... FROM EMPLOYEE OCCUP REVIEW -
 WHERE EMPLOYEE.ID = OCCUP.ID -
 AND EMPLOYEE.ID = REVIEW.ID
There is no need to specify the WHERE clause to join on the case identifier.

SIR/XS SQL 20

PATHS

 A PATH links one record (or table) to another record (or table) and specifies the manner
in which they are to be joined. System defined paths are automatically created by SQL
between records in a database which have common keyfields. Common keyfields mean
the same variable names of the same type in the same sequence in different records. For
example, on the company database there is a system defined path between OCCUP and
REVIEW which is equivalent to:
... WHERE OCCUP.POSITION = REVIEW.POSITION
Each path has a name. Paths are explicitly invoked by naming a record (or table) and a
path name on the FROM clause. The path is invoked implicitly by naming both records (or
tables) in the FROM clause. If there are multiple paths between two record types, SQL uses
the earliest defined path. SQL never automatically creates more than one path between
any two records. The SHOW PATH command displays the path definitions in order.

Create paths with the CREATE PATH command. This names the path, the two records
(or tables) to be joined and the variable(s) used to join them. For example,

CREATE PATH MYPATH -
FROM COMPANY.OCCUP TO COMPANY.REVIEW -
VIA POSITION

Use the path by naming the path rather than the second record on the FROM clause. For
example,
SELECT FROM OCCUP MYPATH

Path Mode and Case Mode

Records are joined whenever multiple tables or records are referenced in the FROM clause.
The way in which records are joined is determined by the WHERE clause, by any PATHs
that are referenced in the FROM clause and by the current settings of CASE mode and PATH
mode.

If CASE mode is set, records are joined when the case identifier variable in one record is
equal to the case identifier in another. This is equivalent to specifying a WHERE clause
such as:

... WHERE RECONE.CASEID = RECTWO.CASEID
 If PATH mode is set, any paths between the records referenced in the FROM clause are
automatically used. The system defined paths imply joins based on the case identifier and
relationships implied in the keyfields.

For example, the default path joining the OCCUP and REVIEW records in the sample
database is equivalent to the WHERE clause:

SIR/XS SQL 21

... WHERE OCCUP.ID EQ REVIEW.ID AND OCCUP.POSITION EQ REVIEW.POSITION
The setting of CASE has no effect on joins if PATH mode is set. (However if you are using
a subquery, case mode must be off). The setting of CASE does have an effect if PATHs are
cleared (records are still joined within case).

If PATHS are explicitly referenced in the FROM clause, the setting of CASE and PATH have
no effect, the PATH is always applied as defined.

SIR/XS SQL 22

Joins

The normal type of join and the automatic join performed by case and path mode is an
Equi-Join because the comparison operator between the two columns in the two tables is
an "Equal" (EQ or =).

A join condition can specify other relationships between columns, such as "greater than"
(GT or >), "less than" (LT or <), etc. These are referred to as Non-Equi-Joins. For
example, suppose a table is created of minimum and maximum starting salaries by
division:

SELECT DIVISION MIN(STARTSAL) MAX(STARTSAL) -
FROM OCCUP -
ON DIVSAL -
GROUP BY DIVISION -
FORMAT COL 2 NAME MINSAL -
FORMAT COL 3 NAME MAXSAL
Then, select anyone whose current salary is greater than the maximum or less than the
minimum starting salaries.
SELECT ID NAME SALARY FROM EMPLOYEE REVIEW DIVSAL -
WHERE SALARY GT MAXSAL OR SALARY LT MINSAL
Note that this non-equi-join is a join and not just a test on a column value. This means
that a row is produced for every matching condition between the joined rows. Therefore,
a row appears once for each time that salary is greater than one of the division maxsal
columns or less than one of the division minsal columns.

Non-equi-joins on large tables can produce a tremendous number of rows and the WHERE
conditions should be carefully examined to limit the output to the required combinations.

SIR/XS SQL 23

Alias

 You can define an Alias name for a record or a table in the FROM clause. Use an alias to
qualify a variable name when it cannot be done by using the unique record or table name.
A record or table name is not unique if the same record or table is on two different
databases or tables you are joining, or if you join a record or table to itself.

The alias is defined in the record or table specification in the FROM clause and is used
wherever the table or record name would be used in other parts of the SELECT statement.

When an alias is defined, it follows the record name or the optional keyword AS and must
be followed by a comma (,) to separate it from any other record names.

For example, suppose a genealogical database where everybody is in a PERSON record,
and each person has an ID. In each person's record are the IDs of their father and mother.
Because this involves joining a record type to itself, use an alias:

SELECT CHILD.ID FATHER.ID MOTHER.ID -
FROM PERSON AS CHILD, PERSON AS FATHER, PERSON AS MOTHER -
WHERE CHILD.FATHERID EQ FATHER.ID AND -
 CHILD.MOTHERID EQ MOTHER.ID

SIR/XS SQL 24

Keywords

The following keywords can be specified on the SELECT command:
CASELIM n

Specifies that the process stops after reading n cases and prompts whether to
continue processing. If this is not specified, the default is used. The system default
is 1000, which can be changed with the SET command.

COMPILE_ONLY
Specifies that the query is compiled but not executed. This is used to check the
syntax of a query without performing the retrieval.

DBMS filename
Specifies that a VisualPQL version of the query is written. This option is intended
as a debugging tool. Some modifications to the resultant program may have to be
made before use.

OUTPUT filename
Sets the print filename for subsequent PRINT commands. This can also be set by
the SET command and by the DISPLAY command.

RECLIM n
Specifies that the process stops after retrieving n records or rows and prompts
whether to continue processing. If this is not specified, the default is used. The
system default is 1000, which can be changed with the SET command.
Abbreviation: RLIM

SAMPLE proportion [,seed]
Specifies that a random sample is produced. (0.0 < proportion < = 1.0) The
optional seed parameter specifies an odd integer to be used as the seed for the
random number generator. This permits the generation of different samples.

SELLIM n
Specifies that the process stops after n rows have been selected and prompts
whether to continue. If this is not specified, the default is used. The system default
is 1000, which can be changed with the SET command.
Abbreviation: SLIM

SIR/XS SQL 25

FORMAT

FORMAT COLUMN column_list column_format
Use FORMAT clause(s) on a SELECT command to specify the appearance of particular
columns. When a table is created, the default settings are used to format columns unless
specifically overridden with FORMAT clauses. Specify multiple format clauses on a single
select command by repeating the complete FORMAT clause.

The first part of a format clause specifies one or more columns to be formatted. Specify
the keyword COLUMN followed by the column_list. The next part of the FORMAT clause
specifies the Column Format for the particular columns which is typically a keyword
(e.g. WIDTH) and a setting.

You can specify multiple options on a single format clause where the options apply to the
specified column(s). For example:

SELECT ID SALARY*1.1 FROM EMPLOYEE -
FORMAT COLUMN 1 NAME EMPLOYEE_ID WIDTH 12 -
FORMAT COLUMN 2 NAME NEWSALARY

SIR/XS SQL 26

Column References

Columns can be referenced by column number or by column name. Column number
refers to the sequential (left to right) number of the column in the table. Column numbers
remain the same regardless of any formatting commands. Each column has a name that
can be altered by formatting commands. If the column name is changed then the new
column name is used. A column label may be displayed, but the column is always
referenced by its name or number.

Specify a list or range of consecutive columns by specifying the start and end columns
separated by a colon (:).

Examples of column specifications might be as follows:

FORMAT COLUMN SALARY option
FORMAT COLUMN 1 option
FORMAT COLUMN 3:7 option
FORMAT COLUMN 1 4 8 option
FORMAT COLUMN SALARY option
FORMAT COLUMN BIRTHDAY option

SIR/XS SQL 27

Column Formats

 Columns have a number of display characteristics which can be specified. The
specification can be supplied when the table is created by a SELECT or a CREATE
TABLE or can be amended by specific commands.

The column formats are specified as a keyword and a setting as follows:

 [DATE 'date_map']
 [DPLACES n]
 [EXPONENT n]
 [LABEL ON | OFF]
 [MISSCHAR 'c']
 [NAME column_name]
 [NULL 'string']
 [SEPARATOR 'string' | n BLANKS]
 [TIME'time_map']
 [VALLAB ON | OFF]
 [WIDTH n]
 [ZEROS ON | OFF | 'string']

DATE 'date map'

Sets the date map.
DPLACES n

Sets the number of decimal places to display. Abbreviation: DPL
EXPONENT n

Specifies that exponential notation is used for display or printing. The number
specified is the number of decimal places and zero (0) is used to indicate that the
field is not displayed in exponential format. For example:
1) To display the number 8,267 as 8.267E+003 specify EXPONENT 3.
2) To display the same number as 8.267000E+003 specify EXPONENT 6.

LABEL
ON specifies that the variable label is used as the column name. OFF specifies the
variable name is the column name and is the default. Abbreviation: LAB

MISSCHAR
Sets the single character to display and fill the column when it contains missing
values. Abbreviation: MISS

NAME
Sets the column name. Names must obey the SQL name rules or be specified as a
string constant in single quotes. For example:
FORMAT col 3 NAME ANNUAL_SALARY

NULL
Sets the string to display if the column contains missing values. If the specified
string is longer than can be displayed, it is truncated. NULL takes precedence over
any MISSCHAR specified.

SEPARATOR

SIR/XS SQL 28

Sets the separator to the specified string. The separator precedes this column,
separating it from the previous column and is typically a number of blanks. The
separator may be set to a particular string or to a specified number of BLANKS.
Abbreviations: SEP and BL, BLANK. For example:
FORMAT COLUMN salary SEPARATOR 4 BLANKS

TIME
Sets the time map. For example:
FORMAT COLUMN startime TIME 'HH:MM'

VALLAB
Specify VALLAB ON to display value labels instead of data values. Specify VALLAB
OFF to display values. Use SET and CLEAR to change the VALLAB setting for all
variables in the table. For example:
FORMAT COLUMN marstat VALLAB ON

WIDTH
Sets the column width to the specified number of characters. Column headings
that do not fit are wrapped to as many lines as needed. Abbreviation: WID. For
example:
FORMAT COLUMN salary WIDTH 12

ZEROS
Enables or disables the display of leading zeros for numeric variables. ZEROS OFF
is the default. You can also specify a string to be displayed if the value is zero.
For example:
FORMAT COLUMN salary ZEROS ON

SIR/XS SQL 29

GROUP BY

 GROUP BY specifies that all sets of values selected are grouped together according to
their unique values in the value list. This produces a summary table with one entry per
group of records. For example, to calculate the average salary for male and female
employees:
SELECT VALLAB(GENDER) AVG(SALARY) FROM EMPLOYEE -
GROUP BY GENDER
This produces a table with two entries:
VALLAB(GENDER) AVG(SALARY)
Male 2745.83
Female 2831.25
The aggregation can be done at additional levels by adding further variables to the GROUP
BY clause:
SELECT VALLAB(GENDER) VALLAB(EDUC) AVG(SALARY) -
FROM EMPLOYEE GROUP BY GENDER EDUC

VALLAB(GENDER) VALLAB(EDUC) AVG(SALARY)
Male Elementary 2533.33
Male High School 2500.00
Male Some University 2550.00
Male B.Sc. or B.A. 3050.00
Male M.S. 2625.00
Male Ph.D. 3350.00
Female High School 2600.00
Female Some University 2700.00
Female B.Sc. or B.A. 3533.33
Female M.S. 1650.00
Female Ph.D. 2400.00
Where there are no records for a level, no row is created in the retrieval. For example,
there are no female employees with only elementary education.

Selecting Groups: HAVING Clause

Use the HAVING clause with the GROUP BY clause to select groups according to some
condition. For example, to select groups with an average salary greater than 2500.
SELECT VALLAB(EDUC) VALLAB(GENDER) COUNT(SALARY) AVG(SALARY) -
FROM EMPLOYEE GROUP BY EDUC GENDER HAVING AVG(SALARY) > 2500

Case Aggregation

In a case structured database, by default SQL computes aggregate functions within cases.
To compute aggregates across cases, turn off case mode with the CLEAR CASE command.
This turns off case mode for the rest of the session, or until it is re-enabled. Use the SET
CASE command to re-enable case mode. For example; with case mode on, to select the
average starting salary for all the positions an employee has had:
SELECT ID AVG(STARTSAL) FROM OCCUP

SIR/XS SQL 30

The result is one row for each employee with any OCCUP records. This gives the average
of the starting salaries for each position the employee has had. This same query with
cases cleared gives a very different result:
CLEAR CASE
SELECT AVG(STARTSAL) FROM OCCUP
The result is one row, giving the average starting salary for all the positions held by all
the employees in the company.

Case mode is equivalent to a GROUP BY clause on the case id for the aggregation
functions.

Aggregations with Missing or Undefined Values

Missing or undefined values are ignored in the computation of aggregation functions. For
example, if the value of SALARY is missing for an employee, the record is ignored in the
computation of the average. The average is a true average of actual values.

COUNT

COUNT counts the number of values selected in a query. It is often used in conjunction
with other aggregation functions to count how many records were used in computing the
aggregated value.

For example, the following query computes the mean salary and the number of all male
employees.

SELECT AVG(SALARY) COUNT(SALARY) FROM EMPLOYEE -
WHERE GENDER = 1
This counts only those records which have a non-missing salary. COUNT can also have the
argument * which specifies a count of all selected records regardless of whether the
values are valid, missing, or undefined.

SIR/XS SQL 31

ON

 ON specifies the name of the new table to contain the results of the query.

If an output table is not specified with the ON clause, a table called PREVIOUS_SELECT is
used.

All tables are on tabfiles. If a tabfile is not specified, the default is used. If a default
tabfile has not been explicitly SET, a tabfile called $SYSTEM is used.

If all defaults are used, the results of a SELECT are stored on the table
$SYSTEM.PREVIOUS_SELECT. This table is overwritten as necessary without prompting
for confirmation. If you specify a table as output which already exists, you are prompted
for confirmation that you want it overwritten before proceeding with the SELECT.

You cannot select ON to a table you are selecting FROM.

SIR/XS SQL 32

ORDER BY

 Specify ORDER BY to sort the selected rows. The first variable in the ORDER BY list is
the major sort key. Specify keys in sequence from major to minor. By default, variables
sort in ascending sequence. Follow the variable with the DESC keyword to sort in
descending sequence. This only applies to the variable immediately preceding DESC.
Missing values sort to the beginning of a set of values regardless as to whether ascending
or descending is specified. (The MISS function can be used to retrieve original values for
missing values.)

The sort keys may contain variables and expressions. The sort key variables do not have
to be in the variable list of the SELECT.

DISPLAY does not resequence rows and ORDER BY must be specified on the SELECT to
create the table in a particular sequence if this differs from the source data. For example:

SELECT ID NAME SALARY FROM EMPLOYEE -
ORDER BY SALARY NAME
Synonyms: ORDER, SORT, SORT BY

SIR/XS SQL 33

OUTER

 When joining records on a case structured database, OUTER specifies that, if no
matching record exist, the SELECT operates as if a record containing undefined values for
all variables did exist.

Normally, a join operation creates a row for the resultant table if there exists a record for
every record name in the FROM clause. The OUTER option allows the retrieval of some data
even when some records may not exist. This operation is called an outer join. The
keyword OUTER is specified after all records in the FROM clause and specifies all record
names that the OUTER applies to.

SELECT NAME REVDATE FROM EMPLOYEE REVIEW OUTER REVIEW

SIR/XS SQL 34

UNION

 UNION adds the result of a second SELECT clause to the table created by the main SELECT
command. With the UNION clause, each SELECT must result in the same number of output
columns and each column must correspond in type. The first SELECT command
determines the names and the types of the output columns. Numeric variables must
correspond to numeric variables, string variables with string variables.

The main SELECT command defines the table that is produced when using the UNION
statement. For example, assume two tables, one for current employees and one for ex-
employees. A single output table for all employees could be produced with the UNION
clause:

SELECT NAME SALARY FROM EMPLOYEE ON ALLEMPLOYEES -
 UNION SELECT NAME SALARY FROM EXEMPLOYEE
This creates a new table with two columns and a row per employee.

As many SELECT clauses as required may be UNIONed together as long as the rules on
number and type of variables are followed.

If sequence of the output table is important, use the ORDER BY clause to specify it. Any
such ORDER BY should follow the last clause of the last SELECT in the command.

SIR/XS SQL 35

WHERE

WHERE specifies the logical conditions used to select records or rows. Only records or
rows meeting the conditions are selected. The WHERE clause can reference any variables,
regardless as to whether the variables are in the SELECT variable list or not.

The WHERE clause can reference expressions . Expressions are a combination of
variables and operators which produce a new value.

The WHERE clause may contain compound conditions connected by the logical operators
AND, OR, XOR and NOT.
AND means both expressions must be true;
OR means either expression must be true;
XOR means one expression must be true but not both;
NOT means the expression must not be true.

The WHERE clause is evaluated in the following order of precedence (parentheses () can
be used to denote an explicit order of evaluation):

1. Expressions
2. Relational Operators
3. NOT
4. AND
5. OR, XOR

Relational operators

The WHERE clause may include the following operators:
EQ or = or IS

Equal to
NE or ><

Not equal to
LT or <

Less than
LE or <=

Less than or equal to
GT or >

Greater than
GE or >=

Greater than or equal to
BETWEEN expr AND expr

Between or equal to the values of two expressions
IN (expr,......)

Equal to one of the values in a list
LIKE

SIR/XS SQL 36

Matches a specified character pattern
EQ NULL

Is missing
NE NULL

Is not missing

The logical operator NOT can be used to test for the opposite of any condition.

EQ, NE, LT, LE, GT, GE & BETWEEN

 These operators test the relationship between two values. If the specified condition is
true, the data is selected. NE is provided as a convenient shorthand; it is identical to NOT
EQ.
BETWEEN means equal to the end values or any value in between.

IN

Selects records or rows when the value that matches one or more values in a list. For
example, to select data for employees 1, 5, and 7.
SELECT ... FROM EMPLOYEE WHERE ID IN (1,5,7)
To select all records except those in the list use NOT:
SELECT WHERE NOT (ID IN (1, 5, 7))

LIKE Pattern Matching

A pattern is a partial string where symbols are used to indicate how that position is to be
treated. The pattern consists of symbols plus the string you want to match.

SIR/XS SQL 37

Subqueries

Subqueries are used to select rows from a table based on data in other rows. The rows
returned by one SELECT statement are used in the WHERE clause of another SELECT
statement. The subquery executes first and returns one or more values which are then
used by the main SELECT as if it were given a set of constant values. For example, to
select the name, gender and education of all employees who have the same education as
Mary Black.
SELECT NAME GENDER EDUC FROM EMPLOYEE -
WHERE EDUC = -
(SELECT EDUC FROM EMPLOYEE WHERE NAME = 'Mary Black')
The subquery (the one enclosed in parentheses) returns the value of Mary Black's
education. This value is then used as the object of the WHERE clause for the main SELECT.
The information selected by the main SELECT consists of the name and education for all
employees with the same education as Mary. This set of employees naturally includes
Mary.

The data comes from multiple cases and case structure must be off (CLEAR CASE) for this
query to operate as required. With a case structured database and subqueries which
retrieve data from one case which is used to SELECT other cases, CLEAR CASE mode.

Subqueries can be used wherever a WHERE can be specified.

The previous example shows the most basic use of a subquery - one that returns a single
value. If a subquery can return more than one value, specify how the returned values are
treated in the WHERE clause with the IN, ANY and ALL functions. ANY tests against any
returned value; ALL tests against every returned value. These can be used with the
relational operators (EQ, NE, LT, GT, LE, GE). IN tests a value to be equal to a value
in the list of returned values and is equivalent to EQ ANY.

Where a subquery can return more than one value, this is equivalent to a list. For
example, to select people whose salary is greater than anyone whose current position is in
division 1:

SELECT ID NAME SALARY FROM EMPLOYEE -
WHERE SALARY GT ALL -
(SELECT SALARY FROM EMPLOYEE OCCUP -
WHERE CURRPOS EQ POSITION AND DIVISION EQ 1)
The subquery finds the division in the OCCUP record which matches the current position
and tests to be in division 1; the salary of all employees where this is true is retrieved and
these are now equivalent to a list of salaries. The salary for each employee is tested
against this list to be greater than all entries in the list. A subquery must only return one
column to be used to construct the list.

SIR/XS SQL 38

A WHERE clause can contain a combination of conditions and subqueries. Any subquery
either returns a single value or a list and can be treated as equivalent to a value or list
specified by expressions which are not subqueries. The logical operators (AND, OR,
XOR, NOT) are used to connect separate clauses in the WHERE expression.

The logical function EXISTS tests that the subquery returns at least one row. EXISTS
returns "True" if at least one row exists, "False" if not. The test can be reversed with the
NOT logical operator. For example:

SELECT ID NAME SALARY FROM 1 WHERE -
EXISTS (SELECT * FROM REVIEW WHERE RATING = 5)
When using the EXISTS function, the column returned by the subquery is irrelevant and
must be specified as an asterisk (*).

Note: This query could have been performed more easily and more efficiently as a simple
join although this would return multiple rows for people who had received multiple
ratings of 5:

SELECT ID NAME SALARY FROM EMPLOYEE REVIEW -
 WHERE RATING EQ 5

SIR/XS SQL 39

Display

 You can view the data in the current table created by SELECT. If you choose to display
the data or AUTODISPLAY is ON, the table is listed.

The whole table is listed in your scrolled buffer. This has a limited size (64k bytes) but, if
session logging is turned on, the output from the session is also written to the session log
(SirSQL.slg).

Lines are as wide as necessary to hold all columns and no paging is done.

If you choose to alter the appearance of your table with the column formatting
commands, re-issue the display command to see the altered display. The DISPLAY
command displays a table and sets the table as the most recently displayed table. This
table is then altered by any display commands. It is not necessary to do a SELECT
command from a table before displaying it. If a specific table is not specified on the
DISPLAY command, the last table used to store the result of a SELECT is displayed.

(N.B. Re-issuing a DISPLAY command re-displays the last table created by a SELECT
not the last table named on a previous DISPLAY command. If you have not just done a
SELECT, and do not specify a table name, you may display the result of a table created
by the system as part of running the menus.)

There are commands for formatting the currently displayed table. Any format changes are
held as part of the table and are permanent changes. Formatting options include:

• including or excluding columns
• changing the display format of columns
• specifying headings or footings
• specifying totals and sub-totals

There are two commands to create output files:

The PRINT command writes a file for subsequent printing. (Use an appropriate
operating system command to output the file on a printer.)

The WRITE command outputs a file without headings, which may be easier if it
is to be used as input to another program.

SIR/XS SQL 40

EXCLUDE and INCLUDE
EXCLUDE column_list
Specifies columns to exclude from the display. ALL BUT specifies columns to include. As
many column names or numbers can be specified in the column_list as necessary.
Excluded columns can be brought back with the INCLUDE command. Abbreviation: EXCL

INCLUDE column_list
 Includes columns that were previously excluded with the EXCLUDE command. If no
columns are specified, all excluded columns are included. ONLY specifies that the named
columns are included in the display and that all other columns are excluded.
Abbreviation: INCL

SIR/XS SQL 41

Formatting Commands

 The formatting options specify the appearance of the displayed table. (These are
identical to column options on FORMAT clauses on a SELECT command.

You can specify the command as FORMAT COLUMN or just COLUMN followed by the column
references. For example, suppose a table had been created with two columns SALARY and
NAME. The following display commands alter the width of these:

COLUMN SALARY WIDTH 8
COLUMN NAME WIDTH 30

The following SELECT achieves the same results as the table is created:

SELECT SALARY NAME FROM EMPLOYEE -
 FORMAT COLUMN SALARY WIDTH 8 -
 FORMAT COLUMN NAME WIDTH 30

SIR/XS SQL 42

Headings and Footings

The following commands set the titles and headings of the overall report.

HEADING [RIGHT | CENTER | LEFT] heading_specifications
FOOTING [RIGHT | CENTER | LEFT] footing_specifications

Specifies the heading or footing of the report. By default, the first 50 characters of the
SELECT statement are used as the left-justified heading.

The text can be RIGHT justified, placed in the CENTER of the report or LEFT justified. LEFT
is the default.

 The heading or footing can have multiple character strings plus three predefined names
and positioning characters. The predefined names are DATE, TIME and PAGE. The
positioning characters are "X", "T" and "/":

DATE
Specifies the current date in the heading or footing. The date format is determined
by the setting of the system parameter DATE.

TIME
Specifies the current time in the heading or footing. The time format is
determined by the setting of the system parameter TIME.

PAGE
Specifies the page number in the heading or footing. The page number is 1.

nX
Skips n columns before the next print position.

nT
Tabs to a particular column for the next print position.

/
Skips to a new line.

Example: Heading specification

HEADING CENTER 'Report 1' 25T 'Produced on' 2X DATE 2X PAGE

There are two other commands which can also be used to alter the headings. These are:

BTITLE 'footing string' | ERASE

SIR/XS SQL 43

Sets the report footing to the specified string. The ERASE option clears the footing line.
There is no default footing. Abbreviation: BTI

TTITLE 'heading string' | ERASE

Sets the report heading to the specified string. The ERASE option resets the heading back
to the default . Abbreviation: TT

SIR/XS SQL 44

Grouping and Totalling

Grouping and totalling is controlled by a number of commands:

• BREAK defines the columns to be used for breakpoints.
• GROUP can be used as an alternative syntax to BREAK offering the same

functionality.
• OFF and ON turn all totalling off, and back on again, without altering the definition

of any of the totals.
• SUBTOTAL and TOTAL define the type of subtotalling and totalling to be performed.

BREAK

BREAK column,[([break_heading,] [C,] [G,] [L,] [P,])],....

Specify BREAK (abbreviation BRE) to control subtotalling. When a column is designated
as a break column, a break occurs for each new value in the column. The table should
have been produced sorted on the break columns in order to get meaningful results.

One line of subtotals is produced for a given break level with one value for any given
numeric column. By default, a total (Sum) is produced for each numeric column at each
break level. Specify the type of total with the SUBTOTAL and TOTAL commands. Grand
totals are also produced.

BREAK clears any previous break settings, subtotalling, and totalling. It sets the specified
columns as breaks in the order specified, major to minor.

Optionally specify a break heading and the codes C, G, L and P. Enclose the options for
a column or a column list in parentheses and separate multiple options with a comma. An
option applies to the preceding columns. Specify a minus sign "-" in front of an option to
turn off that option if it is the default.

break heading
Specifies a character string to display at the break point. The default is either the
type of subtotal being produced, (Count, Sum, Max, etc.) or the column name.
Column name is used if different statistics for different numeric columns at the
same break level are specified.

C
Specifies that the Column headings are re-printed when this column breaks. This
is the default.

G

SIR/XS SQL 45

Specifies that the column is Grouped. When a column is grouped, the first line
after a break contains the new value and all subsequent lines are blank until the
next break. This is the default.

L
Specifies that the subtotals are displayed in the Left margin.

P
Specifies that a Page eject is done when this column breaks.

BREAK educ ('Salary total',-C,L,P)

GROUP

GROUP [EXCEPT] [ERASE] (column-list)
GROUP

Performs the same functions as BREAK with different syntax. The combination of
BREAK and SUBTOTAL and of GROUP and SUBTOTAL can be used to provide identical
functionality. GROUP is provided for compatibility with the SQL standard.

EXCEPT
Specifies that the break level grouping is removed on the specified columns.

ERASE
Specifies that the break level grouping is removed from all columns.

OFF | ON

OFF | ON
OFF

Suspends all grouping, subtotalling and totalling.
ON

Re-enables all grouping, subtotalling and totalling.

SIR/XS SQL 46

SUBTOTAL
SUBTOTAL [COUNT | MAX | AVG | MIN | STD | SUM]
 [break column, ...] [(subtotal column, ...)]
 [EXCEPT (column, ...)]
 [ERASE]

SUBTOTAL (abbreviation STOT) sets subtotals for all numeric columns or for specified
columns for a specified break column.

The settings for SUBTOTAL apply to the calculation and display of grand totals unless
altered with the TOTAL command.

See the SET SPACES and SET SPACED system parameters for control of spacing around
SUBTOTAL lines.

The type of subtotalling can be specified. There can only be one type of subtotalling on a
given column for a break level. The options are:

COUNT
A count of the non-missing values in the column. This can be used on non-
numeric columns as well as numeric.

MAX
The maximum value found in the column. This can be used on non-numeric
columns as well as numeric.

AVG
The average value for non-missing occurrences in the column. This applies to
numeric columns only.

MIN
The minimum value found in the column. This can be used on non-numeric
columns as well as numeric.

STD
The standard deviation of the column. This applies to numeric columns only.

SUM
The total of values in the column. This applies to numeric columns only. This is
the default subtotal.

SIR/XS SQL 47

Break and Subtotal Columns

Two types of columns can be specified on a SUBTOTAL command, and two formats are
used to differentiate these. First, the break column(s) for which the subtotals are
produced. Break columns are simply listed. Second, the column(s) that are to be
subtotalled. Enclose the columns to be subtotalled in parentheses.

EXCEPT
By default, subtotalling is on for all numeric columns. EXCEPT sets subtotalling
off for specified columns. EXCEPT is cumulative. Set subtotalling back on for a
column by specifying it as a subtotal column. EXCEPT applies to all break columns
and cannot be specified for individual break columns.
SUBTOTAL EXCEPT (ID)

ERASE
Sets subtotalling off for all columns.

Examples:

To display averages for all numeric columns when the break column EDUC changes:

SUBTOTAL AVG EDUC

To display the maximum of salary on any break:

SUBTOTAL MAX (SALARY)

To display the minimum of SALARY when the break column EDUC changes:

SUBTOTAL MIN EDUC (SALARY)

SIR/XS SQL 48

TOTAL
TOTAL [COUNT | MAX | AVG | MIN | STD | SUM]
 [total column, ...]
 [EXCEPT (column, ...)]
 [ERASE]

TOTAL (abbreviation TOT) sets totals for all columns or for specified columns. Name the
column(s) to total. Either enclose the column specifications in parentheses or simply list
the columns. Use the SET SPACET system parameters to control spacing of total lines.

COUNT
A count of the non-missing values in the column. This can be used on non-
numeric columns as well as numeric.

MAX
The maximum value found in the column. This can be used on non-numeric
columns as well as numeric.

AVG
The average value for non-missing occurrences in the column. This applies to
numeric columns only.

MIN
The minimum value found in the column. This can be used on non-numeric
columns as well as numeric.

STD
The standard deviation of the column. This applies to numeric columns only.

SUM
The total of values in the column. This applies to numeric columns only. There
can be one type of totalling on a given column. SUM is the default totalling.

EXCEPT
Totalling is on for all numeric columns. EXCEPT sets totalling off for specified
columns and resets any previous specification.

ERASE
Sets totalling off for all columns.

Examples:

To produce the average salary from all records in the table:

TOTAL AVG SALARY

To produce totals for all numeric columns except CURRPOS:

TOTAL EXCEPT (CURRPOS)

SIR/XS SQL 49

PRINT and WRITE

PRINT
 [OUTPUT filename]
 [LOWER | UPPER]

WRITE
 [OUTPUT filename]
 [LOWER | UPPER]

These commands write a copy of the current displayed table to a file. PRINT writes a
formatted file with column headings, underlines, blank lines, etc. This is more suitable
for printing.

WRITE writes an unformatted file with a space between each column and displays a list of
column positions used for each column. This may be more suitable as input to another
program.

Use the Include/Exclude commands to vary the columns in the output.

OUTPUT
Abbreviation: OUT. Specifies the output filename. If OUTPUT is not specified, the
current setting for the system parameter OUTPUT is used. An output file must be
specified if a default has not been set.
PRINT OUTPUT 'TEST.LST'

LOWER | UPPER
Abbreviations: LC, LOWERCASE. LOWER specifies that the output uses upper and
lowercase characters. This is the default. UPPER specifies that the output maps all
characters to uppercase.

SIR/XS SQL 50

Setting Parameters

SirSQL contains a set of parameters, each identified by a name which affect the operation
of SQL in a variety of ways. At the start of an SQL session, each parameter is set to a
default value. These values can be updated and saved in a workspace file which can be
re-used in subsequent sessions. Three commands control and display parameters:

SET
Sets the parameter either to a specified value or simply to be ON.

CLEAR
Resets the parameter either to the default or to be OFF.

SHOW
Displays the current setting of the parameter.

Specify the name of the parameter and, optionally, any values with these commands.
Certain parameters can also be set by options on the SQL execution statement.

The values of some settings are used to set column formats when a table is created.
Altering these settings has no effect on existing tables. You can update the format of
columns in existing tables with the column command.

SIR/XS SQL 51

Parameter List
AUTODISP

Controls whether display mode is automatically entered after a AUTOSAVE
Only used from the menu system. Controls whether a SAVE command is
automatically executed when exiting the system.
Abbreviation: AUTOD
Default: CLEAR

CASE

Enables use of the database case structure during retrieval processing. When Case
is SET, there is an implicit CIR record type added to the records in the FROM list of
a SELECT. Joins and aggregations are done within each case rather than over all
the records in the database. There is an implied Join by caseid. When
aggregations are performed, there is an implied GROUP BY caseid clause on the
SELECT specification. The setting of case has no effect on caseless databases.
CLEAR disables use of the database case structure during retrieval processing. In
join operations, records are joined across all records in the database. System and
user created paths may join records within case even with cases cleared.
Aggregations occur within records or tables.
Default: SET

CASELIM n

Specifies a limit on processing cases in a SELECT. When the limit is reached, the
process stops and prompts to continue with three options; continue and receive a
further warning after another CASELIM number of rows are created; continue with
a different CASELIM; stop the SELECT.
CLEAR disables the check.
Abbreviation: CLIM
Default: 1000

CMPTRIM

Specifies that trailing blanks are trimmed prior to string comparisons.
Default: SET

CMPUPPER

Specifies letters are translated to uppercase prior to string comparisons.
Default: SET

SIR/XS SQL 52

COLHEAD

Sets the printing of column headings at break points in the output of the DISPLAY
command.
Default: SET

CONTINUE '-'

Sets the character to indicate a command is continued on the next line to the
specified character. There must always be a continuation character, CONTINUE
cannot be CLEARed though it may be set to ' ' (a blank).
Abbreviation: CONT
Default: A hyphen ' - '.

DATABASE

Sets the default database if more than one is connected.
Default: The last database connected.

DATE 'format'

Sets the default date format. Any date column without a specific format, uses this
format as a default.
CLEAR clears the default date map. If the column comes from a database, the
format described in the schema is used as a default.
Default: 'Mmm DD, YYYY'.

DEFINE_SECURITY

Specifies that tables created with SELECT have security definitions. When
connecting to a tabfile with security definitions, specify group(.user) names to
connect to the tabfile. Anyone with DBA permission at the tabfile level, has full
permissions for all tables. With DEFINE_SECURITY set, you have full permissions
for the new table created with SELECT but any other groups(.users) (except DBAs)
have no permissions on that table. You (or a DBA) can grant permissions to other
users. (see Permissions)
CLEAR specifies that created tables are Public access.
Default: SET

DETAIL

Controls whether detail lines are displayed when subtotalling is requested with the
BREAK or GROUP commands. CLEAR suppresses the printing of the detail lines.
Subtotal and total lines are printed.
Abbreviation: DET, DTL
Default: SET

SIR/XS SQL 53

DOUBLE

Displays a blank line between rows. CLEAR specifies that rows are displayed
single-spaced, that is with no blank lines between them.
Abbreviation: DBL
Default: CLEAR

DPLACES n

Sets the number of decimal places used in printing decimal numbers to n. CLEAR
resets to the default number of decimal places.
Abbreviation: DPL
Default: 2 decimal places.

ECHO

Specifies that any input from an alternate input file or from a call procedure is
echoed to the screen.
Default: CLEAR

EXEC

Specifies that SELECT commands are translated and executed after the last line of
the statement is entered. CLEAR prompts to translate and then execute the query.
Default: SET

EXPONENT n

Specifies that the non-integer numeric values are displayed in scientific notation.
n is the number of decimals to display and zero (0) is used to indicate that values
are displayed in normal decimal notation.
CLEAR specifies that decimal notation is used.
Default: CLEAR

FAMILY family_name[/password]

Specifies the default family and password for procedure file references. CLEAR
clears the default family name and password.
Abbreviation: FAM
Default: Last family referenced

GROUPING

Specifies that if break levels are set, the break column value is printed the first
time that the value changes. For the subsequent lines the break column value is
suppressed. CLEAR specifies that if break levels are displayed, the break column
values are printed on every line.

SIR/XS SQL 54

Abbreviation: GRP
Default: SET

GRPSIZE n

Specifies the size of the internal buffer used by the GROUP BY option on SELECT.
If the number of different values grouped by, is less than or equal to this value, all
processing is done in memory. If the number of entries exceeds this value, a disk
sort is performed. CLEAR specifies that the GROUP BY in-core sort size is 1.
Default: 256.

INPUT filename [NOABORT]

Specifies that input commands are read from the specified file instead of
interactively. This continues until an END command is encountered or end-of-file
is detected. This is normally used for batch runs and is set as a parameter on the
execution statement. Use this command interactively to run stored command
sequences.

If an error occurs on an input file, the processing of that file stops at that point.
NOABORT specifies that the command in error is written to the LOG file, and
processing continues.

This can be used to import an SQL export file.
Default: Commands are read interactively.

LABEL

Specifies that column headings and break titles are labels instead of names. CLEAR
specifies that variable names are used for column headings and break titles.
Abbreviation: LAB
Default: CLEAR

LOWER

Specifies that the report produced by the PRINT command has mixed uppercase
and lowercase characters. This is identical to CLEAR UPPER . CLEAR LOWER
specifies that the report produced by the PRINT command is in uppercase only and
lowercase characters are translated to uppercase. This is identical to SET UPPER.
Abbreviation: LC
Default: SET

MASTER 'master_ip[:port]'

Sets the use of Master. If a name is not specified, sets the Master to be the
previously used Master.

SIR/XS SQL 55

Equivalent execution statement parameter: MST=name
Default: Last master referenced

MEMBER member_name [/password]

Specifies the default member name and password. CLEAR specifies that there is no
default member.
Abbreviation: MEM
Default: Last member referenced

MISSCHAR 'c'

Specifies the character used to display a column when it contains missing values.
Specify one character which fills the column. See also SET NULL. CLEAR sets the
character to blank. This is equivalent to specifying SET MISSCHAR ' '.
Abbreviation: MISS
Default: Asterisk ' * '

NULL 'string'

Specifies a string displayed when a field contains missing values. NULL takes
precedence over MISSCHAR. CLEAR clears the parameter; fields with missing
values are filled with the MISSCHAR character.
Default: CLEAR

OUTPUT filename

Specifies the default print file. CLEAR specifies that there is no default output file
and must be named on the OUTPUT clause on PRINT or WRITE commands.
Abbreviation: OUT
Default: CLEAR.

PATH

Paths are automatically used by SELECT. CLEAR specifies that paths are not
automatically used by SELECT and you must name a path explicitly in a SELECT to
use it.
SHOW PATH [path_name]
As well as showing the current path parameter setting, SHOW PATH shows the
definitions of all paths or of the pathname specified.
Default: SET

RECLIM n

Specifies a limit on the number of records read by a SELECT. When the limit is
reached, the process stops and prompts whether to continue. There are three
options: continuing and receiving a further warning after another RECLIM number

SIR/XS SQL 56

of records is processed, continuing with a different RECLIM, and stopping the
SELECT at that point. CLEAR disables the record limit option.
Abbreviation: RLIM
Default: 1000

SELLIM n

Specifies a limit on the number of new rows selected by a SELECT. When this
number of new rows is reached, the process stops and prompts whether to
continue with three options; continue and receive a further warning after another
SELLIM number of rows are created; continue with a different SELLIM; stop the
SELECT. CLEAR disables the select limit on new rows.
Abbreviation: SLIM
Default: 1000

SELSIZE n

Specifies the size of the internal buffer used for holding of the results of a sub-
query on SELECT. If the number of different values selected in the sub-query, is
less than or equal to this value, all processing is done in memory. If the number of
entries exceeds this value, disk I/O is performed. This parameter controls the
number of entries that are kept in memory. CLEAR specifies that the in-core size is
1.
Default: 256.

SEPARATE 'string'

Specifies the string used to separate columns on the display. CLEAR specifies that
columns are not separated.
Abbreviation: SEP
Default: Two blanks.

SINGLE

Detail lines are single spaced on a display. There are no blank lines between
consecutive detail lines. This parameter is changed by SET DOUBLE or SET
TRIPLE. To see the value of all line spacing parameters, use SHOW SPACING.
Abbreviation: SGL
Default: SET.

SPACEC n m

Specifies that there are n blank lines between the page heading and the column
headings and m blank lines between the column headings and the underline
beneath the column headings on displays. CLEAR specifies that there are no blank
lines.
Default: n = 1 , m = 0

SIR/XS SQL 57

SPACED n m

Specifies that there are n blank lines between the column heading underlining and
the detail lines and m blank lines between the detail lines and the underline prior
to the subtotals on displays. CLEAR specifies that there are no blank lines.
Default: CLEAR

SPACES n m

Specifies that there are n blank lines between the underline under the detail lines
and the subtotal line and m blank lines between the subtotal lines and the next
column headings on displays. CLEAR specifies that there are no blank lines.
Default: n = 0 ,m = 1

SPACET n m

Specifies that there are n blank lines between the subtotal lines and the grand total
underline and m blank lines between the grand total underline and the grand total
line on displays. CLEAR specifies that there are no blank lines.
Default: n = 0 , m = 1

SRTSIZE n

Specifies the number of entries in to sort. Sorting is done with the ORDER BY
clause on SELECT for detail rows. CLEAR sets the sort size to the default of 1000.

STATS

Specifies that statistics are displayed automatically at the end of execution of a
SELECT. These same statistics are displayed whenever a SELECT reaches a
CASELIM, RECLIM or SELLIM and prompts for a decision to continue. CLEAR
suppresses the display of statistics after a SELECT.
Default: CLEAR

SUBTOTAL

Specifies that subtotals are displayed when a BREAK or GROUP command is given
for a report. CLEAR specifies that subtotals are not automatically produced for
breaks or groups for a report.
Abbreviation: STOT
Default: SET

TABFILE name

Sets the default tabfile. CONNECTing to a tabfile sets that tabfile to the default.
Abbreviation: TF
Default: $SYSTEM

SIR/XS SQL 58

TABSIZE n

A synonym for SELSIZE. The use of a sub-query on SELECT requires the holding
of the results of the sub-query. This parameter controls the size of the internal
buffer. If the number of different values selected in the sub-query, is less than or
equal to this value, all processing is done in memory. If the number of entries
exceeds this value, a disk I/O is performed. This parameter controls the number of
entries that are kept in memory. CLEAR specifies that the in-core size is 1.
Default: 256.

TIME 'format'

Sets the default time format. CLEAR specifies that system default time format is
used.
Default: 'HH:MM:SS'

TOTALS 'string'

Specifies that totals are produced for displays with a break or group option. The
'string' is a label displayed on the total line in the left margin. If not specified,
the default label is TOTAL. CLEAR disables the total line display.
Abbreviations: TOT, TOTAL
Default: CLEAR

TRANSFER_VALLAB

Specifies whether value labels are transferred to the new table created by select
wherever they exist. CLEAR specifies that value labels are not transferred to the
new table.
Default: SET

TRIPLE

Specifies that the detail lines are displayed triple spaced, with two blank lines
between each detail line. This parameter is altered with SET SINGLE and SET
DOUBLE. To see the value of this parameter, use SHOW SPACING.
Abbreviation: TPL
Default: Detail lines are single spaced.

UNDERCOL

Specifies that the column headings are underlined. CLEAR specifies no
underlining.
Abbreviations: UCOL, UNDCOL
Default: SET

UNDHEAD

SIR/XS SQL 59

Specifies that an underline is printed before a subtotal. CLEAR specifies no
underlining.
Abbreviation: UHEAD
Default: SET

UPPER

Specifies that a report produced by PRINT is in uppercase. (Identical to CLEAR
LOWER.)
CLEAR UPPER specifies that reports are in mixed lower and upper case. (Identical
to SET LOWER.)
Abbreviation: UC
Default: CLEAR

VALLAB

Specifies that value labels are used in place of values, for columns with value
labels defined. CLEAR specifies that values are used regardless of whether value
labels exist.
Default: CLEAR

VARCHAR n

Specifies the display size for character columns. This does not effect the field size
created on tables by SELECT. Field size is determined by the definition of the
column or expression. CLEAR sets the display width of character fields to zero;
they are not displayed.
Abbreviation: VCHR
Default: 20

WIDTH {n | LABEL | MIN}

Sets the width of output columns. This can be the specified number of characters
(n); the width necessary to accommodate the column and value labels (LABEL); or,
for numeric fields, to the minimum number of characters necessary to
accommodate the widest number in the column (MIN). The MIN option can only be
used at the table level in the display processor.
CLEAR sets the column widths to 8 for numeric data and to the string length
specified in the schema for strings.
Default: CLEAR

WORK filename [PASSWORD password]

Specifies the default workspace for SAVE and GET. CLEAR specifies that there is no

SIR/XS SQL 60

default workspace.
Default: SirSQL.wsp

ZEROS ON | OFF | 'string'

Specifies the printing of leading zeros for numbers. ON means leading zeros are
printed; OFF means they are suppressed. Also specifies a string to be printed if the
value is zero. CLEAR is the same as SET ZEROS OFF.
Abbreviation: ZERO
Default: CLEAR

SIR/XS SQL 61

Control Commands

 There are a number of ancillary commands which execute procedures, connect databases
and tabfiles, etc. Most of these operations can be carried out more easily from the menus.
The commands are as follows:
CALL

Executes commands stored as a procedure

CONNECT DATABASE

Connects databases

CONNECT TABFILE

Connects tabfiles

CREATE ATTRIBUTE

Creates a short internal name to represent a filename

CREATE SYNONYM

Defines a short word to stand for longer text

DISCONNECT

Disconnects a database or tabfile

DROP

Deletes a tabfile or elements such as paths or views which have been created

END

terminates session

GET

Restores the workspace from a file

SAVE

Saves the workspace to a file

SIR/XS SQL 62

CALL

CALL [database.] [family.] member [(parameter, ...)]

CALL executes a procedure from a SIR/XS procedure file. The procedure file must be
connected. A procedure (or member) may be edited, amended and added to the procedure
file from the SQL menus.

A procedure that is called in SQL should only contain SQL commands.

Procedures can be created which have parameters to specify particular conditions.
Parameters are positional; that is, the stored procedure references parameters by number
and these numbers are assigned in the order they are specified. A procedure parameter
can be any sequence of text. Parameters are enclosed in parentheses and separated by
commas. Null parameters are specified by a comma immediately following the previous
comma.

• Example: Suppose the following were in the text of procedure REP1:

SELECT ID NAME <1> <2> FROM EMPLOYEE <3>

Call this procedure with:

CALL REP1 (SALARY , GENDER , WHERE (SALARY GT 2250))

which results in the full command:

SELECT ID NAME SALARY GENDER FROM EMPLOYEE -
 WHERE (SALARY GT 2250)

SIR/XS SQL 63

CONNECT DATABASE

CONNECT DATABASE database_name
 [PASSWORD database_password]
 [PREFIX 'file_prefix']
 [SECURITY read_security,write_security]
 [SUPPRESS PATH]
 [SUPPRESS QPROFILE]

Abbreviation: CON DB Connects the named database. Supply the appropriate password
and security passwords. If the database is not in the default directory, supply a prefix.
Enclose the prefix in single quotes.

This database is made the default database. If other databases are connected, the SET
DATABASE command alters the default. When using multiple databases, prefix non-unique
record names with the database name. For example, in a database called COMPANY with a
record named EMPLOYEE:

SELECT FROM COMPANY.EMPLOYEE

 PASSWORD

Specifies the database password.
Abbreviation: PW

 PREFIX

Specifies a directory other than the current default directory for database access.
The directory used for any other files is unaffected. Specify the prefix in single
quotes.
Abbreviation: P

For example:

PREFIX 'C:\MYFILES\'

SUPPRESS PATH

Suppresses the generation of paths. Paths are automatically generated when a
SIR/XS database is connected. Turn off the use of paths with the CLEAR PATH

SIR/XS SQL 64

command. Disconnect and reconnect without suppressing paths to generate the
paths.

SUPPRESS QPROFILE

Suppresses automatic execution of SYSTEM.QPROFILE. When a database is
connected, SQL automatically executes this procedure on that database. The
procedure can contain any SQL commands executed each time this database is
connected. If the procedure does not exist, no member is executed.

SECURITY

Specifies the read and write security passwords for the database. Specify the read
password first, then a comma, then the write password. If there is a write
password but no read password, precede the write password with a comma.

CONNECT DATABASE SECURITY HIGH,HIGH

SIR/XS SQL 65

CONNECT TABFILE

CONNECT TABFILE name
 [AUTO | READ | WRITE]
 [FILENAME filename]
 [IDENT BY grpname/grppass.username/userpass]

Abbreviation: CON TF

Connects the named, existing tabfile. The name used must be the name specified when
the tabfile was created. This is an internal name and is independent of, and unaffected by,
the operating system filename. All references to the tabfile are by this name. Tabfiles
with the same name cannot be connected at the same time.

AUTO

Specifies that the tabfile is opened and closed every time an SQL operation, such
as a SELECT, is executed. This locks the tabfile for exclusive write for the
minimum period of time. AUTO is the default. Specify WRITE for exclusive
updating or READ if only doing queries.

READ

Specifies that the tabfile is opened and remains open for shared read-only access
until DISCONNECTed.

WRITE

Specifies that the tabfile is opened and remains open for exclusive write
operations until DISCONNECTed.

FILENAME

Specifies the operating system filename for the tabfile. If a filename is not
specified, the internal name of the tabfile plus ".tbf" is used as the operating
system filename.

IDENT BY

Specifies group name, group password, user name, and user password for access
to this tabfile. If security controls were not defined when the tabfile was created,

SIR/XS SQL 66

these clauses are unnecessary. Depending on the access controls, you may need to
specify a password for the group, a username and a password for the username.

SIR/XS SQL 67

CREATE ATTRIBUTE

CREATE ATTRIBUTE name FILENAME 'external filename'

Abbreviation: CRE ATTRIB

Associates an SQL internal name with an operating system filename specified in quotes.
The SQL name can be used in subsequent commands wherever you need to specify a
filename.

SIR/XS SQL 68

CREATE SYNONYM

CREATE SYNONYM name text

Abbreviation : CRE SYN Creates a synonym. A synonym is a text replacement
mechanism, typically used for long, repeated sets of names. Create the synonym and then
use it wherever applicable. A synonym can be used at any point in any SQL command.

Do not enclose the text in quotes. The synonym name is a standard SQL name up to 32
characters. Do not use reserved words as synonym names.

CREATE SYNONYM MYSELECT SELECT ID NAME SALARY FROM EMPLOYEE

SIR/XS SQL 69

DISCONNECT

DISCONNECT DATABASE database_name
DISCONNECT TABFILE tablefile_name

Abbreviation: DISCON DB, DIS DB, DISCON TF, DIS TF Disconnects a database or
tabfile. The database or tabfile is closed and all schema information is released.

SIR/XS SQL 70

DROP

DROP ATTRIB attribute_name
DROP INDEX index_name
DROP JOURNAL file_name
DROP PATH path_name
DROP SYNONYM synonym_name
DROP TABFILE tabfile_name
DROP TABLE table_name
DROP VIEW view_name

Deletes the named entity. The entity no longer exists and must be re-created if required
again.

SIR/XS SQL 71

END

END [CLEAR | SAVE [workspace_filename]]
Synonyms: BYE, EXIT, QUIT, STOP, .

Terminates the SQL session from SQL.

If the workspace has been modified, you are prompted to save it. It will be saved as the
default workspace file which is either the workspace file that has been restored (with a
GET, the workspace file most recently saved or the default SirSQL.wsp. If the file is new,
you are prompted for a password. If you specify a password, a user must specify the
password when restoring the workspace. If you do not specify a password, you will not
be prompted for it again.

SIR/XS SQL 72

GET

GET [filename] [PASSWORD password]

Restores a workspace from the specified file name. When starting an SQL session, the
default workspace (SirSQL.wsp) is loaded unless the WORK = execution parameter is
specified.

Use GET to load a previously saved workspace. The default workspace (set by SET WORK
name), is loaded if a name is not specified on the GET command.

Specify the keyword PASSWORD and the required password if one is needed. If the
password is not specified and one is required, you are prompted for it.

SAVE
SAVE workspace_filename [PASSWORD workspace_password]

SAVE saves the current workspace on the specified file. If the file name is omitted, the
workspace is saved on the default workspace file. The default for this is SirSQL.wsp.

SIR/XS SQL 73

Execution Statement

 The parameters can be specified on the SQL execution statement. The parameters may
be specified on the execution statement in any order and separated by a space. The
parameters determine:

Batch Mode

Whether to run SQL in batch mode

Database

Specifies a database to connect automatically

Tabfile

Specifies a tabfile to connect automatically

Environment

Specifies the workspace to restore.

Batch Parameters

ABORT
BA
IN = filename
OUT = filename

Use these to run SQL in batch mode.

ABORT

Specifies that batch processing is stopped if an error is detected. If ABORT is not
specified, processing continues after an error. Specify ABORT if commands in the
input file depend on the results of an earlier command.

BA

Specifies Batch Mode. SQL commands are read from an input file specified by
the IN parameter.

SIR/XS SQL 74

IN

Specifies the input file containing SQL commands. Any SQL command can be
included in the file. In batch mode SELECT does not automatically cause a display.
To display the output, include a DISPLAY statement and an END command.

OUT

Specifies an output file for error and status messages.

Format File

SQL messages are held in a format file sirsql.fmt. This is a machine readable file
produced by a batch run of SQL. This reads a text input file of messages and either
creates a new format file or adds messages to a pre-existing file. This facility might be
used to produce messages in a different language. Please contact SIR support if you
require this facility.

PREPARE
FMT = format filename (output)
IN = input format text filename
OUT = output filename (messages)

PREPARE

Specifies that this is a batch run to prepare a format file.

FMT

Specifies the format file to create or added to if it already exists.

IN

Specifies the input text of the messages. This is in a predetermined format
available from SIR.

OUT

Specifies the output file for any messages or errors.

SIR/XS SQL 75

Database Parameters

DB = database
P = 'prefix'
PW = password
RS = password
WS = password
EX = membername
SUPQ

Specify the following parameters to connect a default database.

DB

Specifies the name of a database to connect and use as the default.

P

Specifies a directory other than the current directory is the location of the
database. This parameter has no affect on the directory used for any other files.
For example: P='C:\MYFILES\'

PW

Specifies the database password. If a database name is not specified, any
passwords are ignored.

RS

Specifies the database read security password.

WS

Specifies the database write security password.

EX

Specifies the procedure executed when the database is connected. The procedure
is a member in the family SYSTEM. If this member does not exist, no member is
executed. If this is not specified, the member QPROFILE (if it exists) is executed.

SUPQ

Specifies that QPROFILE is not executed when the database is connected.

SIR/XS SQL 76

Tabfile Parameters

TBL (or TFL) = name
TBFN (or TFFN) = filename
GRP = name
GPW = password
USER = name
UPW = password

Specify the following parameters to connect a default tabfile.

TFL

Specifies a tabfile connected when SQL is executed.

TBFN

Specifies the operating system filename of the tabfile specified on the TBL
parameter. If this is not specified, the filename is assumed to be the same as the
tabfile name plus a prefix of .tbf.

GRP

Specifies the group name to access the tabfile.

GPW

Specifies the password for the group.

USER

Specifies the user name to access the tabfile.

UPW

Specifies the password for the user.

SIR/XS SQL 77

Environment Parameters

CENY = nnnn
WORK = workspace
WORKPW = password

Specify the following parameters as necessary to alter the default environment settings:

CENY

Specifies the four digit year used for century calculations when converting dates
with only two digit years. Specify the year below which dates are in the next
century. The system setting is 1920. This means that years below 20 are assigned
a century of 20xx. Years above this are assigned a century of 19xx. Valid dates
run from 1582 to 2900.

[NO]WORK

Specifies the name of the workspace file automatically loaded when SQL starts. If
a workspace is not specified on the execution parameter, if SirSQL.wsp exists, it
is automatically loaded unless NOWORK is specified. For example:

SQL/WORK='SQLMYWS.wsp'

WORKPW

Specifies the password for the workspace

SIR/XS SQL 78

SirSQL User Interface

SirSQL has a simple and easy to use graphical user interface. The main window contains
a menu bar, a toolbar, output and input windows and a status bar.

The input window is the place to type SirSQL commands. You can load a file with SQL
commands into this window using the menus or by dropping a file on the main window.
You can save the contents of the input area into a text file. You can also store and retrieve
sets of SQL commands as procedures (members). To execute the SQL commands from
the input window, use the File/Run menu or the toolbar or the Ctrl-R key.

Results and messages are displayed in the output window. This is a relatively small
window and is automatically rebuilt when necessary. This means that earlier output is
discarded and lost unless it logged to the SirSQL.slg file. Logging depends on the
LogOutput setting in the initialisation file.

The output window is as wide as necessary to display a complete line of the output. It is
treated as a single page with headings at the beginning of a display of a table.

You can select part of the output to save, print or copy to the clipboard. You can use the
appropriate INCLUDE/EXCLUDE commands to alter the output display of a table.

The status line displays the information about execution of the last command. If a
command was unsuccessful, the status line indicates this and the command is retained in
the input window to be edited and re-submitted.

SirSQL provides a set of menus and dialog boxes to perform many common operations.
Some popular menu commands are also available on the toolbar.

The main menu consists of the following:

File

Open
Save As
Run
History
Clear Output
Save Output
Print Output
Exit

Database

SIR/XS SQL 79

Connect
Database
List
Members

Tabfile

Connect
Disconnect
List
Create

SQL

Interactive Select

Utilities

Verify
Export
Import
Backup
Restore

Options

Settings
Auto Display
Save workspace

Help

SIR/XS SQL 80

File Menu

Open loads a text file (presumably containing SQL commands) into the input window.

Save As saves the contents of the input area into a text file.

Run executes the SQL commands from the input area.

History displays any previously entered commands and allows you to re-run them or
load them into the input area for editing.

Clear Output clears the output area.

Save Output saves the output area as a named text file.

Print Output sends the output area to the current system printer.

Exit finishes the SQL session and exits the system. This also saves the workspace.

SIR/XS SQL 81

Connect database

Use this dialog to connect a database. Specify the database by its name. If the database is
not located in the current working directory, prefix the database name with the
appropriate path.

Specify the main password and read/write security passwords. A database can be
protected by write and read passwords, only a write password or not have passwords at
all;. it cannot have a read password without a write password. If you specify the read
password without a write password, the system uses the same password for both read and
write security.

The most recently connected database is selected as the default database.

See the CONNECT DATABASE command.

SIR/XS SQL 82

List of connected databases

Use this dialog to perform basic operations on databases. You can use it to change the
default database. Select a database from the list and use the OK button to close the
dialog. If you close the dialog using the Cancel button, the previous default is not
changed (if this database is still connected).

You can add databases to the list using the Connect button. Other buttons act on the
database selected in the list. You can disconnect databases using the Disconnect button.
Use the Structure button to get the information about the tables and fields defined in the
database. Use the Members button to get the list of families and members (stored
procedures) associated with the selected database.

SIR/XS SQL 83

Database structure

Use this dialog to inspect the database structure. Select a table to get the list of its fields.
Use the Field Info and Table Info buttons to get properties of individual tables and
fields.

SIR/XS SQL 84

Create tabfile

Use this dialog to create a new tabfile. Specify the tabfile name. A tabfile name is up to
32 characters long and not case sensitive.

Specify the filename explicitly to place the physical file into a directory other than your
current working directory or to have the file name other than the name of the tabfile
suffixed by the .tbf extension.

Specify the journal file name if you want to have a journal for the tabfile. Specify group
and user passwords if you need to control access to this tabfile.

Only specify block size when necessary.

The tabfile is created, automatically connected and selected as the default.

See the CREATE TABFILE command.

SIR/XS SQL 85

Connect tabfile

Use this dialog to connect a tabfile. Specify the tabfile by name. Specify the filename if
the tabfile is not in the current working directory, or where the filename is not the tabfile
name with a .tbf suffix. You can use the browse button to locate the file.

Specify group and user IDs and passwords if the tabfile is password protected.

The latest tabfile connected is set to be the default.

See CONNECT TABFILE command.

SIR/XS SQL 86

List of connected tabfiles

Use this dialog to perform basic operations on tabfiles.

You can change the default tabfile. Select a tabfile from the list and use the OK button to
close the dialog. If you close the dialog using the Cancel button, the previous default will
not be changed (if this tabfile is still connected).

You can add tabfiles to the list using the Create and Connect buttons. Other buttons act
on the tabfile selected in the list. You can disconnect tabfiles using the Disconnect
button. The Drop button disconnects and removes the tabfile.

Use the Structure button to get the information about the tables, fields and indexes
defined in the tabfile. This also allows you to Create indexes for the table.

SIR/XS SQL 87

Tabfile structure

Use this dialog to inspect the tabfile structure. Select a table to get the list of its fields.
Use the Field Info and Table Info buttons to get properties of individual tables and
fields.

Use the Drop Table button to delete the table from the tabfile.

Use the Indexes button to inspect/add/remove the table's indexes.

SIR/XS SQL 88

Indexes

Select an index to get the list of its key fields. Use the Add index and Drop Index
buttons to add/remove indexes.

SIR/XS SQL 89

Create index

To create a new index select the desired fields of the table and add them to the list of key
fields. Define a name for the new index. Check the Unique checkbox if you create a
unique index.

See the CREATE INDEX command.

SIR/XS SQL 90

Select

This dialog helps you to construct simple SELECT queries interactively. It does not
provide all functionality of the SirSQL SELECT statement, but you can load the resulting
statement into the input window and use it as the starting point for writing a more
complex query.

The query under construction is displayed in the lower part of the dialog.

Start construction of the query by selecting some tables for the FROM clause on the
From tab of the dialog. You can then activate other tabs. You can always return to the
From tab later to modify the list of tables, but you need to have at least one table in this
list to enable other tabs.

If you select the fields from a table and later delete this table from the table list, this
results in an invalid query as references to fields are not deleted from the query.

Use these links for the information on the individual tabs:

• From
• What
• Where
• Order by
• Group by

See the SELECT command.

SIR/XS SQL 91

From

Use this tab to define the list of tables you want to run the query on. SirSQL allows you
to run query on tables from multiple databases and tabfiles. You need to define aliases
(use the Add As button) if you have the same table name on two databases/tabfiles or
need to do a self-joint.

You need to specify at least one table to enable the other tabs. You can always return to
this tab and modify the list of tables.

See the FROM clause of the SQL SELECT statement.

SIR/XS SQL 92

What

Use this tab to define the list of variables you're interested in. You can select the variables
from any table in the FROM clause.

You can use Add As button and type any SQL expression (like aggregate function or
arithmetic expression) if what you want to get is not just the value of the field.

SIR/XS SQL 93

Where

Use this tab to write the WHERE clause of your SELECT statement. Basically you just
type it in, but you can select the variables from any table in the FROM clause and insert
them into the text of your conditions.

See the WHERE clause of the SQL SELECT statement.

SIR/XS SQL 94

Order by

Use this tab to build the list of key fields used to sort the results of the SELECT
statement. You can select the variables from any table in the FROM clause and use them
as keys for ascending or descending sort.

See the ORDER BY clause of the SQL SELECT statement.

SIR/XS SQL 95

Group by

This tab is useful only when you do select on aggregate functions (you can do it using the
Add As button on the What tab). Use the Group by tab to build the list of key fields
used to group the results of the SELECT statement. Additionally you can write the
conditions for the HAVING clause very much like for the WHERE clause. You can
select the variables from any table in the FROM clause and insert them into the text of
your conditions.

See the GROUP BY and HAVING clauses of the SQL SELECT statement.

SIR/XS SQL 96

Verify tabfile

Specify the tabfile to be verified. It doesn't need to be connected. You need to specify the
file name if the tabfile uses non-standard name or located not in the current working
directory. You can use the browse button to locate the tabfile.

See the VERIFY command.

SIR/XS SQL 97

Export tabfile

Use this dialog to export a tabfile as a text file. Specify the filename and select the tabfile
to export from the list. You can export all the tables or individual tables and specify some
other options here.

The resulting text file can be transferred on the different type of computer and imported
by the Utilities/Import command.

See the EXPORT command.

SIR/XS SQL 98

Backup tabfile

Use this dialog to backup a tabfile. Specify the filename and select the tabfile to backup.
You can backup the tabfile without indexes. In that case the indexes will be rebuild when
you restore the tabfile.

To restore the tabfile use the Utilities/Restore command.

See the statement.

SIR/XS SQL 99

Restore tabfile

See the RESTORE command.

SIR/XS SQL 100

Data Entry and Modification

 Data in SIR/XS databases or tables may be entered, modified or deleted with SQL. There
are four commands available to do this. Three commands operate on sets of data in a
similar way to SELECT with a WHERE clause. These are:

DELETE FROM

Deletes rows or records.

INSERT INTO

Inserts new records or rows into databases or tables. The new records or rows to
insert are generated by a SELECT statement which is part of the command.

UPDATE

Modifies values in existing rows and records

The fourth command creates single records or rows interactively:

ENTER INTO

Prompts interactively for new records or rows data to add to the database or table.

SIR/XS SQL 101

DELETE FROM

DELETE FROM [tabfile.] | [database.] name
 [WHERE condition]
 [COMPILE_ONLY]

Deletes rows or views from tables and records from databases.

Specify record name, record number or the keyword CIR as a database record name. If a
database name is not specified, the default database is used. Specify a table or a view and
the tabfile name. If the tabfile name is not specified, the default tabfile is used.

 WHERE

WHERE defines the set of records to be deleted.

COMPILE_ONLY

Compiles the command and checks for syntax errors but does not perform the
deletions.

SIR/XS SQL 102

ENTER INTO

ENTER INTO [tabfile.] | [database.] name
 [LABELS]
 [LENGTH n]

Prompts for data from the screen to enter new records or rows interactively. It is
recommended that one of the other SIR/XS facilities such as FORMS or VisualPQL is
used for interactive data entry for all but the most trivial instances.

Specify record name, record number or the keyword CIR as a database record name. If a
database name is not specified, the default database is used. Specify a table or a view and
the tabfile name. If the tabfile name is not specified, the default tabfile is used.

SQL prompts for the values of each variable. After the last value for one record or row,
SQL prompts again for an entry into the first variable of the next record or row. Finish
input at any time with the Cancel button. This cancels the current record and terminates
the process.

ENTER INTO creates new records or rows. It does not allow the updating of existing data.
If a record with the same key as an existing record is entered, it is rejected. If a row with
the same values in a unique index as an existing row is entered, it is rejected. If a record
or row is rejected the process is terminated.

LABELS

Specifies that the variable label is used as the prompt in place of the variable
name and data type.

LENGTH

Specifies the length of the prompt in characters. Prompts are padded or truncated
to the specified length. Maximum length is 32 characters.

SIR/XS SQL 103

INSERT INTO

INSERT INTO [tabfile.] | [database.] name
 [(variable list, ...)]
 VALUES (value_list) | SELECT statement
 [COMPILE_ONLY]

Inserts rows into tables and records into databases. The inserted rows or records are
created by the SELECT clause.

Specify record name, record number or the keyword CIR as a database record name. If a
database name is not specified, the default database is used. Specify a table or a view and
the tabfile name. If the tabfile name is not specified, the default tabfile is used.

The variable list specifies the variables or columns. This must match the columns created
by the SELECT. If the variable list is omitted, all variables defined for the record or row
are expected.

VALUES

The value list is a list of constants to insert. This creates one new record or row
with the specified values. The values must correspond in type, length and order
with the INSERT INTO variable list. Specify strings in single quotes.

SELECT

SELECT retrieves data from other tables or record types and this data is then used
to create the specified rows or records. Any valid SELECT can be used as the
source of values for the insert operation. The variables that are in the SELECT list
must match in type, length and order with the INSERT INTO variable list.

COMPILE_ONLY

Causes the INSERT command to be compiled but not executed. It is used for
checking syntax.

• Example: Suppose a table has been created from the employee database with the
following SELECT, and some new employees are to be added:

SELECT * FROM EMPLOYEE ON MYTABLE WHERE GENDER EQ 1
INSERT INTO MYTABLE -

SIR/XS SQL 104

SELECT * FROM EMPLOYEE WHERE GENDER EQ 2

SIR/XS SQL 105

UPDATE

UPDATE [tabfile.] | [database.] name
 SET variable_name = expression, ...
 [WHERE logical condition]
 [COMPILE_ONLY]

Updates existing rows or records in a table or database. Specify record name, record
number or the keyword CIR as a database record name. If a database name is not
specified, the default database is used. Specify a table or a view and the tabfile name. If
the tabfile name is not specified, the default tabfile is used.

 The SET statement lists the variables to update. Separate each variable name or
expression with a comma.

The WHERE clause specifies the rows or records to be updated. COMPILE_ONLY

Specify to compile the UPDATE command but not to execute it, for checking
syntax before updating data.

• Example: To give everyone a 10% raise in Salary and to change date to today:

UPDATE MYTABLE SET SALARY = SALARY * 1.1, CURRDATE = TODAY(0)

SIR/XS SQL 106

Paths and Views

A Path is a logical connection between two records or tables which tells SQL how to join
the two data sources when they are referenced in a FROM clause on a SELECT.

A View is a virtual table which is created from one or more records or tables and can then
be referenced in the FROM clause as if it was a real table.

Create paths and views with the CREATE PATH and CREATE VIEW commands. List
paths and views with the SHOW command. Delete paths and views with the DROP
command.

Paths

Paths are implicitly invoked if the path is the only path between two records or tables
named in the FROM clause of a SELECT. If there is more than one path defined between
two records or tables, SQL uses the earliest defined path. When a SIR/XS database is
connected, paths are automatically created between all records with matching keys.

Use the SHOW PATHS command to see the currently defined paths in the order that
SQL deals with them.

Paths are explicitly invoked in the FROM clause of the SELECT statement by specifying the
name of the first record type or table and the path name as the second name. For example,
if there is a PATH called NEWPATH from RECX to RECY, invoke the path with:

SELECT RECXVARS RECYVARS FROM RECX NEWPATH

A path defined between two records on a case structured database operates within the
same case unless the USING clause is specified on the path. The USING clause joins
records belonging to different cases. The setting of CASE mode does not affect the
operation of the path. Paths can be defined between the common information record
(CIR) and other records or CIRs by specifying the keyword CIR.

A table name may be specified and the rows on the table are used in exactly the same
way as records on the database. The WHERE clause in the path definition determines how
the path operates and should normally reference indexed columns. VIA and USING clauses
are not used if the TO clause specifies a table.

SIR/XS SQL 107

View

 A View is a virtual table which does not physically exist. It is a mapping that retrieves
data from tables and records and presents it as if it was a table. A view can provide a
simpler presentation of a given subset of data. The view is dynamic and reflects the latest
data contained in the base records and tables. Views provide additional security;
permissions for various activities on the view may be granted to specific users; security
on columns and rows may be controlled through the SELECT statement and the WHERE
clause within the view.

A view definition resides in a tabfile and its columns are defined by a SELECT statement
on the CREATE VIEW command. This is the same as any other SELECT except that the
DISTINCT, ORDER BY, FORMAT and UNION clauses may not be used.

When a view is created, it is created on the tabfile in the same way as any other table.
Views can be exported and imported on another machine. Security can be defined as for
any other table. Permissions on views can be granted and revoked. (See Permissions).

Views can be used to SELECT ... FROM ... as any other table. DISPLAY does not access
views. Views are used in SQL only; they cannot be used in other SIR/XS products such
as VisualPQL or FORMS.

The underlying data in tables or records can be updated using the VIEW name on the
update command with the following conditions:

• If the FROM clause in the SELECT statement of the CREATE VIEW command references
more than one table or record, the view cannot be updated.

• If the SELECT statement implies any aggregation (GROUP BY or aggregation functions),
the view cannot be updated.

• If the base table is a record or a table with a unique index, the view must include all the
columns that compose the key or index in order to be updateable.

• If the SELECT statement contains a constant or an expression, then:

• INSERT is not allowed on that column
• UPDATE is not allowed on that column
• DELETE is allowed

• If the view does not include all columns or variables from the table or record, then any
unspecified columns in new rows or records are assigned undefined values.

SIR/XS SQL 108

CREATE PATH

CREATE PATH path_name
 FROM [[database.]recordtype] | [[tabfile.] table]
 TO [[database.]recordtype] | [[tabfile.] table]
 [WHERE boolean]
 [VIA value list | USING value list]
 FIRST LAST OUTER REVERSE CIR

CREATE PATH names the path and specifies the two records or tables that the path joins.
Paths may use Views as the FROM and TO references. The WHERE, VIA, and USING
clauses link records and rows depending on the values of data items.

FROM

FROM is required. It specifies the record, table or view which is to be joined to the
TO record, table or view.

TO

TO is required. It specifies the record, table or view which is to be joined to the
FROM record, table or view.

WHERE

The WHERE is a logical condition applied to individual occurrences of the data at
execution time. If the condition is true, a row is returned.

VIA

Specifies values for the key fields of the TO records. If one or more of the key
fields are omitted, all records with the specified key fields are returned. The
values can be an arithmetic expression, a constant or a variable name.

An asterisk (*) can be substituted for explicit values to indicate that the key fields
of the FROM record are to be passed. The asterisk can be used in combination with
other values. The asterisk can only appear as the first item. An asterisk cannot be
specified when a table is the FROM reference.

SIR/XS SQL 109

The case id is passed automatically when VIA is used. Do not specify the case id
in the VIA clause.

USING

Specifies values for the case id and any other key fields for the TO records. USING
allows the joining of records from different cases. The values can be constants,
variables or arithmetic expressions. Only variables in the FROM record type can
appear on the USING clause.

FIRST

Specifies that the path selects only the first record from the record type listed in
the TO clause.

LAST

Specifies that the path selects only the last record from the record type listed in
the TO clause.

OUTER

Specifies that if no occurrences of the TO record can be found to satisfy the path
definition, then a dummy of all undefined values is used to complete the join.

REVERSE

Specifies that the records pointed to by the path definition are processed in
reverse order. Abbreviation: REV

Examples:
1) To join employee records to occup records only where the employee is female and
works in division 1, specify:

CREATE PATH MYPATH -
 FROM EMPLOYEE TO OCCUP -
 WHERE GENDER EQ 2 AND DIVISION EQ 1

2) To create a path called CURRENT that joins EMPLOYEE and OCCUP records only for the
current position, specify

CREATE PATH CURRENT -
 FROM EMPLOYEE TO OCCUP VIA CURRPOS

SIR/XS SQL 110

Note that VIA and USING are not specified together. Valid Specifications on the VIA,
VIA *, and USING clauses are:

FROM TO VIA VIA * USING
------- ------- --- ---- -----
table recname Yes No Yes
table table No No No
recname recname Yes Yes Yes
recname table No No No

SIR/XS SQL 111

CREATE VIEW

CREATE VIEW [tabfile.] viewname [(column list)]
 AS SELECT variable list ...
 FROM [database.] rectype | [tabfile.]table , ...
 [GROUP BY variable list, ... [HAVING expression]]
 [OUTER [database.] rectype | [tabfile.]table]
 [WHERE expression]
 [WITH CHECK OPTION]

CREATE VIEW creates a named view. The view is a SELECT from a number of records,
tables or other views with particular conditions.

viewname

Every view has a name and its definition is stored in a tabfile. If the tabfile is not
specified, the current default tabfile is used.

column list

The optional column name list renames the columns specified in the SELECT
statement in the CREATE VIEW command. The column list must reference the same
number of columns as the SELECT statement does. Renaming columns is useful
when the SELECT creates columns with awkward names such as expressions or
concatenations of table and column names.

AS SELECT

Specifies the columns in the view. The names are the variables and columns from
the records and tables in the FROM clause. Specify expressions (constants,
arithmetic expressions, functions) as in a SELECT command. If the view includes
record(s) from a case structured database, the view automatically includes the
case id and common variables.

FROM

Specifies the records, tables, views or paths which contain the specified variables
or columns. Aliases may be assigned. If aliases are used, each FROM record or
table must be separated by commas. If the optional database and tabfile names are
not specified, the current defaults are used.

GROUP BY

SIR/XS SQL 112

Specifies that sets of values selected are grouped together according to their
unique values in the value list. If this is a case structured database and the
GROUP BY is intended to group records from more than one case, CLEAR CASE
before using the view.

HAVING

The selection criteria is applied to each group selected with the GROUP BY clause.
Only groups which satisfy the specified condition are included in the view.

OUTER

Specifies that if no occurrences of the specified record or table can be found, then
a row is created with all variables or columns from the missing record or table set
to undefined. If OUTER is not specified, a row is not returned.

WHERE

Specifies a condition that must be satisfied for a row to be included in the view.
The WHERE clause can contain subqueries but these may not reference another
view.

WITH CHECK OPTION

Specifies that, when a view is being used to update a base table or record, the new
row must conform to the WHERE clause conditions. This means that the view can
only add or modify rows which are part of the view. If this is not specified, rows
can be added which the view could not retrieve.

Examples:
To create a view of EMPLOYEES with ID, NAME and SALARY for male employees only
(including ID automatically because it is the case id):

CREATE VIEW MALES -
 AS SELECT NAME SALARY -
 FROM 1 WHERE GENDER EQ 1

To create a view of EMPLOYEES who have had low review ratings:

CREATE VIEW LOWRATING -
 AS SELECT NAME SALARY POSITION DIVISION REVDATE RATING -
 FROM 1 2 3 -
 WHERE RATING LT 4

To create a dynamic summary of people by education level:

CREATE VIEW EDSUMM -
 (LEVEL,NUMBER,WAGES,AVERAGE) -

SIR/XS SQL 113

 AS SELECT EDUC COUNT(SALARY) SUM(SALARY) -
 SUM(SALARY)/COUNT(SALARY) -
 FROM 1 -
 GROUP BY EDUC

RENAME VIEW COMMAND

RENAME VIEW [tabfile_name.] view_name TO view_name

Renames a view. If the tabfile is not specified, the default tabfile is used.

SIR/XS SQL 114

Tabfiles and Tables

SQL can create, define, populate, modify and retrieve data from tables stored in tabfiles.

A tabfile is a physical file on disk and is independent of all other tabfiles. A tabfile can
hold multiple tables and is the largest unit that exists for security and access control.

An SQL session may be connected to multiple tabfiles and can retrieve data from tables
in any connected tabfile.

Whenever tables are referenced, the tabfile can be specified or the default can be taken.
One tabfile is always the default and can be any tabfile. If no other default is set, the
$SYSTEM tabfile is the default.

Table

A table is all of the individual instances (or rows) of a single type of record. A record is a
set of columns (or variables). The definition of the individual columns includes the
column name, format, data type, missing values and value labels. There are no key
columns in a table; key processing is done through indexes.

Index

An index is a way of accessing the rows in a table using the values of particular
column(s) as the key. Indexes can be defined on any column or combination of columns.
An index may specify that rows must have unique values or may allow many rows with
the same value. Indexes can be used to process tables randomly given a particular index
value as the key, or sequentially in index order. If a table is processed without an index, it
is retrieved sequentially in the order in which it was created. When an index is defined, it
is built from any existing data and is automatically maintained as the table is updated.

Commands

The SQL commands which create tabfiles, create tables, and create indexes are CREATE
TABFILE, CREATE TABLE and CREATE INDEX.

The SELECT command also creates tables which are exactly the same as tables created
in any other way. SELECT copies data definitions and populates the table and can be a
much more convenient way to define new tables than using explicit commands.

You can also use VisualPQL or the SirSQL menus and SirDBMS menus to create tabfiles
and tables.

SIR/XS SQL 115

There are five utilities which can be used with tabfiles. These are:

EXPORT which creates a text version of the tabfile or individual tables which can then
be used by SQL to re-create the table. This can be used to move the tabfile from one
machine to another.

VERIFY which checks tabfiles for possible corruptions.

BACKUP TABFILE which takes a sequential file copy of a tabfile .

RESTORE TABFILE which rebuilds a tabfile from the sequential copy and applies
changes logged to a journal.

DISPLAY JOURNAL which lists the contents of a journal file.

SIR/XS SQL 116

CREATE TABFILE

CREATE TABFILE tabfile-name
 [FILENAME filename]
 [IDENTIFIED BY grpname [/grppass] [.username[/userpass]]]
 [JOURNAL filename]
 [BLOCKS n]

CREATE TABFILE creates a tabfile to store one or more tables. The tabfile name is the
name by which this is referenced in all other commands. This name must be used to
CONNECT to this file in subsequent sessions. A tabfile is automatically connected after
being created. For example:

CREATE TABFILE MYFILE FILENAME 'MYFILE.TBF'

FILENAME
Specifies a filename for the tabfile. If this parameter is not specified, the tabfile name
plus a suffix of .tbf is used as the filename. (This must therefore be a valid filename).

IDENTIFIED BY
Starts to create security definitions for access to the tabfile. The group name and optional
group password specifies a group name who has DBA permission for the tabfile. If the
DBA wishes other groups to access this tabfile, the DBA gives permissions with the
GRANT command. The user name and optional password further restrict original DBA
access to the tabfile to a second level of name and password. For example to leave
MYFILE available to everyone to connect to it:

CREATE TABFILE MYFILE.TBF

To require that the group name SURGEON password BYPASS and user name JONES
password INTERN are needed when connecting to this tabfile as a DBA in subsequent
sessions:

CREATE TABFILE MYFILE.TBF IDENTIFIED BY -
 SURGEON/BYPASS.JONES/INTERN

SIR/XS SQL 117

If the IDENTIFIED BY clause is not specified, any user can access the tabfile with all
permissions and this cannot be changed subequently without rebuilding the tabfile, for
example exporting and editing the export file to have the IDENTIFIED BY clause.

JOURNAL
Specifies that journaling is turned on for this tabfile and names the operating system file
which is to be used. If the journal file is not there when the tabfile is updated, a new
journal is created, otherwise new journal data is added to the end of the file.

BLOCKS
Specifies the number of the blocks that are used to create a physical block. The default is
1. The actual block size is 2k bytes. A specification of 2 would give 4k bytes and so on.
The number must be a positive integer.

In general the default is adequate. There is one circumstance where the block size must
be specified. A block must be able to hold the largest physical row. If you plan to define
very large rows, specify a BLOCKS clause to create a block large enough to accommodate
this.

The BLOCKS clause may be specified for performance reasons. Larger blocks are more
efficient for serial processing but take more memory. Small blocks are more efficient for
random processing through indexes where each I/O probably accesses a different block.

SIR/XS SQL 118

CREATE TABLE

CREATE TABLE [tabfile.]table
 (column-name data-type [options] , ...)
 [optional-table-clauses]

Creates a definition of a new table. A SELECT does this automatically.

Specify the name of the table and a list of the columns that make up the table. A
maximum of 250 columns can be specified for a table. The table and one column with its
data type are the only required clauses.

Each column must have a name and a data type. Other column specifications are optional.
Enclose the complete column list in parentheses. Optional specifications that are not
explicitly defined take the default values SET in the current session.

tabfile
Specifies the tabfile where the table is located. A single tabfile can contain any number of
tables. The table is stored in the default tabfile if a tabfile is not specified.

table
The table name is required. The table name must be unique within the tabfile.

column_name
Specify a name for each column. Column names must be unique within the table.

The Data Type controls whether a column is numeric, date or string, etc. and cannot be
altered once the table is created.

The Column Options clauses control how the column is created and stored and cannot be
altered once the table is created. The Display Format control the appearance of a column
and these can be altered after the table is created.

Specify as many optional clauses as needed for any column (provided that the clauses
used are compatible with the data type specified for the column).

There are further optional clauses which can be specified after all of the column
specifications:

 [FORMAT clauses]
 [PCTFREE (n)]
 CONSTRAINTS UNIQUE column-list]

SIR/XS SQL 119

 FORMAT
Specifies how SQL displays output. These clauses only effect the SQL display process.
Any of the formatting clauses that do not describe individual columns can be specified.
See Format.

PCTFREE (n)
Specifies the percentage of free space that is reserved for future expansion in each data
block of a table. The only purpose of allowing room for growth in this clause, is for
existing rows to be modified where the modified records takes more space. Specify an
integer from 1 to 99. Rows grow when column values increase in size. The default is 10
(percent).

 CONSTRAINTS UNIQUE (column list)
Specifies a list of columns where combinations of the values in the columns must be
unique for a number of rows. If an attempt is made to add a row where the combination is
not unique, the row is rejected with an error message. The columns must also be specified
as NOTNULL.

CONSTRAINTS UNIQUE creates a unique index for the table which is given a system
generated name: '&UNIQUE_MULTIPLE_INDEX_I_n' where n is the number of the index.

Specify the column names enclosed within parentheses. Repeat the clause for as many
combinations of columns as required. For example:

CONSTRAINTS UNIQUE (Name, Sex, Birthday).

The same result could also be achieved with the CREATE UNIQUE INDEX command.

SIR/XS SQL 120

Column Data types

 There are a number of possible specifications for column data types, some of which are
synonyms for others.

CATEGORICAL [(n)]
CHARACTER | STRING [(n)]
DATE [('date_map')]
DEC | NUMERIC [(length,decimals)]
FLOAT [(n)] | REAL | DOUBLE]
TINYINT | SMALLINT | INT |
TIME [('time_map')]

 CATEGORICAL
Defines the column as character which contains one value from a pre-specified list of
values. The input data is checked against the list. The position in the list that corresponds
to the input data is stored in the table rather than the value of the entry. Typically this is
used for a list of names (e.g. Names of States), where it is more efficient to store a code
rather than a value.
n is the number of entries in the list. Values for the strings are then defined in the VALID
VALUES clause.

 CHARACTER
Defines the column as character. STRING is a synonym for CHARACTER.
n specifies the maximum string length. The default is 254 which is also the maximum.
Strings are held as variable length unless the optional clause FIXED is specified.
CHARACTER can be abbreviated to CHAR.

 DATE
Defines the column as a date which is displayed or entered according to the date map.
Internally, the date is held as a number of days since the start of the Gregorian calendar.
Externally, the date is input and output in accordance with the date map. If a date map
clause is not specified, the current system date map is used.

 DEC
Defines the column as a scaled integer number. NUMERIC is a synonym for DEC. Length
specifies the total length of the number. Decimals specifies how many of those digits are
to come after the decimal point. For example: DEC (10,2) means that the integer is 10

SIR/XS SQL 121

digits long, with 2 digits to the right of the decimal point. This is equivalent to defining
an integer type and the optional SCALE clause with a value of -2.

FLOAT n | REAL | DOUBLE .
Defines the column as a floating-point number. FLOAT n is either 4 or 8 and the default is
8. FLOAT (4) or REAL gives single precision. FLOAT (8) or DOUBLE gives double
precision.

INT | SMALLINT | TINYINT
Defines the column as a fixed length integer.
INT is a 4 byte integer; SMALLINT is a 2 byte integer; TINYINT is a 1 byte integer;

TIME
Defines the column as a time which is displayed or entered according to the time map.
Internally, the time is held as a number of seconds since midnight. Externally, the time is
input and output in accordance with the time map. If a time map clause is not specified,
the current system map is used.

SIR/XS SQL 122

Column Options

The clauses controlling how the column is stored are :

[BIAS (n)]
[FIXED]
[MISSING value 'label')]
[NOTNULL [UNIQUE]]
[PRESET]
[SCALE]
[VALID (value)]
[VALUE LABELS]
[VARYING]

 BIAS
Specifies an integer constant that is added to an integer before it is stored. For example,
this might be used in a study with questionnaires from multiple sources, each of which
was numbered from 1. To avoid multiple questionnaires numbered the same, BIAS the
question number in each table by a different amount such that one table had
questionnaires 1 - 99, the next 101 - 199, 201 - 299, etc.

With SCALED integers, the BIAS is done before scaling, so express the bias as the unscaled
number. For example, if the scale is 2 (hundreds) a BIAS of 1, results in a bias of 100.

 FIXED
Specifies that the string column is stored as fixed length. Strings are variable length by
default. FIXED may result in faster processing, but may use space inefficiently if there is a
wide variation in lengths of values. For example, a string for social security number,
which is always present and always the same length, could be specified as FIXED. If a
string may vary considerably in length, let it default to variable length.

Numeric columns are always FIXED.

 MISSING
Specifies the column's missing values and can associate a label with each value or range
of values. Specify single missing values or ranges of missing values with optional labels
for these values. The value may be a value that corresponds to the data type of the
column or may be the keyword BLANK or UNDEFINED which are allowed for any data type.
If the data type is a string, enclose the value in quotes.

The command may be specified as MISSING VALUES or MISSING RANGES as
documentation but this has no effect on the specification.

Defining a value as MISSING is an implicit definition that it is a VALID value. MISSING
and VALID values are stored as a single list which is searched serially. Once a match is

SIR/XS SQL 123

found, the search stops. The list is checked for overlapping ranges which are reported as
an error. Separate each entry with a comma. Enclose the whole list in parentheses.

Except for undefined or BLANK numeric variables, the actual value entered is still held in
the table. However when the value is retrieved, it is flagged as a missing value. The MISS
function can be used to retrieve values which include original values that would
otherwise be missing.

For example:

MISSING (8 'Refused to Answer',
 9 'Not Applicable',
 BLANK 'No Answer Coded')
MISSING ('N/A' 'Not Applicable',
 BLANK 'No Answer Coded')

 Specify a range of values and associate a single value label with any value entered in that
range. A range is a pair of values, separated by a colon, which correspond to the data type
of the column. To separate ranges for readability, use the square brackets [].

Parentheses specify ranges where the end points are not missing. When using
parentheses, the keywords LOWEST and HIGHEST can be used to specify end points.

For example:

MISSING (0:18 'Under Age', 66:99 'Retired')
MISSING ([1:18],[50:59],[90:99])
MISSING ((LOWEST:18) 'Too Young',(65:HIGHEST) 'Too Old')

The second example creates ranges without labels. The third example specifies that those
younger than 18 and older than 65 are missing. The parentheses specifies that the actual
quoted value is not missing but that all values from that point on are. This is useful for
real numbers, where it may be impossible to specify the actual end of a range.

 NOTNULL
Specifies that the column cannot be missing. An attempt to insert a row that contains a
missing value for this column fails.

NOTNULL UNIQUE
Specifies that no two rows can have the same value for the column. An attempt to insert
the same value twice fails, and an error message is issued. The CONSTRAINTS UNIQUE
clause specifies combinations of columns to be unique.

SIR/XS SQL 124

PRESET (value)
Specifies a value that is stored if no value is explicitly given. The value must agree with
the type, length, and map specifications for the column. Enclose string values in quotes.
By default, columns are set to UNDEFINED and there is no need to specify this.

SCALE (n)
Specifies the power of 10 that a number is multiplied by as it is placed in storage as an
integer. This provides efficient storage of large or small integers where the accuracy level
is only required at the scaling factor.

For example, for a result in kilovolts, where the calculations are in volts, specify a scale
of 3 for kvolts data, and the conversions are handled properly.

A scale of -n, specifies that there are n decimal positions. For example, decimal money
can be held at a scale of -2.

Any calculations which refer to a scaled integer, should express the number as the
external normal value of the number; the software deals with any internal scaling. For
example, to select rows where an amount of money is greater than 100 dollars:

SELECT ... WHERE AMOUNT GT 100

Scaled integers, by definition, cannot hold data at less than their scale. Any computation
is rounded. For example, setting KVOLTS (scale 3) to any number which is not a round
thousand, results in the number being rounded to the nearest thousand.

 VALID (range list).

Specifies the valid list of values or ranges of values that are allowed in the column. The
syntax rules for the range list are the identical to the range list in the MISSING clause. A
specification of a value as missing, means that this is a legal value to be input.

The command may be specified as VALID VALUES or VALID RANGES as documentation
but this has no effect on the specification.

All missing and valid values are stored as a list which is searched serially. Once a match
is found, the search stops. The list is checked for overlapping ranges which are reported
as an error.

CATEGORICAL variables must have individual valid values not ranges.

 VALUE LABELS (value label list)

SIR/XS SQL 125

Specifies labels for particular values that occur in the column. Each entry consists of the
value followed by the label. Separate multiple entries with commas and enclose the
whole list in parentheses. For example:

VALUE LABELS ('AL' 'Alabama',
 'AK' 'Alaska',
 ,
 'WY' 'Wyoming')

This associates the full state name with the abbreviation. When referencing CATEGORICAL
variables, specify the equivalent integer

 VARYING
Specifies that the column is variable length. This clause is documentary only. Strings are
variable length by default and this clause has no effect on other data types.

SIR/XS SQL 126

CREATE INDEX

CREATE [UNIQUE] INDEX index-name ON [tabfile.]table
 (column [ASC|DESC], ...)
 [PCTFREE integer value]

CREATE INDEX creates an index for a table providing direct access to a subset of records.
Index usage is automatic in SQL once the index is defined.

UNIQUE
Specifies that two rows cannot have the same index value. Rows with a value the same as
an existing row are rejected. When creating an index for an existing table, if existing
rows contain identical values, the index is not built and an error message is issued.

index name
Specifies the name of the index. Index names must be unique on the tabfile.

ON
Specifies the table to index. If a tabfile is not specified, the default tabfile is used.

column
Specifies the column(s) to index in major to minor sequence. Specify DESC for any
columns in descending order. For example: a specification of (Sex, Name) gives all
males by name, then all females by name. A specification of (Name, Sex) gives
everyone with the same name together, males preceding females.

PCTFREE
Specifies the percentage of free space to leave in the index blocks. This is used as new
index entries are made. If the table is updated on a regular basis, take the 50% default. If
the table is static and the index is not going to be updated, specify a low figure. For
example:

CREATE UNIQUE INDEX XID ON MYFILE.EMPLOYEE (ID)
CREATE INDEX XNAME ON MYFILE.EMPLOYEE (LASTNAME , FIRSTNAME)
CREATE INDEX XREVIEW_DATE ON MYFILE.EMPLOYEE (REVDATE DESC)

SIR/XS SQL 127

Permissions

The ability to perform various types of operations (such as the ability to use a tabfile or a
table, to update a table, create a new table, etc) may be restricted to specific groups of
users or to individual users. Users are allowed to perform particular activities through a
set of permissions.

Permissions may apply to the tabfile as a whole, to individual tables and views and to
individual columns. Permissions start with the creator of a tabfile. When creating a
tabfile, specify the IDENTIFIED BY clause to restrict access to the named group or
group.user. If the IDENTIFIED BY clause is not specified, you cannot restrict access to
operations on the tabfile and anyone can do anything to any table. The group(.user)
named on the IDENTIFIED BY clause has DataBase Administrator (DBA) permission for
the tabfile and can assign permissions to other groups(.users).

Permissions may be granted to and revoked from groups of users and individual users
within a group. A group is a set of users who are allowed to do the same operations. A
group has a name and may have a password.

There is no commonality between tabfiles for groups or users; groups and users only exist
within a tabfile. To use standard names for groups to access multiple tabfiles, create
naming standards and conventions which are then used for each individual tabfile.

Create a group by naming it on a the IDENTIFIED BY clause on the CREATE TABFILE or
on a GRANT command. An individual user in a group may be granted permission to do
additional operations. Permissions may be granted and revoked by users, who may only
grant the permissions which they have been granted.

SIR/XS SQL 128

GRANT

GRANT {permission,...| ALL | ALL BUT permission,...}
 TO grpname[/grppass][.username[/userpass]],...
 ON tabfile | [tabfile.]table_name
 [WITH GRANT OPTION]

GRANT gives permissions on tabfiles, tables, views or individual columns to specified
groups or users.

DBA, CONNECT, and CREATE are only applicable at the Tabfile level. All other permissions
may be granted at the individual table or view level. Permission may be granted on
individual columns for SELECT and UPDATE which restricts access to those specific
columns. To give permissions for particular columns, specify a list of column names on
the permission clause:

GRANT SELECT [(varname, varname...)] TO ... ON ...
GRANT UPDATE [(varname, varname...)] TO ... ON ...

permission
Specifies the permission(s) being granted. The following permissions may be granted:

ALL - all permissions are granted.

ALL BUT - all permissions except the specified permission(s) are granted.

DBA - permission to do anything to a tabfile. This is required for certain utilities, in
particular EXPORT. There are no activities on an individual table that require DBA
permission.

CONNECT - permission to connect to a tabfile.

CREATE - permission to create tables.

SELECT - permission to SELECT from tables.

DELETE - permission to DELETE rows from a table.

UPDATE - permission to UPDATE rows in a table.

INSERT - permission to INSERT rows in a table.

SIR/XS SQL 129

DROP - permission to DROP or delete tables.

ADDCOL* - permission to add columns to tables.

MODCOL* - permission to modify columns in tables.

DELCOL* - permission to delete columns from tables.

INDEX - permission to create or drop an index on table.

* These permissions are provided for the future implementation of the ALTER
TABLE command. These currently do not have any effect.

Permissions exist at two levels, the tabfile level and, possibly, at the individual table
level. When a user connects the tabfile, the appropriate set of permissions are retrieved
and the user is only permitted to perform allowed activities. For example, a user must be
allowed to SELECT at the tabfile level before being able to SELECT from a specific table. If
a group(.user) has DBA permission at the tabfile level, they have all permissions on all
tables, regardless as to how the tables were created or permissions assigned.

If a user is allowed an activity at the tabfile level, whether they are allowed that activity
on any table on the tabfile depends on how the table is created and can be modified by
specific GRANT/REVOKE commands. If the table is a PUBLIC table, then no further
checking is done.

If the table is created in SQL with a SELECT, then a Public table can be created in SQL by
clearing the Define_Security setting before doing the select. Otherwise the group(.user)
that created the table has all permissions on that table and is the only group(.user)
allowed any activities on that table until further permissions are granted.

If the table is created in SQL with the CREATE TABLE command, the group(.user) that
created the table has all permissions on that table and is the only group(.user) allowed any
activities on that table until further permissions are granted.

If the table is created by the VisualPQL procedure SAVE TABLE, the procedure can
optionally specify groups(.users) that have full permissions on the table. The group name
used to connect the tabfile is always granted all permissions on the table. The procedure
can specify a group of Public to create a public access table.

TO
Specifies the group names to receive the permissions. If the group does not already exist
for this tabfile, it is created. An optional group password may be specified. An optional
username and user password may also be specified. Permissions granted to a group are
granted to all members of the group. There is no need to specify individual users in a
group unless you need to allow someone specific additional permissions. You cannot
specify a user to be a member of a group and restrict them from any group permissions. If

SIR/XS SQL 130

you specify a group and user, and the group does not exist, the group and group password
are created but group level permissions are not set up automatically and you cannot use
just a group name until permissions are set for the group.

Group names, user names and passwords are checked when a tabfile is connected. To
update a group or user password, connect to the tabfile as that group/user and use the
GRANT command with the special keyword PASSWORD. e.g. GRANT PASSWORD TO
GROUP1/NEWPASSWORD. If a password is forgotten, a DBA can export the tabfile with the
security option and the export file will contain GRANT commands with readable
passwords.

If the group already exists, there is no need to respecify the group password. If the
group/user combination already exists, there is no need to respecify the user password. In
either of these cases, the original password is kept and any password specified on the
command is ignored.

ON
Specifies the tabfile name or table name to which the permissions apply.

WITH GRANT OPTION
Specifies that the group or user can grant these permissions, or a subset of these
permissions, to other groups or users. Without this clause, these permissions cannot be
granted by this user to other users.

Examples:
Suppose you want to create a tabfile called MYFILE and restrict DBA authority to group
DBAS and they have a password DBASPASS. Specify

CREATE TABFILE MYFILE IDENTIFIED BY DBAS/DBASPASS

Then, when people try to connect to that tabfile, they either specify CONNECT TABFILE
MYFILE IDENTIFIED BY DBAS/DBASPASS and get full permissions or they will not be
allowed even to connect to the tabfile. To allow connection, connect as a DBA and
specify, for example, GRANT CONNECT, SELECT TO RESEARCH ON MYFILE. If you as
DBA create a table called TABLE1 then you might GRANT SELECT TO RESEARCH ON
MYFILE.TABLE1 to allow that group to select from Table1. Similarly if you had created a
table EMPLOYEE on tabfile PERSONNEL and granted Connect and Select permissions
to a Personnel group, you might then GRANT SELECT (ID, NAME, SEX) TO PERSONNEL

SIR/XS SQL 131

ON CURRENT.EMPLOYEE WITH GRANT OPTION which allows them access to specific
columns on that table with the ability to create other groups(.users) with those
permissions.

SIR/XS SQL 132

REVOKE

REVOKE {permission,...| ALL | ALL BUT permission,...}
 TO grpname[/grppass][.username[/userpass]],...
 ON tabfile | [tabfile.]table_name

REVOKE revokes permissions on tabfiles or on individual tables for the specified groups or
users. REVOKE is the opposite of GRANT and has identical keywords and syntax.

You can revoke permissions only if you granted them. You do not have to REVOKE all
permissions originally granted, you can revoke a subset.

If permissions are revoked, that user no longer has the rights accorded by those
permission. This carries down to groups and users who have been granted permissions by
that user. For example, if USERA has granted a permission to update a certain table to
USERB, USERB is not able to update that table if update permission is revoked from
USERA.

Permissions revoked from a group are revoked from all members of the group.

To revoke permissions you must be connected to the tabfile. The group(.user) specified at
connection time is the grantor. The original creator of a tabfile has a special set of
permissions with a special System grantor and you cannot revoke any permissions from
that group(.user). Similarly, the original creator of a table using SQL has the same special
grantor and you cannot revoke permissions from that group(.user) for that table.

If you are connected as a group(.user) you can revoke permissions from other
group(.users) that you created directly. If those users have granted permissions to other
users, and those permissions are affected by your revoke, then the revoking is carried
down the hierarchy. However you cannot revoke permissions directly from group(.users)
that you did not grant to directly. If you grant to groupa and they grant to groupb, you
cannot revoke groupb even if you are the overall DBA for the tabfile. You also cannot
revoke from yourself.

If you revoke all permissions from a group(.user) at the tabfile level, the group(.user) is
deleted from the file.

DEFINE_SECURITY

Specifies that tables created with SELECT have security definitions. When
connecting to a tabfile with security definitions, specify group(.user) names to
connect to the tabfile. Anyone with DBA permission at the tabfile level, has full
permissions for all tables. With DEFINE_SECURITY set, you have full permissions

SIR/XS SQL 133

for the new table created with SELECT but any other groups(.users) (except DBAs)
have no permissions on that table. You (or a DBA) can grant permissions to other
users. (see Permissions)
CLEAR specifies that created tables are Public access.
Default: SET

SIR/XS SQL 134

EXPORT

EXPORT [FILENAME] filename
 [RECSIZE n]
 [NOSECURITY]
 [NOINDEXES]
 [NODATA]
 [NOTABFILE]
 [NOWORKSPACE]
 tabfile [(table [(column,)],)]

Exports tabfiles, tables, or selected columns from tables. EXPORT creates a text file from
which the exported elements can be imported on any machine running SIR/XS.

filename
Specifies the file to contain the exported data. The filename must be the first clause in the
export. The keyword FILENAME can be specified for readability.

Follow the filename with any keywords:

RECSIZE
Specifies the record length for the named file. The minimum recsize is 80. This is
the default. Records are fixed length.

NOSECURITY
Prevents the security privileges from being written to the exported file.

NOINDEXES
Prevents indexes from being written to the export file. By default, all indexes are
written to the export file.

NODATA
Prevents the data from being written to the export file. Only the schema is written.
By default, the export includes the data for each table.

NOTABFILE
Prevents information specific to the overall tabfile from being exported. When the
export file is imported all of the tables are placed on the default tabfile of the user
performing the import.

NOWORKSPACE
Prevents information about the current settings from being exported.

SIR/XS SQL 135

tabfile
Specifies the tabfile to export. If a tabfile is not specified, all connected tabfiles are
exported.

table
Specifies the table(s) to export. If no tables are specified, all the tables on the tabfile are
exported. The entire table or selected columns of that table can be exported. More than
one table can be specified. The entire table is exported when columns are not specified.

(column, ...)
Specifies individual column(s) to export.

Example:

EXPORT 'EXPORT.DAT' MYTABFILE (MYTABLE (COL1 COL2) MYTABLE2)

You can only export tables and columns for which you have read security.

An SQL export file is simply a set of SQL commands and data in textual form. It can be
imported in three ways:

It can be used on the IN parameter when executing SQL to import the file in batch
mode.

It can be imported through the utilities menu option.

You can read the file into the input area (with cut and paste or by 'Opening' it) and
execute the statements directly. If you do this, first delete the initial BEGIN
IMPORT line.

SIR/XS SQL 136

VERIFY

VERIFY tabfile [ON filename]

Checks all of the tables on the specified tabfile. If a table or tables are found to be
corrupt, SQL issues a notice of the affected tables and purges the corrupted tables. Any
tabfile can be verified, it does not have to be connected.

If a tabfile is corrupt, there may be difficulty connecting to it. CONNECT to a corrupt tabfile
with READ access only. If the $PASSWORD or $SECURITY system tables are corrupted, then
all users have DBA permissions on the tabfile.

Specify the ON clause to identify the physical file where the name of the physical file
differs from the internal tabfile name.

SIR/XS SQL 137

BACKUP TABFILE

BACKUP TABFILE tabfile_name FILENAME filename [FULL | DATA]

Backs up a tabfile to an operating system sequential file. Specify the keywords BACKUP
TABFILE and FILENAME. The filename is the name of the file being created as the backup.

FULL
Specifies that each block of the tabfile is compressed and written to the output file. When
it is restored, the tabfile is the exact size as before (no pointer restructuring of the indexes
is done).

DATA
Specifies that only the physical data records and definitions of the index(es) are written to
the backup file. The backup file is smaller but indexes have to be rebuilt when the file is
restored.

SIR/XS SQL 138

RESTORE TABFILE

RESTORE TABFILE tabfile_name [FILENAME filename]
 [FROM filename]
 [JOURNAL filename]
 [APPLY filename , ...]

Restores a tabfile from a backup file and/or applies journalised updates. RESTORE
TABFILE does not overwrite existing tabfiles. The FROM clause specifies the name of the
backup file; the FILENAME clause specifies the operating system name of the restored
tabfile if the tabfile name is not the operating system filename.

Specify JOURNAL to assign a new journal file to this tabfile. If JOURNAL is not specified,
the original journal file is used for journaling.

APPLY applies journal files changes to the tabfile. Specify the journal file to be used. All
journals applied must be in order with no gaps.

Example:

BACKUP TABFILE mytabfile FILENAME 'MYTAB.BAK'
RESTORE TABFILE mytabfile FROM 'MYTAB.BAK'

SIR/XS SQL 139

DISPLAY JOURNAL

DISPLAY JOURNAL filename FILENAME filename
 [HEADER [TF | TABLE | INDEX]...]
 [DETAILED [TF | TABLE | INDEX | ROW]...]

Lists information about the contents of a specified journal file. The tabfile must be
connected to display the journal. The FILENAME clause specifies an output file for the
listing. Specify both the journal filename and the output filename. By default, tabfile
headers, table and index entries are listed (headers are one line of information). Specify
detailed information on the tabfile (TF), a table, index or rows with the DETAILED clause.

SIR/XS SQL 140

SQL Functions

All SQL functions return a single value that is either a number or a string. Functions may
be used anywhere that a value or expression is appropriate. There are two types of
functions:

Standard

These return a value from an expression.

Aggregation

These compute a value from a number of rows and thus alter the number of rows
produced in the output table.

The EXISTS function tests whether a row is returned by a subquery.

SIR/XS SQL 141

Standard Functions

 The expressions in the arguments must be of the correct type (numeric or string) for the
function being used. Expressions can contain constants, variables, computations and
other functions. Functions can be nested as necessary. Enclose string constants in single
quotes. Date, time and categorical variables can be treated as an integer or as a string
depending on the context. A specification of one of these variables retains the original
data type. However, if these are referred to in a numeric function, the integer value is
returned; if referred to in a string function, the string value is returned. Once a variable
has been used in a computation or expression in this way, the resulting column is an
integer or a string rather than being a date, time or categorical column. SQL eliminates
null computations, for example TODAY(0)+0, creating an expression which is equivalent
to a simple specification of the variable. For example;

SELECT BIRTHDAY FROM EMPLOYEE

This creates a BIRTHDAY column which is a date:

SELECT BIRTHDAY+365 FROM EMPLOYEE

This creates a "BIRTHDAY+365" column which is an integer. The SQL functions are:

ABS

Returns the absolute value of the numeric expression.

num = ABS(expression)

ALL

Tests against the values in the value_list. Returns 1 (true) if matches every item.
Equivalent to individual tests against each item in the list joined by AND operators.
ALL is used particularly to test against sets of values returned by subqueries.

value = ALL (value_list | subquery)

ANY

Tests against the values in the value_list. Returns 1 (true) if matches any item.
Equivalent to individual tests against each item in the list joined by OR operators.
ANY is used particularly to test against sets of values returned by subqueries.

value = ANY (value_list | subquery)

SIR/XS SQL 142

CDATE

Returns the date integer for the date specified by the date string in the first
argument. The second argument is the date map. If the second argument is
omitted, the current value of the system parameter DATE is used as the date map.

num = CDATE (date-string [, date_map])

CTIME

Returns the time integer for the time specified by the time string in the first
argument. The second argument is the time map. If the second argument is
omitted, the current value of the system parameter TIME is used as the time map.

num = CTIME (time_string [, time_map])

DATEC

Returns a date string for the date integer in the first argument. The second
argument is the date conversion map. If the second argument is omitted, the
current value of the system parameter DATE is used as the date map.

str = DATEC (date_integer, date_map)

EXISTS

Tests whether a subquery returns any rows. Returns 1 (true) if one or more rows
are selected in the subquery. NOT can be used to test for the opposite condition.
Specify an asterisk in the subquery as the returned variables when using the
EXISTS function .

Note that this function is different from the VisualPQL EXISTS function. The
SQL EXISTS function is the ANSI standard function.

SELECT WHERE EXISTS (SELECT *)
SELECT WHERE NOT EXISTS(SELECT *)

INT

Returns the truncated integer value for the numeric expression.

num = INT (expression)

LEN

Returns the number of characters (including trailing blanks) in the string
expression.

SIR/XS SQL 143

num = LEN(string)

LOWER

Returns the string with all uppercase letters converted to their lowercase
equivalent.

str = LOWER(string)

MAXIMUM

Returns the maximum of the two values supplied.

num = MAXIMUM (value1, value2)

MINIMUM

Returns the minimum of the two values supplied.

num = MINIMUM (value1, value2)

MISS

Returns the original value of the named variable even if this would otherwise be
flagged as a missing value. If the variable contains undefined, then missing is
returned. This function can be used with all types of database or tabfile variables;
string values are returned for character, categoricals, dates and times. (MISSING is
a synonym.)

num = MISS (column)

MOD

Returns the remainder of the integer division of the number by the divisor.

num = MOD (number, divisor)

NOW

Returns the current wall clock time as a time integer. The argument is a dummy
argument.

num = NOW (0)

NUM

Returns the numeric equivalent of the number stored in the specified string.

num = NUM (string)

SIR/XS SQL 144

RECCOUNT

Returns a count of occurrences of this record in this case. The rectype can be the
record name or record number.

num = RECCOUNT (rectype)

RND

Returns the integer value rounded to the nearest integer. The optional second
argument specifies the number of decimal places to be rounded to instead of the
nearest integer.

num = RND (number [, digits])

SBST

Returns the substring of the specified string starting at a particular position and
continuing for the specified length.

str = SBST (string, start, length)

SIGN

Returns the sign of the second argument times the absolute value of the first
argument.

num = SIGN (number, sign)

TIMEC

Returns a time string for the time specified by the first argument. The second
argument is the time map. (Defaults to the system parameter TIME.)

str = TIMEC (time_integer, time_map)

TODAY

Returns the current calendar date as a Julian integer. The argument is a dummy
argument.

num = TODAY (0)

TRIM

Returns the specified string with trailing blanks removed.

str = TRIM (string)

SIR/XS SQL 145

UPPER

Returns the string specified with all lowercase letters converted to their uppercase
equivalent.

str = UPPER (string)

VALLAB

Returns the value label associated with the current value of the specified
column_name.

str = VALLAB (column_name)

SIR/XS SQL 146

Aggregation functions

 Aggregation functions return a single value for all of the relevant rows processed. See
SELECT for the effect aggregation functions have on the SELECT process. The
aggregation functions are:

AVG ([UNIQUE] numeric_col)

Returns the average or mean value of the non-missing values for numeric
columns. If UNIQUE is specified then only unique values are used to calculate the
mean.

COUNT ([UNIQUE] col | *)

Returns the number of non-missing values encountered. If UNIQUE is specified,
then only the unique values add to the count. An asterisk as the argument returns
the number of all rows selected regardless of whether the values are valid, missing
or undefined.

FIRST (col)

Returns the first non-missing value encountered. The type of variable returned
corresponds to the type of the variable being referenced.

LAST (col)

Returns the last non-missing value encountered. The type of variable returned
corresponds to the type of the variable being referenced.

MAX (col)

Returns the maximum non-missing value encountered. The type of variable
returned corresponds to the type of the variable being referenced.

MIN (col)

Returns the minimum value of the non-missing values. The type of variable
returned corresponds to the type of the variable being referenced.

STD ([UNIQUE] numeric_col)

Returns the standard deviation of the non-missing numeric values. If UNIQUE is
specified, then only the unique values are used in calculating the standard
deviation.

SIR/XS SQL 147

SUM ([UNIQUE] numeric_col)

Returns the sum of the non-missing values. If UNIQUE is specified, then only the
unique values are summed.

SIR/XS SQL 148

System Tables

 System tables contain information about the database(s) and tabfile(s) currently
connected. SELECT can be used to retrieve information from these in the same manner as
from any other table or view though the menus can be used to access much of the same
information in a more convenient manner.

As an example of using these tables, the following three SELECTs use the $REC system
view which describes records. The first query retrieves all the information about each
record in the default database; the second retrieves all the information about each record
in the COMPANY database; the third retrieves all the information about the OCCUP record in
the COMPANY database.

SELECT * FROM $REC
SELECT * FROM COMPANY.$REC
SELECT * FROM COMPANY.$REC WHERE RECNAME EQ 'OCCUP'

Most of the system tables are views. That is, they are not physical tables but are
representations of the data presented by SQL as tables.

Database System Tables

Database system tables are all views and access information for a single database at a
time. These views can be referenced on the FROM clause of the SELECT statement as:
[database.]viewname

$DBCASE

Case schema information.

$DBDOC

Case and record document text.

$DBSTATS

Database general information.

$REC

Record schema information.

$SORTID

SIR/XS SQL 149

Record sort-ids or keys.

$VALLABEL

Variable value labels.

$VALVALUE

Variable valid values.

$VAR

Variable schema information.

$VARLABEL

Variable labels.

Tabfile Views and Tables

$PASSWORD, $SECURITY and $VALUE_LABEL are tables; all the others are views. The
tabfile views and tables can be referenced on the FROM clause of the SELECT as: [tabfile.]
viewname

$COL

Column schema information.

$INDEX

Index definitions.

$INDEXCOL

Index column definitions.

$PASSWORD

Group and user names and passwords.

$SECURITY

Tabfile and table permissions.

$TAB

SIR/XS SQL 150

Table schema information.

$TFSTATS

Tabfile general information.

$TRANGE

Column valid and missing ranges.

$VALUE_LABEL

Value labels.

SIR/XS SQL 151

$COL - Table Columns Schema

 Contains one row for each column (or variable) in each table of the tabfile. The columns
are:

TABFILE

Tabfile name.

TABLE

Table name.

VARNAME

Variable name.

VARTYPE

Variable type.

VARLEN

Variable length.

VARLABEL

Variable label.

SCALE

Variable scaling factor.

BIAS

Integer bias factor.

NRANGES

Number of missing or valid ranges.

MAP

Variable display map.

DECIMAL

SIR/XS SQL 152

Number of decimal places displayed.

FILL

Fill character for display.

LZERO

Leading zero character.

LNEG

Leading negative character for display.

LPOS

Leading positive character for display.

MISSING

Missing value character.

NULL

Missing value string.

FORMAT

Format for printing number.

SEPARATOR

Separator character to left of value.

THOUSANDS

Thousands separation character.

TNEG

Trailing negative character.

TPOS

Trailing positive character.

VALLABS

SIR/XS SQL 153

Value labels defined (Yes/No).

ZERO

String printed for hard zero.

SIR/XS SQL 154

$DBCASE - Database Case Schema

 Contains only one row with general database parameters. The columns are:

DBNAME

Database name.

UPLEVEL

Update level.

CASEID

CASEID variable name.

CASEIDOR

CASEID order (ascending or descending).

CASEIDTY

CASEID variable type.

NCASES

Number of cases.

NRECS

Number of records.

NTEMPS

Number of temporary variables.

NVARS

Number of variables.

MAXCASES

Maximum number of cases.

MAXRECS

SIR/XS SQL 155

Maximum number of records.

MAXRECTY

Maximum number of defined records. (Different record definitions not individual
records in the database.)

SIR/XS SQL 156

$DBDOC - Database Documentation

 Contains one row for each line of documentary text describing the database. The
columns are:

RECNUM

Record number.

RECNAME

Record name.

LINENUM

Line number of text line.

LINE

Line of documentary text.

SIR/XS SQL 157

$DBSTATS - Database Statistics

 Contains only one row with database statistics. The columns are:

DBNAME

Database name.

UPLEVEL

Update level.

CREDATE

Creation date.

CRETIME

Creation time.

CHNGDATE

Date of most recent update.

CHNGTIME

Time of most recent update.

NCASES

Number of cases.

NRECS

Number of records.

NVARS

Number of variables.

NTEMPS

Number of temporary variables.

AVGRECS

SIR/XS SQL 158

Average number of records per case.

CASEIDSZ

Size of CASEID in bytes.

CIRLEN

Length of CIR in SIR/XS words.

KEYSIZE

Key size in bytes.

ACTDATB

Number of active data blocks.

INADATB

Number of inactive data blocks.

DATBLKSZ

Data block size.

MINDATSZ

Minimum size of data record in SIR/XS words.

MAXDATSZ

Maximum size of data record in SIR/XS words.

ACTINDB

Number of active index blocks.

INAINDB

Number of inactive data blocks.

INDBLKSZ

Size of index block in SIR/XS words.

INDEXLEN

SIR/XS SQL 159

Length of index in SIR/XS words.

MAXINENT

Maximum number of index entries in one block.

MAXRECVR

Maximum number of variables in any one record.

SIR/XS SQL 160

$INDEX - Tabfile Index Definitions

 Contains one row for each index in the specified tabfile. The columns are:

TABFILE

Tabfile name.

TABLE

Table indexed.

INDEX

Name of index on table.

SIR/XS SQL 161

$INDEXCOL - Tabfile Index Column Definitions

 Contains one row for each column in each index on tables in the specified tabfile. The
columns are:

TABFILE

Tabfile name.

TABLE

Table indexed.

INDEX

Name of index on table.

COL

Name of the column in index.

SIR/XS SQL 162

$PASSWORD - Group User Names

 Contains one row for each group and group-user name. Only a DBA has the authority to
view this table. The columns are:

GRPNAME

Group name.

USERNAME

Name of the user within a group.

SIR/XS SQL 163

$REC - Database Record Schema

 Contains one row for each defined type of record in the database. The columns are:

RECNUM

Record number.

RECNAME

Record name.

COUNT

Number of records of this type in the database.

IDCNT

Number of sort ids (including the case id).

LENGTH

Length of records in SIR/XS words.

LOCK

Lock status (YES/NO).

MAX

Max number of records of this type per case.

VARCNT

Number of record variables in this record.

SIR/XS SQL 164

$SECURITY - Tabfile and Table Permissions

 Contains a row for the tabfile, and a row per table and user permission. Only a DBA has
the authority to view this table. Each column which refers to a permission holds one of
three values, N, Y or G. These mean respectively, no permission, permission and
permission with the ability to grant this permission to others. The columns are:

GRPNAME

Group name holding these permissions.

USERNAME

User holding these permissions.

TABLE

Table name.

COLADD

Able to add columns.

TABFILECONNECT

Able to connect tabfile.

TABCREATE

Able to create tables.

DBA

Able to act as Database administrator.

COLDELETE

Able to delete columns.

ROWDELETE

Able to delete rows.

TABLEDROP

SIR/XS SQL 165

Able to drop table.

INDEXCREATE

Able to create or drop an index.

ROWADD

Able to add rows.

COLMOD

Able to modify columns.

SELECT

Able to select rows.

ROWMOD

Able to modify rows.

GRANTERGRPNAME

Group granting permission to this group or user.

GRANTERUSERNAME

User granting permission to this group or user.

COLPERM

Columns permissions if a table permission entry in column order.

SIR/XS SQL 166

$SORTID - Sort Id Variables

 Contains one row for each keyfield (sort id) of every defined record in the database. The
columns are:

RECNUMB

Record number.

RECNAME

Record name.

VARNAME

Variable name.

ORDER

Sort order (Ascending or Descending) of the sort id variable.

TYPE

Variable type.

SIR/XS SQL 167

$TAB - Tables

Contains one row for each table on the tabfile. The columns are:

TABFILE

Tabfile name.

TABLE

Table name.

UPLEVEL

Update level.

DATECREATE

Date of creation.

TIMECREATE

Time of creation.

DATEUPDATE

Date of last update.

TIMEUPDATE

Time of last update.

NROWS

Number of rows in table.

NCOL

Number of columns in table.

NINDEX

Number of indexes associated with table.

MAXROWS

SIR/XS SQL 168

Maximum length of each row in bytes.

LENGTH

Length of fixed area of each row in bytes.

NBLOCKS

Number of data blocks in the table.

NROWDELETE

Number of rows deleted.

PADDING

Padding percentage (1-99).

SIR/XS SQL 169

$TFSTATS - Tabfile Statistics

 Contains one row for each tabfile currently connected. The columns are:

TABFILE

Tabfile name.

DATECREATE

Date of creation.

TIMECREATE

Time of creation.

DATEUPDATE

Date of most recent update.

TIMEUPDATE

Time of most recent update.

NTABLES

Number of tables on tabfile.

TABFILELDI

Tabfile filename (logical dataset identifier).

BLOCKSZ

Tabfile block size.

JOURNAL

Internal filename of journal file if defined.

SIR/XS SQL 170

$TRANGE - Tabfile Column Ranges

 Contains one row for each missing or valid range for any column in every table of the
specified tabfile. The columns are:

TABFILE

Tabfile name.

TABLE

Table name.

VARNAME

Variable (or Column) name.

RANGETYPE

Type of range
'Valid' or 'Missing' for values
'Valid [,]' or 'Missing [,]' for ranges.

LOW

Minimum value.

HIGH

Maximum value.

SIR/XS SQL 171

$VALLABEL - Database Value Labels

 Contains one row for each value label of each variable of every defined record for the
database. The columns are:

RECNUM

Record number.

RECNAME

Record name.

VARNAME

Variable name.

NVAL

Numeric value.

SVAL

String value.

LABEL

Value label.

SIR/XS SQL 172

$VALUE_LABEL - Tabfile Value Labels

 Contains one row for each value label in tables of the specified tabfile. The columns are:

TABLE

Table name.

VARNAME

Column (or variable) name.

NVALUE

Value if the column is numeric.

SVALUE

Value if the column is a string.

LABEL

Value label.

MVALUE

Reserved for future use.

REFCOUNT

Reserved for future use.

SIR/XS SQL 173

$VALVALUE - Database Valid Values

 Contains one row for each valid value of each variable of every defined record for the
current database. The columns are:

RECNUM

Record number.

RECNAME

Record name.

VARNAME

Variable name.

NVAL

Numeric value.

SVAL

String value.

SIR/XS SQL 174

$VAR - Database Variables

 Contains one row for each variable of every record type of the current database. The
columns are:

RECNUM

Record number.

RECNAME

Record name.

VARNAME

Variable name.

LABEL

Variable label.

TYPE

Variable type.

LENGTH

Variable length in bytes.

NMIN

Minimum numeric value.

NMAX

Maximum numeric value.

SMIN

Minimum string value.

SMAX

Maximum string value.

MISS

SIR/XS SQL 175

Number of missing values.

NMISS1

Numeric missing value 1.

NMISS2

Numeric missing value 2.

NMISS3

Numeric missing value 3.

SMISS1

String missing value 1.

SMISS2

String missing value 2.

SMISS3

String missing value 3.

MAP

Date or time map.

SCALE

Scaling factor.

VALLABS

Whether value labels have been defined.

VVALS

Whether valid values have been defined.

SIR/XS SQL 176

$VARLABEL - Database Variable Labels

 Contains one row for each line of label information for each variable of every defined
record for the database. The columns are:

RECNUM

Record number.

RECNAME

Record name.

VARNAME

Variable name.

LINENO

Line number.

LABEL

Label text.

SIR/XS SQL 177

Reserved Keywords

Certain keywords are reserved for use by SQL. Avoid using them out of context. If you
must use one of these words as a column or file name, enclose the word with quotation
marks:

SELECT varname "keyword" FROM table_name

The longest form of each reserved word is shown; avoid direct contractions of these
words or plurals as these are also reserved.

ADDCOL
AGGREGAT
ALL
ALTER
AS
ASC
ATTACH
ATTRIBUTE
AUTO
AUTODISP
BACK
BACKWARD
BATCH
BL
BLANKS
BLKSIZE
BLOCKS
BOLD
BR
BREAK
BT
BUFFERS
BUFNO
BUT
BY
BYE
CALL
CASE
CASELESS
CASELIM
CATALOG
CATEGORICAL

DISTINCT
DOUBLE
DPL
DPLACES
DROP
DTL
ECHO
EDIT
EJECT
ENTER
ERASE
ESCAPE
EXCEPT
EXCL
EXEC
EXPERT
EXPONENT
EXPORT
FAM
FAMILY
FILENAME
FILES
FILL
FIRST
FIXED
FLOAT
FMT
FOOT
FOOTING
FOR
FORMAT
FROM

LOWER
LOWERCASE
LPOS
LPOSSIGN
LRECL
MAX
MAXIMUM
MEM
MEMBER
MEMORY
MINIMUM
MISS
MISSCHAR
MISSING
MOD
MODCOL
MODES
MODHIST
MODIFY
MODS
MONITOR
NAME
NEG
NOCOUNTS
NOLABELS
NOSECURITY
NOTABFILE
NOTNULL
NOVICE
NOWAIT
NOWORKSPACE
NULL

READ
REAL
RECALL
RECCOUNT
RECFM
RECLIM
RECSIZE
RELATION
REM
REMARKS
RENAME
REPORTS
REV REVERSE
REVOKE
RIGHT
RLIM
RT
SAMPLE
SAVE
SCALE
SCR
SCRATCH
SCREEN
SECURITY
SEL
SELECT
SELLIM
SEP
SEPARATE
SEPARATOR
SET
SETTING

TIMEC
TINYINT
TNEG
TNEGSIGN
TO
TOTALS
TPL
TPOS
TPOSSIGN
TREE
TRIPLE
TT
TTITLE
UC
UCOL
UHEAD
UNDCOL
UNDEFINE
UNDERCOL
UNDERHEAD
UNDHEAD
UNION
UNIQUE
UNQ
UPDATE
UPPER
UPPERCAS
USING
USRTSIZ
VALLAB
VALUES
VARCHAR

SIR/XS SQL 178

CENTER
CHARACTER
CLEAR
CLIM
CLR
CMD
CMDINCR
CMPTRIM
CMPUPPER
COL
COLHEAD
COLUMNS
COM
COMMANDS
CONTINUE
CONTROLS
CREATE
CTR
DATABASE
DATE
DATEC
DB
DBA
DBL
DBMS
DEBUG
DEC
DECIMAL
DECSIGN
DELCOL
DELETE
DESC
DET
DETAIL
DIFF
DISCONNECT
DISPLAY
DIST

GET
GRANT
GROUP
GROUPING
GRP
GRPSIZE
HAVING
HCTR
HEAD
HEADCENT
HEADCTR
HEADING
HOLD
HOST
IN
INCL
INCLUDE
INDENT
INDEX
INDICES
INPUT
INSERT
INTEGER
INTER
INTO
JOURNAL
L
LAB
LABEL
LAST
LC
LEFT
LIMITS
LININCR
LIST
LNEGSIGN
LOCAL
LOG

NUMERIC
OBSERVATION
OFF
ON
ONLY
ORDER
OUT
OUTER
OUTLINE
OUTPUT
P
PAGE
PAGEHEAD
PAGELIM
PAGES
PAGESIZE
PAGING
PASSWORD
PATH
PATHLESS
PATHS
PCTFREE
PERMHIST
PG PGH
PGHEAD
PGLIM
PGS
PGSIZE
PREFIX
PRESET
PRINT
PROC
PROCEDURE
PROCS
PROMPT
PS
PW
R

SGL
SHOW
SINGLE
SLIM
SMALLINT
SORT
SPACE
SPACEC
SPACED
SPACES
SPACET
SPARSE
SPLIT
SPSS
SRLEN
SRTSIZE
START
STATS
STORE
STOT
STRUCTURE
SUBFILE
SUBTOTAL
SUPPRESS
SYN
SYNONYMS
SYNS
SYSTABS
T
TAB
TABFILE
TABLE
TABSIZE
TEXCLUDE
TF
THOUSAND
THOUSIGN
TIME

VARIABLE
VCHR
VIA
VIEW
VOL
VOLUME
WEIGHT
WHERE
WIDTH
WORK
WRAP
WRITE
X
ZERO

SIR/XS SQL 179

Pattern Matching

Pattern matching applies to the use of the LIKE keyword in a WHERE clause. This feature
enables the finding of text strings with particular characteristics such as all starting with
the same character.

Patterns are described by the use of symbol characters together with ordinary characters
which are to be matched in the string being searched.

 Characters in a pattern are taken literally unless they are one of the pattern matching
symbols described below. For example,

 WHERE ADDRESS LIKE 'Ave'

finds all values of ADDRESS containing the string "Ave". The string "Ave" may appear
anywhere. This is different to the EQ relational operator, as in:

 WHERE ADDRESS EQ 'Ave'

This condition will only be true when ADDRESS is exactly equal to the string "Ave".

For example, to find the name of everyone whose first name starts with "B" and second
name starts with "L":

SELECT ID NAME CURRPOS -
FROM EMPLOYEE -
WHERE NAME LIKE '%B?*L'

searches for and finds all rows in the EMPLOYEE table in which NAME starts with the letter
"B" followed by zero, one, or more intervening characters followed by the letter "L".

Trim and Upper

Pattern matching is affected by system parameters CMPTRIM and CMPUPPER. CMPTRIM
causes trailing blanks of strings to be trimmed before they are compared. CMPUPPER maps
all strings to upper case before the comparison takes place. Generally, when using the
LIKE function, SET CMPTRIM and CLEAR CMPUPPER. By default, both parameters are SET.

Symbols

The symbols are:

SIR/XS SQL 180

%

beginning of line

$

end of line

?

match any single character

[

start a character class

-

range of characters

]

end a character class

!

negate a character class

*

closure, zero or more occurrences

+

closure, one or more occurrences

Beginning of the Line %

 The % character specifies searching for patterns at the beginning of a string variable.

To find all rows that have a string variable which begin with the word PROCESS, use:

 ... WHERE variable LIKE '%PROCESS'

SIR/XS SQL 181

This returns only those rows that begin with the string "PROCESS". It does not return
rows containing "PROCESS" in the middle of the variable such as "END PROCESS" or
"EXIT PROCESS".

End of the Line $

 The $ character specifies searching for patterns at the end of a string variable.

To search for all records in which the NAME column ends in "smith" :

SELECT ID NAME FROM EMPLOYEE -
 WHERE NAME LIKE 'smith$'

Match Anything Character ?

The character ? matches any single character. For example,

... WHERE NAME LIKE 'A?e'

finds names containing strings such as:

Aae Abe Ace Axe Aye Aze

and also:

A+e A-e A*e A/e A,e A.e A(e A)e A'e A"e

The match anything character can appear more than once in a pattern. The next example,
selects all records in which the customer identifier begins with the letters AC followed by
any three characters followed by a 9. Notice the use of two symbols, the % and the ?.

SELECT CUSTID CUSTNAME ADDRESS PHONE -
 FROM CUSTFILE -
 WHERE CUSTID LIKE '%AC???9'

Classes of Characters [...]

Search for a class or set of characters by enclosing them in square brackets. Some
examples of character classes are:

[12]

match all instances of "1" or "2" or both

SIR/XS SQL 182

[123]

match all possible combinations of "1", "2", and "3"

[a-z]

match lowercase letters

[A-Z]

match uppercase letters

[0-9]

match decimal digits

[J-Q]

match uppercase letters "J" through "Q"

[A-Za-z]

match uppercase and lowercase letters

For example, to locate information on 2005 accounts. The account identifiers for 2005
begin with an uppercase letter followed by the string "2005". The Where clause might be:

... WHERE ACCTID LIKE '%[A-Z]2005'

Negated Character Class [!...]

To match all lines except those containing the members of a character class, place the
negation character ! at the beginning of the class inside the square brackets. For
examples:

[!12]

match all characters except "1" and "2"

[!a-z]

match all characters except lower case letters

[!A-Z]

match all characters except upper case letters

[!0-9]

SIR/XS SQL 183

match all characters except decimal digits

[!J-Q]

match all characters except upper case letters "J" through "Q"

[!A-Za-z]

match all characters except upper and lower case letters

For example, to search and delete all rows in which the value of DEPTNUM is not
composed entirely of digits.

DELETE FROM TCOMPANY.TAB1 -
 WHERE DEPTNUM LIKE '[!0-9]'

Closure Character (Zero or More Occurrences) *

To search for strings or patterns of characters that occur an indefinite number of times
(known as a closure) specify the closure character "*" after the required pattern.

Some examples of closure patterns are:

a*

zero or more occurrences of lowercase a

[A-Z]*

zero or more uppercase letters

[Q3x]*

zero or more occurrences of "Q" or "3" or "x"

[a-zA-Z]*

zero or more letters, upper or lower case
this pattern matches a word of text or a null string

For example, to search for all text that appears inside a pair of parentheses :

... WHERE STRING LIKE '(?*)'

The pattern requests all lines that contain "(" followed by zero or more occurrences of
any character followed by ")".

SIR/XS SQL 184

Similarly, to search for all Illinois accounts. These are identified in the ACCTID when
characters 3 and 4 are "IL" and the last two (verification) digits are "13". The ACCTID
may be 10 to 17 characters long and therefore the last two digits may appear in positions
9-10, 10-11, ..., 16-17. The closure character takes care of this problem.

SELECT * FROM ACCOUNTS -
 WHERE ACCTID LIKE '%??IL?*13$'

Note the beginning and end of line characters. The % character followed by ??IL makes
sure that "IL" appears in position 3 and 4. The $ character preceded by 13 makes sure that
"13" appears as the last two digits. The ?* notation means that any number of characters
can appear between "IL" and "13".

Closure Character (One or More Occurrences)+

This specifies a search for one or more occurrences of a pattern instead of zero or more
occurrences. For example, the following command:

... WHERE STRING LIKE ' [aehrt]+ '

searches for complete words made up of the letters a,e,h,r,t.

The search pattern requests strings containing a blank followed by one or more
occurrences of the letters a,e,h,r,t followed by another blank. The lines listed contain
words such as "a", "are", "at", "here", "rather", "that", "the", "there", "three", etc.

Escape Character @

 The symbols are instructions sent to the pattern matching routine. Occurrences of these
symbols cannot be searched for in the normal way. A search for question marks in a field
cannot be specified as:

... WHERE string LIKE '?'

because this command will match every character.

The escape character @ is provided to handle this situation. Precede any symbol
character with @, and the character is treated literally. Thus to search for question marks
enter:

.... WHERE string LIKE '@?'

SIR/XS SQL 185

In addition, symbols lose their meaning when they appear out of context (i.e. the escape
character should not be used) as follows:

%

when not at the beginning of the pattern

$

when not at the end of the pattern

*

at the beginning of the pattern

+

at the beginning of the pattern

!

not at the beginning of a character class

-

at the beginning or end of a character class

Symbols do not apply in the specification of a character class except for:

!

at the beginning of the character class

-

in the middle of the character class

@@

anywhere in the character class

SIR/XS SQL 186

! SQL COMMENTS................................. 12
PATTERN SEARCHING........................ 181
$COL .. 151
$DBCASE.. 154
$DBDOC ... 156
$DBSTATS .. 157
$INDEX .. 160
$INDEXCOL.. 161
$PASSWORD....................................... 162
$REC .. 163
$SECURITY... 164
$SORTID... 166
$TAB .. 167
$TFSTATS... 169
$TRANGE ... 170
$VALLABEL 171
$VALUE_LABEL 172
$VALVALUE....................................... 173
$VAR.. 174
$VARLABEL 176
PATTERN SEARCHING........................ 180
PATTERN SEARCHING........................ 184
ABORT ... 73
FUNCTION.. 141
ABS FUNCTION 141
FUNCTION.. 146
AGGREGATION FUNCTIONS......... 16, 146
ALIAS... 10, 23
FUNCTION.. 141
ALL BUT... 40
ALL FUNCTION 141
ALTERNATE INPUT 53, 54
FUNCTION.. 141
ANY FUNCTION 141
AS .. 10, 23
SELECT .. 111
AS SELECT ... 111
CREATE VIEW 111
VIEW .. 111
SELECT .. 18
ATTRIBUTE .. 67
CREATE.. 67
AUTO ... 65
AUTODISP .. 51

DISPLAY .. 51
SELECT .. 53
AUTOSAVE... 51
STATISTICS .. 146
AVG ... 16
FUNCTION.. 146
SUBTOTAL ... 46
TOTAL.. 48
AVG FUNCTION.................................. 146
BA .. 73
BACKUP TABFILE 137
PATTERN SEARCHING........................ 180
BETWEEN OPERATOR 36
BIAS ... 122
DISPLAY ... 44
BTITLE ... 42
BYE .. 71
CASE .. 51
LIMITS ... 51
MODES ... 51
STRING COMPARISONS 51
CASELIM .. 51
SELECT .. 24
CATEGORICAL 120
CDATE FUNCTION.............................. 142
CENTER.. 42
CENY ... 77
CHARACTER 120
CLEAR.. 50
CMPTRIM ... 51
CMPUPPER ... 51
COLHEAD... 52
DISPLAY .. 41
COLUMN DATA TYPES 120
COLUMN FORMATS 27
COLUMN HEADINGS 54
VIEW .. 111
COLUMN SEPARATION 56
COLUMN WIDTH 59
COMPILE_ONLY 103
SELECT .. 24
SELECT .. 18
DATABASE... 63
CONSTANTS ... 10

SIR/XS SQL 187

CONSTRAINTS UNIQUE 119
CONTINUATION CHARACTER 52
CONTINUE ... 52
COUNT ... 16, 30
FUNCTION.. 146
STATISTICS .. 146
SUBTOTAL ... 46
TOTAL.. 48
COUNT FUNCTION 146
TABFILE ... 116
TABLE .. 118
VIEW .. 111
CREATE INDEX 126
CREATE PATH 108
CREATE TABFILE 116
CREATE TABLE 118
AS SELECT ... 111
CHECK OPTION 112
CREATE VIEW 111
FROM ... 111
GROUP BY .. 111
HAVING ... 112
OUTER ... 112
WHERE... 112
FUNCTION.. 142
CTIME FUNCTION 142
DATA ENTRY 100
CONNECT... 63
DATE.. 52, 120
FORMAT... 27
FUNCTION.. 142
FUNCTION.. 142
DATEC FUNCTION............................... 142
DB .. 75
SELECT .. 24
DECIMAL ... 120
WORKSPACE .. 59
DEFINE_SECURITY....................... 52, 132
COMPILE_ONLY 101
DELETE FROM.................................... 101
WHERE... 101
DETAIL .. 52
DETAIL LINES 52
DISCONNECT 69
BREAK ... 44
COLUMN .. 41

DISPLAY .. 39
GROUP ... 45
MISSING VALUES 55
OFF .. 45
ON.. 45
OUTLINE .. 45
DISPLAY JOURNAL 139
DISTINCT ... 15
SELECT .. 15
DOUBLE ... 53
DOUBLE PRECISION 121
DPLACES.. 53
FORMAT... 27
DROP.. 70
ECHO ... 53
JOINS ... 20
CASE .. 29
CASE .. 20
PATH.. 20
END.. 71
PATTERN SEARCHING........................ 181
ENTER INTO 102
LABELS .. 102
EQ OPERATOR...................................... 36
SUBTOTAL... 47
TOTAL.. 48
EX .. 75
SUBTOTAL ... 47
TOTAL.. 48
EXCLUDE ... 40
EXEC.. 53
EXECUTION PARAMETERS................... 73
FUNCTION.. 142
EXISTS FUNCTION.............................. 142
EXIT ... 71
EXPONENT ... 53
FORMAT... 27
EXPORT.. 134
RECSIZE ... 134
EXPRESSIONS 11
SELECT .. 18
DEFAULT ... 53
FAMILY.. 53
FILENAME.................................... 65, 116
FIRST ... 16
FUNCTION.. 146

SIR/XS SQL 188

FIRST FUNCTION................................ 146
FIXED... 122
FLOATING POINT 121
FMT.. 73
FOOTING .. 42
DATE.. 27
DPLACES.. 27
EXPONENT ... 27
FORMAT... 119
LABEL .. 27
MISSCHAR ... 27
NAME... 27
NULL.. 27
SELECT .. 25
SEPARATOR ... 28
TIME .. 28
VALLAB ... 28
WIDTH ... 28
ZEROS .. 28
CREATE VIEW 111
FROM ... 108
JOINS ... 19
SELECT .. 19
GE OPERATOR...................................... 36
GET .. 72
GPW ... 76
GRANT ... 128
DISPLAY .. 45
CREATE VIEW 111
SELECT .. 16, 29
CREATE VIEW 112
GROUPING ... 53
GRP .. 76
GRPSIZE ... 54
GT OPERATOR...................................... 36
GROUP BY .. 29
HEADING ... 42
HIGHEST .. 123
IDENT BY ... 65
IDENTIFIED BY................................... 116
IN 73
DATE.. 42
PAGE.. 42
TIME .. 42
IN OPERATOR....................................... 36
DISPLAY .. 40

INCLUDE .. 40
INDEXES, UNIQUE.............................. 126
INNER JOIN .. 15
INPUT... 54
INSERT INTO 103
FUNCTION.. 142
INT FUNCTION 142
JOINS ... 22
FORMAT... 27
LABEL .. 54
FUNCTION.. 146
LAST .. 16
LAST FUNCTION 146
LE OPERATOR 36
LEADING ZEROS 60
LEFT... 42
LEFT OUTER JOIN................................. 15
FUNCTION.. 142
LEN FUNCTION 142
LIKE ... 36
PATTERN SEARCHING........................ 179
LINE SPACING 56, 58
LINE WIDTH ... 56
CONTROL COMMANDS 61
PATTERN SEARCHING........................ 179
LOGICAL OPERATORS.......................... 35
WHERE... 35
FUNCTION.. 143
LOWER... 49, 54
LOWER & UPPER CASE......................... 54
LOWER FUNCTION 143
LOWEST ... 123
LT OPERATOR 36
MASTER ... 54
FUNCTION.. 146
MAX... 16
TOTAL.. 48
MAX FUNCTION 146
FUNCTION.. 143
MAXIMUM FUNCTION........................ 143
DEFAULT ... 55
MEMBER .. 55
FUNCTION .. 146
MIN .. 16
SUBTOTAL ... 46
TOTAL.. 48

SIR/XS SQL 189

MIN FUNCTION 146
FUNCTION.. 143
MINIMUM FUNCTION 143
FUNCTION.. 143
MISS FUNCTION 143
FORMAT... 27
MISSCHAR ... 55
MISSING... 122
FUNCTIONS.. 30
MISSING VALUES,DISPLAY 55
FUNCTION.. 143
MOD FUNCTION 143
CASE .. 20
PATH.. 20
FROM ... 19
FORMAT... 27
VIEW .. 111
NAMES ... 9
NE OPERATOR...................................... 36
NODATA .. 134
NOINDEXES 134
NOSECURITY 134
NOT NULL .. 123
NOTABFILE .. 134
FUNCTION.. 143
NOW FUNCTION 143
NOWORKSPACE 134
FORMAT... 27
NULL.. 55
FUNCTION.. 143
NUM FUNCTION 143
NUMERIC ... 120
DISPLAY .. 45
DISPLAY .. 45
SELECT .. 31
CASELIM .. 24
DBMS ... 24
ON.. 31
OUTPUT ... 24
RECLIM .. 24
SAMPLE ... 24
SELLIM .. 24
ONLY ... 40
HAVING ... 29
ORDER BY .. 32
SELECT .. 32

OUT.. 73
OUTER ... 33
SELECT .. 33
CREATE VIEW 112
OUTER JOIN 15, 33
DISPLAY .. 45
FILENAME.. 55
OUTPUT ... 49, 55
SELECT .. 24
P 75
PARAMETERS 73
PASSWORD .. 63
FROM ... 20
MODES ... 55
PATH...................................... 20, 55, 108
PATTERN MATCHING........................... 36
PCTFREE 119, 126
PREFIX ... 63
PREPARE .. 73
PRESET .. 124
PRINT ... 49
PRINT FILE ... 55
CALL.. 62
PUBLIC... 129
PW.. 75
QPROFILE... 64
QUALIFYING NAMES 10
QUIT... 71
RANGES,MISSING............................... 123
READ ... 65
RECCOUNT FUNCTION 144
RECLIM .. 55
SELECT .. 24
RECORD LIMIT EXCEEDED 55
LIMITS ... 55
FUNCTION.. 144
RELATIONAL OPERATORS 35
WHERE... 35
RENAME VIEW 113
VIEW .. 111
RESTORE TABFILE 138
REVOKE ... 132
RIGHT .. 42
RIGHT OUTER JOIN 15
FUNCTION.. 144
RND FUNCTION 144

SIR/XS SQL 190

LIMITS ... 56
RS .. 75
SELECT .. 24
SAMPLING ... 24
SAVE.. 72
WORKSPACE .. 72
FUNCTION.. 144
SBST FUNCTION 144
SCALE .. 124
SCIENTIFIC FORMAT 53
SECURITY .. 64
COMPILE_ONLY 24
FORMAT... 25
FROM ... 19
GROUP BY 16, 29
INSERT INTO 103
SELECT .. 13
SELECT LIMIT EXCEEDED 56
SELECT .. 24
SELLIM .. 56
SELSIZE.. 56
SEPARATE.. 56
FORMAT... 28
SET... 50, 105
SELECT .. 24
SHOW... 50
FUNCTION.. 144
SIGN FUNCTION 144
SINGLE... 56
SINGLE PRECISION............................. 121
SKIPPING COLUMNS 42
SORTING .. 32, 57
SPACEC .. 56
SPACED.. 57
SPACES .. 57
SPACET .. 57
REPORT.. 57, 58
SPACING 56, 57, 58
SUBTOTALS ... 57
SQL COMMENTS 12
SRTSIZE ... 57
FUNCTION.. 141
STATISTICS .. 57
STATS .. 57
FUNCTION.. 146
STD .. 16

SUBTOTAL ... 46
TOTAL.. 48
STD FUNCTION................................... 146
STOP .. 71
STRING .. 120
SUBQUERIES .. 37
AVG ... 46
COUNT ... 46
ERASE .. 47
MAX... 46
MIN .. 46
STD .. 46
SUBTOTAL ... 57
SUM ... 46
EXCEPT .. 47
SUBTOTALS ... 44
FUNCTION.. 147
STATISTICS .. 147
SUBTOTAL ... 46
SUM ... 16
TOTAL.. 48
SUM FUNCTION.................................. 147
PATH.. 63
SUPQ .. 75
PATTERN SEARCHING........................ 184
SYMMETRIC OUTER JOIN..................... 15
CREATE.. 68
SYNONYM.. 68
SYNTAX RULES...................................... 9
SYSTEM DATE MAP 52
DATE MAP.. 52
SYSTEM TABLES 148
T PRINT POSITIONING 42
TABBING COLUMNS............................. 42
CONNECT... 65
DEFAULT ... 57
TABFILE ... 57
TABSIZE ... 58
TBFN .. 76
TBL .. 76
TFFN .. 76
TFL... 76
FORMAT... 28
TIME .. 58
DEFAULT ... 58
TIME MAPS .. 58

SIR/XS SQL 191

FUNCTION.. 144
TIMEC FUNCTION 144
TO .. 108
FUNCTION.. 144
TODAY FUNCTION 144
AVG ... 48
COUNT .. 48
ERASE .. 48
EXCEPT .. 48
MAX... 48
MIN .. 48
STD .. 48
SUM ... 48
TOTALLING.. 58
TOTALS.. 44, 58
TRAILING BLANKS............................... 51
TRANSFER_VALLAB 58
FUNCTION.. 144
TRIM FUNCTION 144
TRIPLE ... 58
TTITLE ... 43
UNDERCOL .. 58
UNDERLINING...................................... 58
UNDHEAD .. 58
SELECT .. 34
UNION .. 34
SELECT .. 15
UNIQUE.. 15, 123
UNIQUE INDEX................................... 126
SELECT .. 15
UNQ ... 15
UPDATE ... 105
FUNCTION.. 145
UPPER .. 49, 59

REPORT.. 59
UPPER FUNCTION............................... 145
UPPERCASE TRANSLATION 51
UPW ... 76
USER .. 76
USING .. 108
VALID .. 124
FORMAT... 28
FUNCTION.. 145
VALLAB ... 59
VALLAB FUNCTION 145
VALUE LABELS............................ 59, 124
VALUES ... 103
VARCHAR .. 59
SELECT .. 18
VARYING ... 125
VERIFY .. 136
VIA... 108
VIEW .. 107
CREATE VIEW 112
WHERE... 35
FORMAT... 28
WIDTH ... 59
CREATE VIEW 112
WITH GRANT OPTION 130
WORK .. 59, 77
WORKPW ... 77
DEFAULT ... 59
WORKSPACE .. 72
WRITE .. 49, 65
WS.. 75
X PRINT POSITIONING.......................... 42
FORMAT... 28
ZEROS .. 60

