
SIR/XS Host/API 1

SIR API Overview .. 5
The DBMS Functions ... 6
The DBMS LIST Commands ... 8
The SQL Functions ... 9

The SQL LIST Commands.. 10
Example Programs .. 11

ACME SQL .. 11
SIRDBMSE... 18

Compilation & Linkage .. 21
General Comments.. 22
Introduction... 23
Writing Programs with HOST .. 24
Initialisation .. 25
The Retrieval Stack... 26
Variable Descriptors ... 28
Case and Record Processing ... 30
Caseless Database Processing... 32
Multiple Database Mode in HOST ... 33
Multiple User Support with HOST... 34
HOST 2.2 Lock Types .. 35
Routine Formal Parameters... 36

TABLE 1... 36
Overview of the HOST Subroutines ... 37

Initialisation Routines ... 37
Control Routines ... 37
Termination Routines.. 37
Case Processing Routines ... 38
Record Processing Routines ... 39
Key Creation Routines .. 40
Key Definition Routines ... 40
Variable Modification Routines.. 41
Variable Retrieval Routines.. 41
General Routines... 41
Utility Routines... 43
Advanced Key Definition Routines .. 43
Advanced Data Modification Routines... 43

Advanced Data Retrieval Routines... 44
Database Switching... 45

ZAFTER ... 47
ZATTR.. 48
ZBEGIN.. 49
ZBLTRC ... 50
ZCACHE... 51
ZCALL.. 52
ZCCNT ... 53
ZCCNTD... 54

SIR/XS Host/API 2

ZCDEL.. 55
ZCEXIT .. 56
ZCFIND .. 57
ZCFRST.. 58
ZCGDMY ... 59
ZCIS.. 60
ZCISD... 61
ZCLAST ... 62
ZCLEAR... 63
ZCLOCK... 64
ZCNEXT... 65
ZCPREV ... 66
ZCRDMY ... 67
ZCREST.. 68
ZCSAM... 69
ZCSAMD.. 70
ZCWRIT ... 71
ZDESC.. 72
ZDESCB ... 73
ZDESCD... 74
ZDESCM .. 75
ZDETAL... 76
ZDTTKY... 77
ZDTTRC... 78
ZDTXIN.. 79
ZDTXKY .. 80
ZDTXRC... 81
ZEND.. 82
ZENDDB .. 83
ZERMSG .. 84
ZEXIT ... 85
ZFPTKY ... 86
ZFPTRC.. 87
ZFPXKY ... 88
ZFPXRC ... 89
ZFROM... 90
ZINTKY.. 91
ZINTRC .. 92
ZINXDT.. 93
ZINXKY ... 94
ZINXRC.. 95
ZINXTM... 96
ZLABEL ... 97
ZLABLN... 98
ZLABLS ... 99
ZLCKRT... 100

SIR/XS Host/API 3

ZLOGIN.. 101
ZMSLAB .. 102
ZMSTRC... 103
ZNCASE... 104
ZNEW... 105
ZNOR.. 106
ZNORD... 107
ZNRECS ... 108
ZNSIDS... 109
ZNVARS... 110
ZOPEN.. 111
ZOPT... 112
ZORDB... 113
ZOSDB ... 115
ZRCNT ... 117
ZRCNTD... 118
ZRCNTL... 119
ZRCTDT... 120
ZRCTFP.. 121
ZRCTIN .. 122
ZRCTRC... 123
ZRCTST.. 124
ZRCTTM .. 125
ZRCXDT... 126
ZRCXFP ... 127
ZRCXIN.. 128
ZRCXST ... 129
ZRCXTM.. 130
ZRDEL.. 131
ZREXIT .. 132
ZRFIND .. 133
ZRFRST.. 134
ZRGDMD ... 135
ZRGDML.. 136
ZRGDMY ... 137
ZRIS.. 138
ZRISD... 139
ZRISL ... 140
ZRLAST ... 141
ZRLOCK... 142
ZRNAMD ... 143
ZRNEXT... 144
ZRNUM .. 145
ZRNUMD ... 146
ZRPREV ... 147
ZRRDMY ... 148

SIR/XS Host/API 4

ZRREST.. 149
ZRSAM... 150
ZRSAMD.. 151
ZRSAML .. 152
ZRWRIT ... 153
ZSDESC.. 154
ZSECLV ... 155
ZSECUR ... 156
ZSTART ... 157
ZSTTKY ... 158
ZSTTRC.. 159
ZSTXKY... 160
ZSTXRC ... 161
ZTHRU ... 162
ZTIME .. 163
ZTMTKY.. 164
ZTMTRC .. 165
ZTMXIN... 166
ZTMXKY ... 167
ZTMXRC.. 168
ZUNTIL .. 169
ZUPLEV ... 170
ZUSER.. 171
ZVARLB... 172
ZVERS.. 173
ZVNAME ... 174
ZVTYPE ... 175
ZWITH.. 176

Program Layout .. 177
A Typical HOST Program Layout .. 177
Another Typical HOST Program Layout .. 179
A Note on Error Checking .. 181

Print the Value of a Variable In a Record... 181
DBMS Retrieval Version... 181
HOST Retrieval Version ... 181

Retrieval Update with RECORD IS Nested within a PROCESS CASE ALL........... 184
DBMS Retrieval Version... 184
HOST Retrieval Version ... 184

RECORD IS for a Caseless Database... 186
DBMS Retrieval Version... 186
HOST Retrieval Version ... 186

Multiple Nested Network Retrieval .. 187
DBMS Retrieval Version... 187
HOST Retrieval Version - Function C .. 188

Reserved Entry Point Names and Common Blocks ... 193
Common Blocks.. 194

SIR/XS Host/API 5

SIR API Overview

The SIR/APIs are two simple sets of five functions (one for SIRDBMS and one for
SIRSQL). These APIs can be used to develop your own front-ends for SIR database
management engines.

The INIT function initialise the system and defines two call back routines to handle the
output from the API. The first of these callbacks (writeLine) handles output which would
normally go to the main window, and the second (writeData) handles output from query
type (LIST) commands. The initialise function also defines the start parameter string that
you would normally use to start SIRDBMS or SIRSQL (eg: DB=COMPANY PW=COMPANY
P=...). This initial function should be called first.

The EXEC function executes a DBMS or SQL command or set of commands.

The STOP function terminates the API, closing any open files and releasing handles. It
should be called at the end of your program.

The other two functions return the VersionNumber (this one can be called before INIT)
and the ERROR code. The latter can be called after any API function that has a FALSE
return code.

Notes:

Your application will use SIR's DLLs, so the SIR's home directory must be included into
your PATH (unless you place your executable file into that directory).

The system is not reenterable, so you must not call any of these functions before the
previous call is completed. Also you cannot use both SirDBMS and SirSQL DLLs from
the same application.

To compile your calls correctly under MS-Windows macro _WIN32 must be defined. It is
predefined by Visual C++. Define it in your make file for other compilers. The macro
will inforce __stdcall calling convention for the DLL's export names. You should use
sirdbms.lib or sirsql.lib import library to link your application.

To write a console application that does not have a windows interface then use a window
handle (hWnd) of (void *) 1.

SIR/XS Host/API 6

The DBMS Functions

SirDBMS_VersionNumber

int __StdCall SirDBMS_VersionNumber(void);
Returns DBMS engine's version number (40000 for 4.00.00). It's the only function you
can execute before SirDBMS_Init().

SirDBMS_Init

int __StdCall SirDBMS_Init(
 void *hWnd,
 void (__StdCall *writeLine)(const char *text),
 void (__StdCall *writeData)(const char *text),
 const char *commandLine
);
Must be executed before sending commands to the DBMS engine.

The first argument is the system-specific handle of the main window. It should be the
current window at this moment.

DBMS engine uses the function passed as the second argument to write a line of text into
the message buffer. User interface module should immediately put the text into some
output window.

DBMS engine uses the function passed as the third argument to write a line of text into
the data buffer when given some query-type command.

The engine doesn't add any end-of-line terminators, it just makes one call for each line of
output.

The last argument is a string which contains the command line arguments (without the
leading application name).

Returns TRUE on success, FALSE on failure, doesn't return if the command line activates
the batch mode.

SirDBMS_Exec

int __StdCall SirDBMS_Exec(void *hWnd, const char *commands);
Executes DBMS commands.

SIR/XS Host/API 7

The first argument is the system-specific handle of the current window. It is used as the
owner of the engine's message boxes.

The second argument is a DBMS command[s]. Multiple lines must be separated by '\n'
character.

Returns TRUE on success, FALSE on failure.

SirDBMS_Stop

int __StdCall SirDBMS_Stop(void *hWnd);
Call this before you terminate the program.

The argument is the system-specific handle of the current window. It is used as the owner
of the engine's message boxes.

This will properly disconnect and close all open files.

Returns TRUE on success, FALSE on failure.

SirDBMS_ErrorCode

int __StdCall SirDBMS_ErrorCode(void);
Call this to get the error code if one of the SirDBMS_... functions returned FALSE. Error
code 0 means that information is not available.

SIR/XS Host/API 8

The DBMS LIST Commands

The LIST Commands are DBMS commands that send their output to the writeData
callback routine.

• LIST ATTRIBUTE LABELS
• LIST ATTRIBUTE VALUES
• LIST BUFFERLINE "buffername" [FROM start_line_number TO

end_line_number]
• LIST CONCTDTABFILES
• LIST DBA
• LIST DEFFAMILY
• LIST DEFMEMBER
• LIST EDITORNAME
• LIST EDITORTYPE
• LIST ERRORLIMIT
• LIST FAMILIES
• LIST GLOBAL LABELS
• LIST GLOBAL VALUES
• LIST INDEXDATA tabfile.table NAMES
• LIST INDEXDATA tabfile.table TYPES
• LIST INDICES tabfile.table
• LIST LOADING
• LIST MEMBERS
• LIST MSGLIMIT
• LIST MSGLVL
• LIST OUTPUTFILE
• LIST PAGELEN
• LIST PAGEWID
• LIST PRINTBACK CALL
• LIST PRINTBACK COMMANDS
• LIST PRINTBACK FORMAT
• LIST PRINTBACK REMARK
• LIST PRINTBACK REPEAT
• LIST PRINTBACK USER
• LIST PROCFILE
• LIST RECORDS
• LIST SORTN
• LIST TABFILE [tabfile]
• LIST TABLEDATA tabfile NAMES
• LIST TABLEDATA tabfile TYPES
• LIST TABLES
• LIST TABLES tabfile
• LIST WARNLIMIT

SIR/XS Host/API 9

The SQL Functions

SirSQL_VersionNumber

int __StdCall SirSQL_VersionNumber(void);
Returns SQL engine's version number (40000 for 4.00.00). It's the only function you can
execute before SirSQL_Init().

SirSQL_Init

int __StdCall SirSQL_Init(
 void *hWnd,
 void (__StdCall *writeLine)(const char *text),
 const char *commandLine
);
Must be executed before sending commands to the SQL engine.

The first argument is the system-specific handle of the main window. And it should be
the current window at this moment.

SQL engine uses the function passed as the second argument to write a line of text into
the output buffer. User interface module might immediately add the text into the output
window or use results in some other way after it gets control back. The engine doesn't
add any end-of-line terminators, it just makes one call for each line of output.

The last argument is a string which contains the command line arguments (without the
leading application name).

Returns TRUE on success, FALSE on failure, doesn't return if the command line activates
the batch mode.

SirSQL_Exec

int __StdCall SirSQL_Exec(void *hWnd, const char *commands);
Executes SQL commands.

The first argument is the system-specific handle of the current window. It is used as the
owner of the engine's message boxes.

The second argument is a SQL command[s]. Multiple lines must be separated by '\n'
character.

Returns TRUE on success, FALSE on failure.

SIR/XS Host/API 10

SirSQL_Stop

int __StdCall SirSQL_Stop(void *hWnd);
Call this before you terminate the program.

The argument is the system-specific handle of the current window. It is used as the owner
of the engine's message boxes.

This will properly disconnect and close all open files.

Returns TRUE on success, FALSE on failure.

SirSQL_ErrorCode

int __StdCall SirSQL_ErrorCode(void);
Call this to get the error code if one of the SirSQL_... functions returned FALSE.

The SQL LIST Commands

The LIST Commands in SQL correspond to the SHOW command but send their output to
the writeData callback routine.

SIR/XS Host/API 11

Example Programs

ACME SQL

ACME SQL is a simple SQL interface that lets you enter SQL commands and view the
output.

//***
*
//* AcmeSQL - example of using SirAPI (see readme.txt)
*
//*
*
//* This software is provided as is, without any explicit or
*
//* implied warranties. Use it at your own risk.
*
//***
*

#define STRICT
#include <windows.h>
#include <stdio.h>

#ifndef _WIN32
#define _WIN32

SIR/XS Host/API 12

#endif

#include <sirapi.h>
#include "acmesql.rh"

const char *AppName = "AcmeSQL";
const char *IniFile = "acmesql.ini";

const int MinEngineVer = 41000;

int InpWndRatio = 30;
int AutoSave = FALSE;

HINSTANCE hInst;

HWND hFrame;
HWND hInpWnd;
HWND hOutWnd;

HFONT hFont;

char *GetInputText() {

 int length = GetWindowTextLength(hInpWnd);
 if (length == 0)
 return NULL;

 char *buffer = new char[length+1];

 length = GetWindowText(hInpWnd, buffer, length+1);

 int Empty = TRUE;
 for (int i=0; i<length; i++) if (!isspace(buffer[i])) {
 Empty = FALSE;
 break;
 }
 if (Empty) {
 delete buffer;
 return NULL;
 }

 return buffer;
}

void SetInputText(const char *text) {
 SetWindowText(hInpWnd, text);
}

void SetOutputText(const char *text) {
 SetWindowText(hOutWnd, text);
}

void AddToOutputWindow(const char *text) {

 int length = GetWindowTextLength(hOutWnd);
 int addlen = strlen(text);

SIR/XS Host/API 13

 char *tmp = new char[addlen+2+1];
 memcpy(tmp, text, addlen);
 memcpy(tmp+addlen, "\r\n", 3);

 SendMessage(hOutWnd, EM_SETSEL, length, length);
 SendMessage(hOutWnd, EM_REPLACESEL, FALSE, (LPARAM)tmp);

 delete tmp;
}

void __StdCall OutputHandler(const char *text) {
 AddToOutputWindow(text);
}

int InitEngine(HWND hWnd, const char *CommandLine) {

 EnableWindow(hWnd, FALSE);

 int status = SirSQL_Init(hWnd, OutputHandler, CommandLine);
 if (status == FALSE)
 MessageBox(
 hWnd,
 "Cannot initialize the SQL engine", AppName,
 MB_OK | MB_ICONERROR);

 EnableWindow(hWnd, TRUE);

 return status;
}

int ShutdownEngine(HWND hWnd) {

 EnableWindow(hWnd, FALSE);

 int status = SirSQL_Stop(hWnd);
 if (status == FALSE)
 MessageBox(
 hWnd,
 "Cannot shutdown the SQL engine correctly", AppName,
 MB_OK | MB_ICONERROR);

 EnableWindow(hWnd, TRUE);

 return status;
}

int Execute(HWND hWnd, const char *command) {

 EnableWindow(hWnd, FALSE);

 SetCursor(LoadCursor(NULL, IDC_WAIT));

 int status = SirSQL_Exec(hWnd, command);
 if (status == FALSE)
 Beep(500, 100);

 SetCursor(LoadCursor(NULL, IDC_ARROW));

SIR/XS Host/API 14

 EnableWindow(hWnd, TRUE);

 return status;
}

LRESULT MainWnd_OnCreate(HWND hWnd, char *CmdLine) {

 hFrame = hWnd;

 int dllVersion = SirSQL_VersionNumber();
 if (dllVersion < MinEngineVer) {
 char buffer[1024];
 sprintf(
 buffer,
 "Wrong dynamic link library\n\n"
 "The SQL engine from sirsql.dll version %d.%02d.%02d\n\n"
 "You must use SQL engine version %d.%02d.%02d or later",
 dllVersion/10000, dllVersion/100%100, dllVersion%100,
 MinEngineVer/10000, MinEngineVer/100%100,
MinEngineVer%100);
 MessageBox(hWnd, buffer, AppName, MB_OK | MB_ICONERROR);
 return -1;
 }

 int fontSize = GetPrivateProfileInt(AppName, "FSize", 0, IniFile);
 HDC hDC = GetDC(hWnd);
 int fontHeight = -MulDiv(fontSize, GetDeviceCaps(hDC, LOGPIXELSY),
72);
 ReleaseDC(hWnd, hDC);
 hFont = CreateFont(
 fontHeight, 0, 0, 0, FW_BOLD, 0, 0, 0, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, PROOF_QUALITY,
 FIXED_PITCH, "Courier New");
 if (hFont == NULL)
 hFont = CreateFont(
 0, 0, 0, 0, FW_BOLD, 0, 0, 0, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, PROOF_QUALITY,
 FIXED_PITCH, "Courier New");

 InpWndRatio = GetPrivateProfileInt(AppName, "InpWndRatio", 30,
IniFile);
 if (InpWndRatio < 15 || InpWndRatio > 75)
 InpWndRatio = 30;

 hInpWnd = CreateWindowEx(
 0, "EDIT", NULL,
 WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_HSCROLL | WS_BORDER |
 ES_LEFT | ES_MULTILINE | ES_AUTOVSCROLL | ES_AUTOHSCROLL |
 ES_WANTRETURN,
 0, 0, 0, 0, hWnd, (HMENU)10030, hInst, NULL);
 if (hFont != NULL)
 SendMessage(hInpWnd, WM_SETFONT, (WPARAM)hFont,
MAKELPARAM(TRUE,0));
 SendMessage(hInpWnd, EM_LIMITTEXT, 0, 0);

 hOutWnd = CreateWindowEx(

SIR/XS Host/API 15

 0, "EDIT", NULL,
 WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_HSCROLL | WS_BORDER |
 ES_LEFT | ES_MULTILINE | ES_AUTOVSCROLL | ES_AUTOHSCROLL |
 ES_NOHIDESEL | ES_READONLY,
 0, 0, 0, 0, hWnd, (HMENU)10031, hInst, NULL);
 if (hFont != NULL)
 SendMessage(hOutWnd, WM_SETFONT, (WPARAM)hFont,
MAKELPARAM(TRUE,0));
 SendMessage(hOutWnd, EM_LIMITTEXT, 0, 0);

 AutoSave = GetPrivateProfileInt(AppName, "AutoSave", FALSE,
IniFile);

 if (!InitEngine(hWnd, CmdLine))
 return -1;

 AddToOutputWindow("");
 AddToOutputWindow("Welcome to AcmeSQL interface!");
 AddToOutputWindow("This is a sample program for developers who plan
to use SirAPI.");
 AddToOutputWindow("As a first step we advise you to read sirapi.h
in api directory.");
 AddToOutputWindow("Should you wish to see some examples, the source
code of AcmeSQL");
 AddToOutputWindow("is in examples subdirectory. Have a look at
readme.txt first.");
 AddToOutputWindow("");

 return 0;
}

LRESULT MainWnd_OnClose(HWND hWnd) {

 if (AutoSave)
 Execute(hFrame, "SAVE");

 ShutdownEngine(hWnd);

 DestroyWindow(hWnd);

 if (hFont != NULL)
 DeleteObject(hFont);

 return 0;
}

LRESULT MainWnd_OnSize(HWND , int w, int h) {

 int InpWndH = h*InpWndRatio/100;
 int OutWndH = h-InpWndH;

 MoveWindow(hOutWnd, 0, 0 , w, OutWndH, TRUE);
 MoveWindow(hInpWnd, 0, OutWndH, w, InpWndH, TRUE);

 return 0;
}

SIR/XS Host/API 16

LRESULT MainWnd_OnSetFocus(HWND) {
 SetFocus(hInpWnd);
 return 0;
}

LRESULT MainWnd_OnCommand(HWND hWnd, WORD cmd, WORD NCode, HWND
hControl) {

 switch (cmd) {
 case CMD_EXECUTE: {
 char *cmd = GetInputText();
 if (cmd != NULL) {
 int len = strlen(cmd);
 int n = 0;
 for (int i = 0; i <= len; i++) {
 if (cmd[i] == '\r') {
 n++;
 } else {
 if (n != 0) {
 cmd[i-n] = cmd[i];
 }
 }
 }
 if (Execute(hFrame, cmd))
 SetInputText("");
 SetFocus(hInpWnd);
 delete cmd;
 }
 break;
 }
 case CMD_EXIT:
 SendMessage(hWnd, WM_CLOSE, 0, 0);
 break;
 default: ;
 }

 if (NCode == EN_MAXTEXT || NCode == EN_ERRSPACE) {
 Beep(500, 100);
 if (hControl == hOutWnd) {
 SetOutputText("");
 }
 }

 return 0;
}

LRESULT MainWnd_OnPaint(HWND hWnd) {
 HDC hDC;
 PAINTSTRUCT ps;
 hDC = BeginPaint(hWnd, &ps);
 EndPaint(hWnd, &ps);
 return 0;
}

LRESULT CALLBACK MainWnd_WndProc(
 HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam
) {

SIR/XS Host/API 17

 typedef struct {
 short sz;
 void *p;
 } UNALIGNED *UP;

 switch (msg) {
 case WM_CREATE:
 return MainWnd_OnCreate(
 hWnd,
 (char *)((UP)(((LPCREATESTRUCT)lParam)-
>lpCreateParams))->p);
 case WM_CLOSE:
 return MainWnd_OnClose(hWnd);
 case WM_SIZE:
 return MainWnd_OnSize(hWnd, LOWORD(lParam),
HIWORD(lParam));
 case WM_SETFOCUS:
 return MainWnd_OnSetFocus(hWnd);
 case WM_COMMAND:
 return MainWnd_OnCommand(
 hWnd, LOWORD(wParam), HIWORD(wParam), (HWND)lParam);
 case WM_PAINT:
 return MainWnd_OnPaint(hWnd);
 case WM_DESTROY:
 PostQuitMessage(0);
 return 0;
 default: return DefWindowProc(hWnd, msg, wParam, lParam);
 }
}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE, LPSTR lpCmdLine,
int) {

 hInst = hInstance;

 WNDCLASS wc;
 wc.style = CS_VREDRAW | CS_HREDRAW | CS_DBLCLKS;
 wc.lpfnWndProc = MainWnd_WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(hInstance,
MAKEINTRESOURCE(IDR_MAINICON));
 wc.hCursor = LoadCursor(0, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MAINMENU);
 wc.lpszClassName = "MainWnd";
 if (RegisterClass(&wc) == 0)
 return 0;

 struct {
 short sz;
 void *p;
 } CreateWindowParam = {sizeof(void *), lpCmdLine};

 HWND hWnd = CreateWindowEx(
 WS_EX_APPWINDOW,

SIR/XS Host/API 18

 wc.lpszClassName, AppName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 HWND_DESKTOP, NULL, hInstance, &CreateWindowParam);
 if (hWnd == NULL)
 return 0;

 ShowWindow(hWnd, SW_SHOWDEFAULT);

 HACCEL hAccel = LoadAccelerators(
 hInstance, MAKEINTRESOURCE(IDR_ACCELTABLE));

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0) == TRUE) {
 if (!TranslateAccelerator(hWnd, hAccel, &msg)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 DestroyIcon(wc.hIcon);

 return msg.wParam;
}

SIRDBMSE

SIRDBMSE is a SIRDBMS console application which lets you enter DBMS commands
and program and run them in a command window or telnet connection. Enter commands
at the DBMS> prompt and run them by entering go. Enter exit to end the program. This
program was written by Dave Doulton of the University of Southampton.

#include <string.h>
#include <stdio.h>
#include "sirapi.h"

SIR/XS Host/API 19

void OutputHandler(const char *text) {
 if(text[0] == ' ')
 {
 printf("%s\n",text+1);
 }
 else
 {
 printf("%s\n",text);
 }

}

void DisplayHandler(const char *text) {
 if(text[0] == ' ')
 {
 printf("%s\n",text+1);
 }
 else
 {
 printf("%s\n",text);
 }
}

int main(int argc,char *argv[]) {
int i;
int res;
char cmdLine[1024] = "";
char cmd[1024]= "";
char ocmd[1024]= "";
char line[200]="";
 for (i = 1; i < argc; i++) {
 if (i > 1) strcat(cmdLine, " ");
 strcat(cmdLine, argv[i]);
 }

 res=SirDBMS_Init((void *) 1, (void *) OutputHandler, (void *)
DisplayHandler, cmdLine);
 if (res != 1)
 {
 res=SirDBMS_ErrorCode();
 printf("error code %ld\n",res);
 }
 printf("DBMS>");
 while (gets(line) != NULL)
 {
 if(strcmp(line,"go") == 0)
 {
 res=SirDBMS_Exec((void *) 1,cmd);
 strcpy(ocmd,cmd);
 strcpy(cmd,"");
 printf("DBMS>");
 }
 else
 {
 if(strcmp(line,"rep") ==0)
 {

SIR/XS Host/API 20

 res=SirDBMS_Exec((void *) 1,ocmd);
 strcpy(cmd,"");
 printf("DBMS>");
 }
 else
 {
 if(strcmp(line,"exit") ==0)
 {
 strcpy(cmd,"");
 break;
 }
 else
 {
 strcat(cmd,line);
 strcat(cmd,"\n");
 printf("DBMS>");
 }
 }
 }
 }
 res=SirDBMS_Exec((void *) 1,cmd);
 res=SirDBMS_Stop((void *) 1);
 return res;
}

SIR/XS Host/API 21

Compilation & Linkage

The header file (sirapi.h) and link library files (sirdbms.lib and sirsql.lib) are found in the
API subdirectory of the SIR installation directory. These files must be used for compiling
and linking the API program. Example makefiles for a couple of compilers are also
included in this subdirectory.

To run a SIRAPI application the SIR dynamic libraries (eg. sirdbms.dll sirmdr.dll etc)
must be in the application's directory or PATH.

SIR/XS Host/API 22

General Comments

HOST is a set of FORTRAN routines that enable the SIR/DBMS user to interface directly with
a database. These routines provide all the capabilities of a DBMS RETRIEVAL or
RETRIEVAL UPDATE. However, schema definition, schema modification, batch data input,
retrieval procedures (such as SPSS SAVE FILE or CONDESCRIPTIVE), utility routines and
the graphical user interface are not available via HOST. These operations must be
performed with DBMS.

HOST is designed for use in those situations in which features are required that are not
available in DBMS. It provides a direct interface between a database and a user-written
program. For this reason, HOST is particularly appropriate when the user has an existing
application package that requires the inclusion of facilities for retrieval of information
from a database. HOST also provides facilities that give the SIR/DBMS user the capability
to write a program that can process input from many terminals. The user's program
controls the operation of the terminals and uses HOST to process one or more databases
simultaneously, a feature not available in DBMS.

The HOST package (like any subroutine package) must be used correctly and carefully to
avoid damage to the database. Unlike DBMS, the HOST routines cannot protect the
database from programmer error, accidental or deliberate. For example, if a HOST
memory resident table is modified in any way by the user-written routines during a run,
then invalid data, pointers, counts, and other erroneous information may be written to the
database. This invalid information may not be detected by either HOST or DBMS until later.

We recommend that applications using HOST be tested thoroughly with a duplicate of the
database before the programs are put into production.

SIR/XS Host/API 23

Introduction

HOST consists of a set of FORTRAN callable functions written in ANSI standard FORTRAN.
The user writes a main program to call the HOST routines which perform the requested
retrieval functions. These routines are compiled by the standard FORTRAN compiler for
each machine on which SIR/DBMS is available and are maintained as a standard library of
FORTRAN routines on each machine.

See additional documentation and examples in the API subdirectory of the SIR
installation directory.

There may be two HOST libraries available at your site. One of them, referred to as HOST
or regular HOST, is intended for a single user environment. The other one, referred to as
concurrent HOST, is intended to work in a multiple-user environment, in conjunction with
the MASTER module. The user interface with these two versions is almost identical, such
that almost no programming effort is required to switch between them. The small
differences are documented below in Multiple User Support with HOST.

The HOST routines can be called by a main program written in a language other than
FORTRAN (such as PL/1 or C), provided that FORTRAN functions can be called from that
language.

If the language can call FORTRAN functions, but cannot test their return values, the user
can use a common area called HERROR to get this value. The first variable of the HERROR
common block is a R*8 containing the name of the last HOST function called (except for
ZCALL which does not touch the variable). Note that this variable does not have the
CHARACTER*8 FORTRAN type. The next variable of the HERROR common block is an I*4
which will contain the return code from the last called HOST function. The next variable is
an I*4 which is reserved for future use. The length of the HERROR common area is the
length of a R*8 plus the length of two I*4's.

The routines provided allow the HOST user to perform all the operations available in DBMS
retrieval. Some DBMS commands are provided in a single HOST function call while others
have been divided into several function calls.

Every HOST routine is a FORTRAN function which returns a value to the calling application
program. If a function executes its task successfully, then it will return a requested value
or the value zero or a positive status value to the calling program. If a function encounters
an error or problem in performing its task, however, it will return a negative number and
not perform the task. The absolute value of the returned value will be the error code
detected. A list of all current error codes are listed in Environment appendix A. Some of
the negative returned codes do not represent real errors, but some specific conditions such
as "no more records found" or "a missing value has been stored".

SIR/XS Host/API 24

Writing Programs with HOST

In order to use the routines effectively, the HOST programmer should have experience in
writing DBMS Retrieval programs. We recommend that new HOST users write their
retrievals in the DBMS Retrieval language and then translate them into HOST function calls.
Once the user gains proficiency with HOST, this technique can be dispensed with.

As illustrated by the examples, a HOST program generally has many more statements than
its DBMS counterpart. This is partly because each DBMS Retrieval command usually
translates into several HOST function calls. HOST programs are also include statements that
check the error codes returned by the HOST functions. It is very important to check the
HOST error codes. If errors are ignored, the results of subsequent function calls will be
unpredictable. If this occurs during a database modification run, the database could be
damaged.

To help the programmer write code that performs all of the required returned values
testing, a new function, ZCALL, has been introduced. ZCALL helps the programmer write
programs that are easy to understand and maintain.

SIR/XS Host/API 25

Initialisation

The HOST system is initialised by calling ZSTART. It must be the first HOST call in the
user's program. If concurrent HOST is used, ZLOGIN should be called immediately after
ZSTART.

One or more calls that open the databases to be used during the run follow. There can be
more than one of these calls because, unlike DBMS, HOST allows simultaneous access to
more than one database. The HOST routines that open databases are ZORDB (open a random
database), and ZOSDB (open a sequential database).

These calls also allow the user to specify default read and write security passwords for
each database. The defaults can be overridden by calling ZSECUR.

SIR/XS Host/API 26

The Retrieval Stack

A HOST retrieval stack is an internal table containing one entry for each CIR and data
record currently being processed. The entries are called blocks. The ordinal of a block in
the retrieval stack is referred to as the level of the block. Each block is completely nested
within the preceding blocks similar to the nesting in a DBMS retrieval program. In HOST,
nesting is extended to include the nesting of databases as well as cases and records.

For example, consider the following schematic DBMS Retrieval with four levels of nesting:

RETRIEVAL
. PROCESS CASES
. PROCESS REC 7....
. CASE IS....
. RECORD IS 9
. END RECORD IS
. END CASE IS
. END PROCESS REC
. END PROCESS CASES
END RETRIEVAL
Within the first level of nesting (PROCESS CASES block), the corresponding HOST retrieval
stack would consist of

level 1 - CIR
Within the fourth level of nesting (RECORD IS block), the HOST retrieval stack would
contain

level 1 - CIR
level 2 - record type 7
level 3 - CIR
level 4 - record type 9
Within a DBMS Retrieval block, the user can only refer to CIR variables or record
variables that belong to the block. HOST, on the other hand, allows the user's program to
access data at any level from any higher level in the retrieval stack. In the previous
example, the user can refer to the CIR variables of level 1 from within levels 2, 3 or 4.
Similarly one can refer to record type 7 variables from within levels 3 or 4. This is made
possible by the retrieval stack and by the variable descriptors discussed in the next
section.

Although the retrieval stack allows the user full access to all preceding levels, there are
some operations that can only be performed on a level-by-level basis with HOST. Among
these operations are record deletion, getting the next record and termination of record
processing. For example, in order to terminate the CASE IS block (level 3 in the previous
example) from within the RECORD IS block (level 4), the user must first terminate the
RECORD IS block and then the CASE IS block.

SIR/XS Host/API 27

In version 2.2, the routines that create blocks (ZCCNT, ZCCNTD, ZCGDMY, ZCIS, ZCISD,
ZCSAM, ZCSAMD, ZRCNT, ZRCNTD, ZRCNTL, ZRGDMD, ZRGDML, ZRGDMY, ZRIS, ZRISD, ZRISL,
ZRSAM, ZRSAMD and ZRSAML) return the stack level of the created block rather than 0 (as
they did in previous releases). The level can be used as the fourth piece of a variable
descriptor. The level of a case block can also be used as the last argument of ZRCNTL,
ZRGDML, ZRISL and ZRSAML to make a "record block" belong to a "case block" other than
the closest above it. For example, the following structure is possible now:

level 1 - CIR
level 2 - CIR
level 3 - record type 5 "belonging" to the CIR on level 1
level 4 - record type 2 "belonging" to the CIR on level 2

SIR/XS Host/API 28

Variable Descriptors

In HOST, database variables are accessed by variable descriptor rather than by name. The
purpose of the descriptor is to uniquely identify a variable across all levels of the retrieval
stack.

A variable descriptor contains four pieces of identifying information about a variable:

• the database number (assigned by HOST in order of opening)
• the record type number (the CIR is type zero)
• the variable number (assigned automatically in same order as LIST SCHEMA)
• the retrieval stack level

Note: The value of the database number should be left undefined. Opening and closing
databases could cause a different sequence of values to be assigned.

Variable descriptors are created in HOST by the routines, ZDESC, ZDESCD, ZDESCM and
ZSDESC. Routine ZDESCB breaks a descriptor in its 4 components. ZDESCD requires an
explicit database name while ZDESC assumes the database is the one currently in use.

The recommended programming technique is to call ZDESCD at the beginning of the
program for each variable to be referenced.

To illustrate, suppose we plan to retrieve data from two databases, CLIENT and PROSPECT.
We want to retrieve the variables NAME, PHONE, and BILLED from record type 1 in the
CLIENT database. We also want to retrieve NAME and PHONE from the CIR and SALESREP
and CLDATE from record type 3 in the PROSPECT database.

The calls to ZDESCD would be placed at the beginning of the HOST program and would
look like this in FORTRAN:

 IERR = ZDESCD (CNAME, 'CLIENT' , 1,'NAME ' , 0)
 IERR = ZDESCD (CPHONE, 'CLIENT' , 1,'PHONE' , 0)
 IERR = ZDESCD (CBILLD, 'CLIENT' , 1,'BILLED' , 0)
 IERR = ZDESCD (PNAME, 'PROSPECT', 0,'NAME' , 0)
 IERR = ZDESCD (PPHONE, 'PROSPECT', 0,'PHONE' , 0)
 IERR = ZDESCD (PSLSRP, 'PROSPECT', 3,'SALESREP', 0)
 IERR = ZDESCD (PDATE, 'PROSPECT', 3,'CLDATE' , 0)
The FORTRAN variables CNAME, CPHONE, CBILLD, etc. contain the variable descriptors for
the corresponding database variables NAME, PHONE, BILLED, etc. Once the descriptors are
defined, they are used in all subsequent HOST calls. For example, to retrieve the value of
the CIR variable NAME in the PROSPECT database, the appropriate HOST call would be

 IERR = ZRCTST (PNAME, PRONAM, 25)

SIR/XS Host/API 29

ZRCTST transfers 25 characters of the CIR variable NAME (whose descriptor is stored in
PNAME) into the FORTRAN character variable PRONAM.

SIR/XS Host/API 30

Case and Record Processing

Case and record processing have been extended in HOST so that cases can be processed
with the AFTER, FROM, THRU, UNTIL, and WITH clauses and records can be processed with
the COUNT and SAMPLE options.

Case and record processing in HOST involves several steps:

1. Call the appropriate case or record-initialisation routine.
2. If necessary, call one or more key creation and key definition routines.
3. Use ZCNEXT or ZRNEXT as the first statement of the case or record-processing loop.

These routines get a case or record from the database and make it available for
use.

4. To loop through several cases or records, return to the start of the loop, ZCNEXT or
ZRNEXT. These routines return a negative error code (-4xxx) when there are no
more cases or records left.

5. Call ZCEXIT or ZREXIT when the loop is terminated.

To illustrate these concepts further, consider the following DBMS Retrieval commands:

. PROCESS CASES ALL
. WRITE CASEID NAME ADDRESS
. END PROCESS CASES
The corresponding HOST program would look like this in FORTRAN:

 IERR = ZCCNT (-1, 1, 1)
100 IERR = ZCNEXT (0)
 IF (IERR .EQ. -4001 .OR. IERR .EQ. -4002) GO TO 200

.... (retrieve and print CASEID, NAME and ADDRESS)

 GO TO 100
200 IERR = ZCEXIT (DUM)
Errors -4001 and -4002 indicate that there are no more cases left to be processed.

Now suppose we want to run the same retrieval, but only for those cases whose case-ids
lie in the range 5000 to 5999. We must add calls to the HOST routines that create and
define the key values for the cases. The HOST program would then be written as follows:

 IERR = ZCCNT (-1, 1, 1)
 IERR = ZFROM (0)
 IERR = ZINTKY (5000)
 IERR = ZTHRU (0)
 IERR = ZINTKY (5999)
100 IERR = ZCNEXT (0)

SIR/XS Host/API 31

 IF (IERR .EQ. -4001 .OR. IERR .EQ. -4002) GO TO 200

..... (retrieve and print CASEID, NAME and ADDRESS)

 GO TO 100
200 IERR = ZCEXIT (0)
Note that the key creation (ZFROM, ZTHRU) and key definition (ZINTKY) routines are placed
immediately after the initialisation routine (ZCCNT) and before the actual start of the loop
(ZCNEXT). Record processing in HOST is analogous to case-processing. For example, the
following PROCESS REC loop:

. PROCESS REC 3, WITH (1982, 100)
. WRITE 'DEPT YTD TOTAL IS', YTDSALE
. END PROCESS REC
might look like this in FORTRAN:

 IERR = ZRCNT (3, -1, 1, 1)
 IERR = ZWITH (0)
 IERR = ZINTKY (1982)
 IERR = ZINTKY (100)
100 IERR = ZRNEXT (0)
 IF (IERR .EQ. -4001 .OR. IERR.EQ. -4002) GO TO 200

..... (retrieve and print value of YTDSALE)

 GO TO 100
200 CALL ZREXIT (0)

SIR/XS Host/API 32

Caseless Database Processing

If a database is caseless, some of the HOST routines cannot be used when accessing that
database. If you attempt to use these routines with a caseless database, the routines will
return an error code of -2053. No case block should ever be created. The following is a
list of the routines that can only be used with "case" databases:

 ZCCNT ZCCNTD ZCDEL ZCEXIT ZCFIND ZCGDMY
 ZCIS ZCISD ZCLOCK ZCNEXT ZCRDMY ZCREST
 ZCSAM ZCSAMD ZCWRIT ZNOR ZNORD
If you want to find out if a database is caseless or not, your program should call ZNSIDS
with the second argument 0. ZNSIDS returns the number of sort ids in the database for the
specified record type, which is 0 for a caseless database. (Actually it returns the number
of sort ids in the CIR for the caseless database).

ZNCASE also returns the number of cases in the specified database, and it will always
return 0 for a caseless database. However, it cannot be used as a test for case structure in
a database since it will return 0 for any empty database, and any caseless database
regardless of the number of records.

SIR/XS Host/API 33

Multiple Database Mode in HOST

As previously stated, HOST allows the user to access data from several databases
simultaneously. This capability is not available in DBMS Retrieval.

A HOST program is in multiple-database mode when it contains more than one call to the
database initialisation routines (ZORDB, ZOSDB). Note that multiple-database mode
remains in effect even if all of the databases have been closed.

In multiple database mode, the routines that initialise case and record processing also
establish the identity of the current database. These routines are described in the section
called Database Switching.

All of the records processed within a case loop are assumed to belong to the current
database.

In Variable Descriptors, we saw that variable descriptors allow the user to access data at
higher levels of the retrieval stack from within lower levels. This concept also applies to
stack levels from different databases.

For example, suppose the retrieval stack contains the following levels:

level 1 - database DB1, CIR
level 2 - database DB1, record type 5
level 3 - database DB2, CIR
level 4 - database DB2, record type 8
and we have defined the descriptor for the database variable, AGE, from record type 5 in
DB1 with the call:

 IERR = ZDESCD (XAGE,'DB1 ',5, 'AGE ',0)
Then, the database variable AGE can be retrieved at any level of the retrieval stack (except
level 1) by using its descriptor stored in XAGE.

If the stack contains two process rec 1 blocks, then stack level 0 indicates the innermost
process rec.

SIR/XS Host/API 34

Multiple User Support with HOST

As mentioned in the Introduction, in addition to providing access to databases as a stand-
alone program, HOST also provides access to the databases by multiple users. To use
concurrent HOST, a MASTER process must be running and the user program must login to
that MASTER. To do this, a typical application program will call ZLOGIN immediately after
calling ZSTART. If the user program does not call ZLOGIN with the name of the MASTER
explicitly, the system will do it, using the name of the default MASTER. A given
application program can be logged-in to only one MASTER at a time. For regular HOST
programs, the calling of ZLOGIN is optional.

To determine from within a program which of the two versions of HOST is used, the
function ZVERS can be called. It will return 0 for regular HOST and 1 for concurrent HOST.

SIR/XS Host/API 35

HOST 2.2 Lock Types

In HOST 2.2, (both regular and concurrent) there are 6 lock types defined:

Lock-type number Lock type
0 or 14 protected read
1 or 16 exclusive
11 null
12 concurrent read
13 concurrent write
15 protected write
The locks ensure data integrity. They prevent other programs from updating records that
you are updating. Several HOST programs feature the option to set and test the locks.

SIR/XS Host/API 36

Routine Formal Parameters

When using the HOST routines great care must be taken to insure that the formal
parameters match in both number and type. TABLE 1 below indicates the various
argument types used by HOST. See the documentation in the API subdirectory for
information and examples for the exact declarations and representations needed for each
data type.

TABLE 1

 ABBREV TYPE DESCRIPTION
 B*n BYTE This is a CHARACTER*N structure as defined by the
 FORTRAN 77 compiler on your machine. It
 must be of the proper size to hold the character
 strings to be passed to or from it.
 D*8 DESCRIPTOR This is an (8 byte) area containing a set of
values
 that uniquely describe a data variable (i.e.
vari-
 able number, record type number, database number,
 stack location). This data type may be stored as
a
 REAL*8 on some machines; in this case care should
be
 taken in transferring descriptors because it is
not
 a REAL*8 value but an 8 byte bit pattern and no
 floating operations such as normalisation should
be
 performed.
 I*4 INTEGER This is I*4 as defined in Machine Specifics
 documentation.(It might be 4 or 8 bytes long.)
 N*8 NAME This is a CHARACTER*8 created by a FORTRAN 77
 compiler.
 R*n REAL This is R*4 or R*8 as defined in your Machine
 Dependencies documentation.

SIR/XS Host/API 37

Overview of the HOST Subroutines

A list of the standard routines available within HOST are listed below. Certain machines
have additional routines available usually dealing with additional type conversions and
other utilities to ease the use of the HOST package. See the documentation in the API
subdirectory for more information on these routines.

Note that all of the HOST functions are of type INTEGER*4 regardless of the first letter of
the names. Declare them as type INTEGER*4 in each routine that calls them. Also, the
types of the function arguments do not correspond to standard FORTRAN usage (i.e. first
letter I through N is type INTEGER, otherwise REAL).

As already stated, these functions may return 0, a required value, a positive status value,
or a negative error code. In Chapter 3, the return values for the functions will be
documented only if they have a specific significance. If they are not documented, the
assumption is that the function will return a positive or zero value for success and a
negative value for failure.

Initialisation Routines

ZSTART Initialises the HOST system.

ZLOGIN login the current process into a specified MASTER.

ZSECUR Specifies security passwords for current stream.

ZORDB Initialises a specified random format database for use.

ZOSDB Initialises a specified sequential format database for use.

Control Routines

ZUSER Allows the switching of the current retrieval stack from one stream to another.

ZCALL Call HOST functions and test their return code.

Termination Routines

ZENDDB Terminates the use of a specified database. It closes and return the files for use by
other jobs. In order to use the database again it must be reinitialised.

ZCLEAR Terminates all levels in the retrieval stack of a specified stream.

SIR/XS Host/API 38

ZEND Terminates the HOST run. It cleans up tables and checks that the databases have
been properly closed and all internal operations are completed. If any databases are still
open, ZEND attempts to close them.

Case Processing Routines

ZCCNT Initialises a "PROCESS CASE" block with either the "ALL" or "COUNT" option.

ZCCNTD Initialises a "PROCESS CASE" block with either the "ALL" or "COUNT" option. It
also provides the capability of changing databases.

ZCGDMY Initialise a case-processing block of an undefined type (dummy).It also provides
the capability of changing databases.

ZCIS Initialises a "CASE IS" block.

ZCISD Initialises a "CASE IS" block. It also provides the capability of changing
databases.

ZCSAM Initialises a "PROCESS CASE" block with a "SAMPLE" option.

ZCSAMD Initialises a "PROCESS CASE" block with a "SAMPLE" option. It also provides the
capability of changing databases.

ZCREST Restores the common variables in the innermost case processing block.

ZCRDMY Terminates the current case-processing level and resets it to a dummy.

ZCFIND Finds a case, after a dummy case-processing block was initialised and some CIR
variables specified.

ZCFRST Gets the first case in a case-processing block.

ZCLAST Gets the last case in a case-processing block.

ZCNEXT Gets the next case in a case-processing block.

ZCPREV Gets the previous case in a case-processing block.

ZCLOCK Returns the lock type of a case-processing block.

ZCDEL Deletes the current case in the innermost case-processing block.

ZCWRIT Writes the current innermost CIR to the database as a permanent change.

SIR/XS Host/API 39

ZCEXIT Leaves the current case-processing block and pops the retrieval stack back one
level of retrieval nesting.

Record Processing Routines

ZRCNT Initialises a "PROCESS RECORD" block with either the "ALL" or "COUNT" option.

ZRCNTD Initialises a "PROCESS RECORD" block with either the "ALL" or "COUNT" option. It
also provides the capability of changing databases.

ZRCNTL Initialises a "PROCESS RECORD" block with either the "ALL" or "COUNT" option,
belonging to a CIR on a specified level.

ZRGDMY Initialise a record-processing block of an undefined type (dummy). It also
provides the capability of changing databases.

ZRGDMD Initialise a record-processing block of an undefined type (dummy). It also
provides the capability of changing databases.

ZRGDML Initialises a record-processing of an undefined type (dummy) block, belonging to
a CIR on a specified level.

ZRIS Initialises a "RECORD IS" block.

ZRISD Initialises a "RECORD IS" block. It also provides the capability of changing
databases.

ZRISL Initialises a "RECORD IS" block belonging to a CIR on a specified level.

ZRSAM Initialises a "PROCESS RECORD" block with a "SAMPLE" option.

ZRSAMD Initialises a "PROCESS RECORD" block with a "SAMPLE" option. It also provides
the capability of changing databases.

ZRSAML Initialises a "PROCESS RECORD" block with a "SAMPLE" option, belonging to a
CIR on a specified level.

ZRREST Restores the record variables in the innermost record processing block.

ZRRDMY Terminates the current record-processing level and resets it to dummy.

ZRFIND Finds a record, after a dummy record-processing block was initialised and some
record variables specified.

ZRFRST Gets the first case in a record-processing block.

SIR/XS Host/API 40

ZRLAST Gets the last case in a record-processing block.

ZRNEXT Gets the next case in a record-processing block.

ZRPREV Gets the previous case in a record-processing block.

ZRLOCK Returns the lock type of a record-processing block.

ZRDEL Deletes the current record in the innermost record-processing block.

ZRWRIT Writes the current innermost record to the database as a permanent change.

ZREXIT Leaves the current record-block and pops the retrieval stack one level of retrieval
nesting.

Key Creation Routines

ZAFTER Initialises the creation of a key for either case or record processing levels. It starts
up a key of the form of the "AFTER" keyword on the PROCESS statement in DBMS.

ZBEGIN Initialises the creation of a key for either case or record processing levels. It starts
up a key of an yet undefined form.

ZFROM Initialises the creation of a key for either case or record processing levels. It starts
up a key of the form of the "FROM" keyword on the PROCESS statement in DBMS.

ZTHRU Initialises the creation of a key for either case or record processing levels. It starts
up a key of the form of the "THRU" keyword on the PROCESS statement in DBMS.

ZUNTIL Initialises the creation of a key for either case or record processing levels. It starts
up a key of the form of the "UNTIL" keyword on the PROCESS statement in DBMS.

ZWITH Initialises the creation of a key for either case or record processing levels. It starts
up a key of the form of the "WITH" keyword on the PROCESS statement in DBMS.

Key Definition Routines

ZDTTKY Moves a date string into the next sort-id position of the current key.

ZFPTKY Moves a real value into the next sort-id position of the current key.

ZINTKY Moves an integer value into the next sort-id position of the current key.

ZSTTKY Moves a character string into the next sort-id position of the current key.

SIR/XS Host/API 41

ZTMTKY Moves a time string into the next sort-id position of the current key.

Variable Modification Routines

ZBLTRC Stores a blank missing value in a variable.

ZDTTRC Moves a date string into a specified variable descriptor.

ZFPTRC Moves a real value into a specified variable descriptor.

ZINTRC Moves an integer value into a specified variable descriptor.

ZMSTRC Transfers a missing/undefined value to a specified variable descriptor.

ZRCTRC Transfers the value from one variable descriptor to another variable descriptor.

ZSTTRC Moves a string value into a specified variable descriptor.

ZTMTRC Moves a time string into a specified variable descriptor.

Variable Retrieval Routines

ZRCTDT Returns the value of a specified date variable descriptor.

ZRCTFP Returns the value of a specified real variable descriptor.

ZRCTIN Returns the value of a specified integer variable descriptor.

ZRCTST Returns the value of a specified string variable descriptor.

ZRCTTM Returns the value of a specified time variable descriptor.

General Routines

ZVERS Returns the version and revision numbers of HOST.

ZOPEN Returns an indication of whether a specified database is currently available for use
or not.

ZUPLEV Returns the current update level of a database.

ZSECLV Returns the current security levels for a specified database.

ZLCKRT Sets/returns the record type lock for a specific record type.

SIR/XS Host/API 42

ZNCASE Returns the number of cases in the database.

ZNRECS Returns the number of records of a specific type that are currently in the
database.

ZNEW Returns an indication of whether the last CIR/record accessed was a new
CIR/record or an existing CIR/record.

ZNOR Returns the number of records of a specific type that are currently in the innermost
CIR.

ZNORD Returns the number of records of a specific type that are currently in the
innermost CIR of a specified database.

ZRNAMD Returns the record name for a record number.

ZRNUM Returns the record number for a record name.

ZRNUMD Returns the record number for a record name in a specified database.

ZNVARS Returns the number of variables in a specific record type.

ZNSIDS Returns the number of sort ids in the key of a record of a specific type.

ZVARLB Returns the variable label of a variable specified by descriptor.

ZVNAME Returns the variable name for a variable specified by descriptor.

ZVTYPE Returns the storage type of the variable specified by descriptor.

ZLABLN Returns the value label for a value of a specified numeric variable descriptor.

ZLABLS Returns the value label for a value of a specified string variable descriptor.

ZMSLAB Returns the value label for a missing value.

ZDESC Builds the variable descriptor from a variable description.

ZDESCD Builds the variable descriptor from a variable description for a variable in a
different database.

ZSDESC Returns the variable descriptor corresponding to the nth sortid of the specified
record type.

ZDESCB Breaks a descriptor in its four components.

SIR/XS Host/API 43

ZDESCM Makes a descriptor out of its four components.

ZEXIT Performs the equivalent of ZCEXIT for a case-processing block and of ZREXIT
for a record-processing block.

Utility Routines

ZATTR Perform equivalent to DBMS ATTRIBUTE command.

ZCACHE Activates/deactivates the caching and sets/reads various caching parameters.

ZOPT Set or return various system options.

ZERMSG Returns a text string describing a specific numbered error. Optionally it can also
file the error message in the job log.

ZDTXIN Converts a date string into a date integer.

ZINXDT Converts a date integer into a date string.

ZTMXIN Converts a time string into a time integer.

ZINXTM Converts a time integer into a time string.

ZTIME Returns the current date and time as julian integers.

Advanced Key Definition Routines

ZDTXKY Moves a date string into the next sort-id position of the current key.

ZFPXKY Moves a real value into the next sort-id position of the current key.

ZINXKY Moves an integer value into the next sort-id position of the current key.

ZSTXKY Moves a character string into the next sort-id position of the current key.

ZTMXKY Moves a time string into the next sort-id position of the current key.

Advanced Data Modification Routines

ZDTXRC Moves a date string into a specified variable descriptor.

ZFPXRC Moves a real value into a specified variable descriptor.

ZINXRC Moves an integer value into a specified variable descriptor.

SIR/XS Host/API 44

ZSTXRC Moves a string value into a specified variable descriptor.

ZTMXRC Moves a time string into a specified variable descriptor.

Advanced Data Retrieval Routines

ZRCXDT Returns the value of a specified date variable descriptor.

ZRCXFP Returns the value of a specified real variable descriptor.

ZRCXIN Returns the value of a specified integer variable descriptor.

ZRCXST Returns the value of a specified string variable descriptor.

ZRCXTM Returns the value of a specified time variable descriptor.

SIR/XS Host/API 45

Database Switching

In a multiple database environment, it is important to know which database is being used
at any given time. This database is referred to as the "current database". While most of
the routines refer to the current database, some routines can switch databases, making
another database the current one. The following list describes how the HOST routines
manipulate the databases. (The term "specified" refers to an item in the argument list of
the subroutine):

ZCCNTD, ZCGDMY, ZCISD, ZCSAMD, ZRCNTD, ZRGDMD, ZRISD, ZRSAMD explicitly make the
specified database be the current database.

ZRCNTL, ZRGDML, ZRISL, ZRSAML make the database at the specified level be the current
database.

ZEXIT, ZCEXIT, ZEXIT pop back 1 level from the stack and make the database at the new
level be the current database.

ZORDB, ZOSDB do not switch databases. However, if there is no current database, the
specified database is made current.

ZENDDB does not switch databases. However, if the specified database is the current one,
the "next" open database is made current.

SIR/XS Host/API 46

SIR/XS Host/API 47

ZAFTER

ZAFTER, Start Creation of an AFTER Key
ARGS: DUMMY
DESC: ZAFTER starts the creation of a DBMS key. It creates
 an "AFTER" key. That is, a key which will be used
 to select all CIR/record's whose key comes after the
 key that is currently being defined. It is normally
 called after one of the case/record level
 initialisation routines in order to initialise the
 key selection options for case or record loops.
 Following a call to ZAFTER, key definitions routines
 are called to enter values into the key one at a
 time. For a case key only one call is made to enter
 the value of the case id. For record keys, the case
 id is assumed to be the same as the last CIR
 retrieved or restored. Therefore, only the record
 sort ids have to be inserted into the key. The
 sort-ids must be entered in the order of their
 appearance in the key being created.
ENTRY: DUMMY (I * 4) Dummy argument needed to make a
 syntactically correct FORTRAN function. Should
 always be 0.
EXIT: None.

SIR/XS Host/API 48

ZATTR

ZATTR, Equivalence Long and Short Filenames
ARGS: FILENM,STRING,STRLEN
DESC: ZATTR performs the equivalent of the ATTRIBUTE
 command in DBMS. Currently it allows the
 equivalencing of a FILENAME (short 1-8 character
 name) and a long (quoted filename). After ZATTR is
 called use of the short name will reference the file
 specified by the long name.
ENTRY: FILENM (N * 8) Short name or "ldi" specification of
 ATTRIBUTE command.
 STRING (B * n) Long name or string appearing within
 quote marks of DSN = subparameter of
 ATTRIBUTE command (without quotes).
 STRLEN (I * 4) Number of characters in argument STRING.
EXIT: None.
RETURN: The location of the entry in the ATTRIBUTE table
 (small positive integer).

SIR/XS Host/API 49

ZBEGIN

ZBEGIN, Start Creation of Starting Key
ARGS: DUMMY
DESC: ZBEGIN is called after a new level in a retrieval
 block is started, and prior to retrieving the first
 CIR/record. It allows the user to start creating a
 key which will be used as the first key to be
 processed at the level.
ENTRY: DUMMY (I * 4) Dummy argument needed to make a
 syntactically correct FORTRAN
 function. Should always be 0.
EXIT: None.

SIR/XS Host/API 50

ZBLTRC

ZBLTRC, Store Blank in Variable if Blank Is Missing or Undefined
ARGS: VDESC
DESC: ZBLTRC stores a blank into a variable. If the blank
 is a missing value, then it is stored as the
 respective missing value. For other values, an
 error is returned.
ENTRY: VDESC (D * 8) The descriptor for the variable to be set
 to blank.
EXIT: None.

SIR/XS Host/API 51

ZCACHE

ZCACHE, Set and Retrieve Cache System Control Parameters
ARGS: FNC,VAL
DESC: ZCACHE is used to set and retrieve cache system-control
 parameters.
ENTRY: FNC (I * 4) The control function code.
 VAL (I * 4) The new value or dummy.
EXIT: None.
RETURN: Negative if error, if not as described below:
 FNC VAL Return code Description
 1 0 0 Disable cache
 1 1 0 Enable cache
 2 n 0 Set table space = n
 3 n 0 Set number of buffers= n
 5 0 0 Set "write when" mode
 5 1 0 Set "write thru" mode
 11 x 0 Return for cache disabled
 11 x 1 Return for cache enabled
 12 x n Return table space
 13 x n Return number of buffers
 15 x 0 Return for "write when" mode
 15 x 1 Return for "write thru" mode

SIR/XS Host/API 52

ZCALL

ZCALL, Call HOST Function and Check Its Return Value
ARGS: ZFUNC, PRTFL, ENDFL, LBLNO, CODE1, CODE2
DESC: ZCALL enables the programmer to write a more concise
 and easier to maintain program by performing the
 testing of the return codes and the eventual error
 processing. First, ZCALL calls ZFUNC. If ZFUNC
 returns a positive value, zero or a negative value
 that is between CODE1 and CODE2, ZCALL returns
 immediately. If ZCALL does not return immediately,
 the following action is taken: PRTFL is 0, nothing
 is printed in the log file. PRTFL is 1, a brief
 message is printed that indicates the subroutine
 name, the error code, and the statement label LBLNO.
 If it is 2, the short message is printed followed by
 the complete error message on the next line. If
 ENDFL is 0, ZCALL returns. If it is -1, the full
 HOST system is shutdown but the subroutine returns.
 If it is -2, the full system is shutdown and the
 subroutine exits directly. If it is n(positive
 integer), the current stream (user) is shutdown, the
 system switches to user n and the subroutine
 returns.
ENTRY: ZFUNC (I * 4) Z function to call, with all its arguments.
 PRTFL (I * 4) Print flag, controls if and how a message is
 printed.
 ENDFL (I * 4) End flag, controls the flow of control after
 an error has occurred
 LBLNO (I * 4) Statement label number.
 CODE1 (I * 4) Error code (Negative 4 digit number or 0).
 CODE2 (I * 4) Error code (Negative 4 digit number or 0).
EXIT: None.
RETURN: Return value of ZFUNC.

SIR/XS Host/API 53

ZCCNT

ZCCNT, Initialise COUNT Case-processing Block for Current Database
ARGS: TCASES,INDEX,START
DESC: ZCCNT is the first of a series of routines that can
 be called in order to create "PROCESS CASE" block
 with the COUNT option. The purpose of this call is
 to initialise the retrieval stack with the required
 information. The arguments correspond to the
 arguments on the COUNT = clause of the PROCESS CASE
 command in RETRIEVAL. ZCCNT can also be used to
 process ALL cases by setting INDEX and START to 1
 and TCASES to -1.
ENTRY: TCASES(I * 4) Total number of cases to be processed.
 INDEX(I * 4) Every INDEX the case will be processed.
 START (I * 4) Starting with the START th case in the
 database.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 54

ZCCNTD

ZCCNTD, Set Current Database and Initialise COUNT Case-processing Block
ARGS: TCASES,INDEX,START,DBNAME
DESC: ZCCNTD is called to make DBNAME the current database
 and to start creating a "PROCESS CASE" block with
 the COUNT option. The purpose of this call is to
 initialise the retrieval stack with the required
 information. The arguments correspond to the
 arguments on the COUNT = clause of the PROCESS CASE
 command in RETRIEVAL. the database. ZCCNTD can also
 be used to process ALL cases by setting INDEX and
 START to 1 and TCASES to -1.
ENTRY: TCASES(I * 4) Total number of cases to be processed.
 INDEX (I * 4) Every INDEX th case will be processed.
 START (I * 4) Starting with the START the case in
 the database.
 DBNAME(N * 8) The database name to be processed by
 this case loop.
EXIT: None.
RETURN: Stack level of the newly created block, negative if error.

SIR/XS Host/API 55

ZCDEL

ZCDEL, Delete Current Case from Database
ARGS: DUMMY
DESC: ZCDEL is called after a CIR is retrieved to delete
 the current CIR and all its associated data records.
ENTRY: DUMMY (I * 4) Dummy argument needed to make a
 syntactically correct FORTRAN
 function. Should always be 0.
EXIT: None.

SIR/XS Host/API 56

ZCEXIT

ZCEXIT, Terminate Case Processing Level
ARGS: OLDSEED
DESC: ZCEXIT is called to terminate a case level and pop
 back one level in the retrieval stack.
ENTRY: None.
EXIT: OLDSEED(I * 4) The current value of the seed is
 returned to this argument if this was a
 PROCESS loop with the SAMPLE option.
 Otherwise the value is undefined.

SIR/XS Host/API 57

ZCFIND

ZCFIND, Find Case with Given Key
ARGS: OPT, LFLAG, DIRECT, BEGIN
DESC: ZCFIND finds an existent case or creates a new case
 with a previously specified key. It is called after
 routine ZCGDMY or ZCRDMY has created a dummy block
 and after putting values into the caseid variable in
 CIR and (if OPT is 1) in other common variables.
 When ZCFIND is executed, the value of the caseid is
 used to create the case key. If the caseid variable
 is undefined, then the dummy block is converted into
 a PROCESS CASE ALL block and the next or previous
 CIR is read. Otherwise, the dummy block is
 converted into a CASE IS block and: a) if OPT is 1,
 then the undefined values are updated to the values
 read from the found CIR or b) if OPT is 2 the full
 current CIR is replaced by the read CIR.
ENTRY: OPT (I * 4) Controls the update/replace of the CIR.
 LFLAG (I * 4) Lock flag.
 DIRECT (I 4) If PROCESS CASE then use 1 to get the
 next case and -1 to get the previous
 case.
 BEGIN (I * 4) Should be 0 to set the range to all
 cases (starting with the first case in
 the database) and I to convert to a
 PROCESS CASES ALL block (if caseid is
 undefined) or CASE IS block (if
 caseid is defined).
EXIT: None.
RETURN: -4001 if CIR not found;
 -3026 if CIR is found but is incompatible locked;
 +0003 if CIR is found and has a compatible lock;
 +0004 if CIR is found and available for CASE IS;
 +0000 if CIR is found and available for PROCESS
 CASE;
 negative if error.

SIR/XS Host/API 58

ZCFRST

ZCFRST, Start-up Case Level Block and Get First CIR
ARGS: LFLAG
DESC: ZCFRST is called after case-block initialisation and
 all key creation, and after all key-definition
 routines. It starts-up the case block and gets the
 first CIR that meets all of the selection options
 previously specified. No other case-level function
 can be called until this block is successfully
 executed. After ZCFRST is executed, no further key
 definitions may be made. The system checks that the
 current lock flag is compatible with LFLAG and if it
 is, LFLAG becomes the new lock.
ENTRY: LFLAG(I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 59

ZCGDMY

ZCGDMY, Initialise Dummy Case-level Processing
ARGS: DBNAME
DESC: ZCGDMY starts up a case block without accessing the
 database. After ZCGDMY has been called and values
 put in the CIR, ZCFIND should be called to create
 the key and find the CIR. If DBNAME is not all
 blanks, it is made the current database.
ENTRY: DBNAME (N * 8) Database name (all blanks means use
 current database
EXIT: None.
RETURN: Stack level of the newly created block, negative if error.

SIR/XS Host/API 60

ZCIS

ZCIS, Initialise CASE IS Block for Current Database
ARGS: NEW,OLD
DESC: ZCIS is the first of a series of routines that can
 be called in order to create "CASE IS" block. The
 purpose of this call is to initialise the retrieval
 stack with the required information.
ENTRY: NEW (I * 4) It is 1 if a new case can be created by
 this level, otherwise it is 0. The
 database must have been opened for
 update to allow a value of 1.
 OLD (I * 4) It is 1 if an old case can be accessed
 by this level, otherwise it is 0.
EXIT: None.
RETURN: Stack level of the newly created block, negative if error.

SIR/XS Host/API 61

ZCISD

ZCISD, Set Current Database and Initialise CASE IS Block
ARGS: NEW,OLD,DBNAME
DESC: ZCISD is called to make DBNAME the current database
 and to start creating a "CASE IS" block. The
 purpose of this call is to initialise the retrieval
 stack with the required information.
ENTRY: NEW (I * 4) It is 1 if a new case can be created by
 this level, otherwise it is 0. The
 database must have been opened for
 update to allow a value of 1.
 OLD (I * 4) It is I if an old case can be accessed
 by this level, otherwise it is 0.
 DBNAME(N*8) The database name to be processed by the
 level being created.
EXIT: None.
RETURN: Stack location of the new block, negative if error.

SIR/XS Host/API 62

ZCLAST

ZCLAST, Start Case-level Block and Get Last CIR
ARGS: LFLAG
DESC: ZCLAST is called after case-block initialisation and
 all key creation, and after all key-definition
 routines. It starts-up the case block and gets the
 last CIR that meets all of the selection options
 previously specified. No other case-level function
 can be called until this block is successfully
 executed. After ZCLAST is executed, no further key
 definitions may be made. The system checks that the
 current lock flag is compatible with LFLAG and if it
 is, LFLAG becomes the new lock.
ENTRY: LFLAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 63

ZCLEAR

ZCLEAR, Clear Retrieval Stack for a Stream
ARGS: USERNO
DESC: ZCLEAR calls ZREXIT and ZCEXIT as often as needed
 and in the proper order, in order to clear all
 levels in the retrieval stack for the specified
 user. ZCLEAR should be used to clear the stack when
 the current position is unknown.
ENTRY: USERNO(I * 4) The stream number whose retrieval stack
 should be cleared.
EXIT: None.

SIR/XS Host/API 64

ZCLOCK

ZCLOCK, Return The Lock Type of the Case Level from
 Execution Stack
ARGS: LFLAG
DESC: ZCLOCK returns the lock type of the case level to
 which the innermost block in the execution stack
 belongs.
ENTRY: None.
EXIT: LFLAG (I * 4) Lock type.
RETURN: 0 if the level is not write-locked. 1 if the level is write-
locked.

SIR/XS Host/API 65

ZCNEXT

ZCNEXT, Get Next Case for Current Level
ARGS: LFLAG
DESC: ZCNEXT is called after case-block initialisation and
 all key creation, and after all key-definition
 routines. It starts-up the case block and gets the
 next CIR that meets all of the selection options
 previously specified. No other case-level function
 can be called until this block is successfully
 executed. After ZCNF-XT is executed, no further key
 definitions may be made. The system checks that the
 current lock flag is compatible with LFLAG and if it
 is, LFLAG becomes the new lock.
ENTRY: LFLAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 66

ZCPREV

ZCPREV, Start-up Case Level Block and Get Previous CIR
ARGS: LFLAG
DESC: ZCPREV is called after case-block initialisation and
 all key creation, and after all key definition
 routines. It starts-up the case block and gets the
 previous CIR that meets all of the selection options
 previously specified. No other case-level function
 can be called until this block is successfully
 executed. After ZCPREV is executed, no further key
 definitions may be made. The system checks that the
 current lock flag is compatible with LFLAG and if it
 is, LFLAG becomes the new lock.
ENTRY: LFIAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 67

ZCRDMY

ZCRDMY, Terminate Case-processing Level and Reset to
Dummy
ARGS: DUMMY
DESC: ZCRDMY terminates the processing of the current CIR,
 rewrites it to the database if necessary, and then
 resets the block to dummy.
ENTRY: DUMMY (I * 4) Dummy argument needed to make a
 syntactically correct FORTRAN
 function. Should always be 0.
EXIT: None.

SIR/XS Host/API 68

ZCREST

ZCREST, Restore CIR from Database and Reset Lock Type
ARGS: LFLAG
DESC: ZCREST is called to replace the values of the common
 variables in the retrieval stack with the values of
 the common variables in the database. Potentially,
 it can change the lock type of the CIR.
ENTRY: LFLAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 69

ZCSAM

ZCSAM, Initialise SAMPLE Case-processing Block
ARGS: SAMPLE,SEED
DESC: ZCSAM is the first of a series of routines that can
 be called in order to create "PROCESS CASE" block
 with the SAMPLE option.
ENTRY: SAMPLE(R * 4) Sample size (SAMPLE).
 SEED (I * 4) Starting seed for random-number
 generator. Same seed always produces the
 same random selection sequence. Any odd
 value can be used for the seed. See
 routine ZCEXIT for obtaining the value
 of the seed after the loop is finished.
EXIT: None.
RETURN: Stack location of the new block, negative if error.

SIR/XS Host/API 70

ZCSAMD

ZCSAMD, Set Current Database and Initialise a SAMPLE
 Case-processing Block
ARGS: SAMPLE,SEED,DBNAME
DESC: ZCSAMD is called to make DBNAME the current database
 and to start creating a "PROCESS CASE" block with
 the SAMPLE option. The purpose of this call is to
 initialise the retrieval stack with the required
 information.
ENTRY: SAMPLE(R * 4) Sample size (SAMPLE).
 SEED (I * 4) Starting seed for random-number
 generator. Same seed always produces
 the same random selection sequence.
 Any odd value can be used for the
 seed. See routine ZCEXIT for obtaining
 the value of the seed after the loop
 is finished.
 DBNAME(N * 8) The database name to be processed by
 this case block (all blanks means use
 current database).
EXIT: None.
RETURN: Stack location of the new block, negative if error.

SIR/XS Host/API 71

ZCWRIT

ZCWRIT, Replace Modified CIR on Database and Lock of
 Block
ARGS: LFLAG
DESC: ZCNWIT is called to replace the database version of
 the CIR with the current version in the retrieval
 stack. This process is performed automatically by
 the HOST routines when the next CIR is retrieved or
 the case level is terminated. However the user may
 want to write the modified CIR to the database and
 change the lock for further processing.
ENTRY: LFLAG (I * 4) Lock flag.
EXIT: None.

SIR/XS Host/API 72

ZDESC

ZDESC, Create Variable Descriptor
ARGS: VDESC,RECTYP,VRNAME,LEVEL
DESC: ZDESC builds-up a variable's descriptor. (Refer to
 the Machine Specifics documentation for
 additional information on descriptors.) ZDESC can be
 called once prior to entering a loop which
 references a variable. This avoids the necessity of
 creating the variable descriptor for each loop
 iteration. Unlike ZDESCD, the database name is not
 required.
ENTRY: RECTYP(I * 4) The record type number to which the
 variable belongs. Common variables are
 indicated by setting this argument to
 zero.
 VRNAME(N*8) The variable name.
 LEVEL (I * 4) Level in the retrieval stack where the
 CIR/data record can be found. A zero
 value indicates that when the descriptor
 is used, the system should start with
 the innermost level in the retrieval
 stack and search outwards for the first
 level which matches the database and
 record type specified within the
 descriptor. A negative value indicates
 that the record is LEVEL levels out from
 the innermost level. A positive value
 indicates that the record is LEVEL
 levels deep in the retrieval stack.
EXIT: VDESC (D*8) Contains the descriptor for the variable
 specified by the other arguments.

SIR/XS Host/API 73

ZDESCB

ZDESCB, Break Descriptor Into Four Integers
ARGS: VDESC,DBNUM,RECTYP,VARNUM,LEVEL
DESC: ZDESCB breaks a descriptor into 4 integers.
ENTRY: VDESC (I * 4) Contains the descriptor.
EXIT: DBNUM (I * 4) The database number in HOST system.
 RECTYP(I * 4) The record-type number.
 VRNUM (I * 4) The variable number in record.
 LEVEL (I * 4) The stack level.

SIR/XS Host/API 74

ZDESCD

ZDESCD, Create Variable Descriptor
ARGS: VDESC,DBNAME,RECTYP,VRNAME,LEVEL
DESC: ZDESCD looks up a common or record variable name and
 returns the variable's descriptor. Refer to the
 Machine Specifics documentation for additional
 information on descriptors. ZDESCD can be called
 once prior to entering a loop which references a
 variable. This avoids the necessity of creating the
 variable descriptor for each loop iteration.
ENTRY: DBNAME(N*8) The database in which the variable
 resides.
 RECTYP(I * 4) The record type number to which the vari-
 able belongs. Common variables are indi-
 cated by setting this argument to zero.
 VRNAME(N*8) The variable name.
 LEVEL (I * 4) This indicates where the CIR/data record
 can be found. A zero value indicates
 that when the descriptor is used, the
 system should start with the innermost
 level in the retrieval stack and search
 outwards for the first level which
 matches the database and record type
 specified within the descriptor. A
 negative value indicates that the record
 is LEVEL levels out from the innermost
 level A positive value indicates that
 the record is LEVEL levels deep in the
 retrieval stack.
EXIT: VDESC (D 8) Contains the descriptor for the variable
 specified by the other arguments.

SIR/XS Host/API 75

ZDESCM

ZDESCM, Make Descriptor out of Four Integers
ARGS: VDESC,DBNUM,RECTYP,VARNUM,LEVEL
DESC: ZDESCM makes a descriptor from 4 integers.
ENTRY: DBNUM (I * 4) The database number in HOST system.
 RECTYP(I * 4) The record type number. It cannot be 0
 for a caseless database.
 VRNUM (I * 4) The variable number in record.
 LEVEL (I * 4) The stack level.
EXIT: VDESC (I * 4) Contains the descriptor for the variable
 specified by the other arguments.

SIR/XS Host/API 76

ZDETAL

ZDETAL, Find Location of File Control Block of DETAIL File
ARGS: DUMMY
DESC: ZDETAL returns the location in table ZERO of the
 file control block for the detail file for the
 current database.
ENTRY: DUMMY(I * 4) Dummy argument.
EXIT: None.
RETURN: Location of DETAIL file FCB.

SIR/XS Host/API 77

ZDTTKY

ZDTTKY, Enter a Date String into a Key
ARGS: DATEST,LENGTH,DATEMP
DESC: ZDTRKY is called after one of the key initialisation
 routines in order to insert the value of a date
 string into the next location of the key currently
 being defined.
ENTRY: DATEST (B * n) Date string to insert into key.
 LENGTH (I * 4) Number of characters in strings DATEST
 and DATEMP.
 DATEMP (B * n) String containing format for decoding
 the date specified in DATEST. Legal
 characters are I(ignore), Y(year),
 M(month), or D(day). For
 example 'MMIDDIYY'
EXIT: None.

SIR/XS Host/API 78

ZDTTRC

ZDTTRC, Move Date into CIR/Record
ARGS: DATEST,LENGTH,DATEMP,VDESC
DESC: ZDTTRC transfers the value of a date string into a
 CIR or data record.
ENTRY: DATEST (B * n) Date string to transfer to record.
 LENGTH (I * 4) Number of characters in strings DATEST
 and DATEMP.
 DATEMP (B * n) String containing format for decoding
 the date specified in DATEST. Legal
 characters are I(ignore), Y(year),
 M(month), or D(day).
 VDESC (D * 8) Variable descriptor of variable to receive
 value.
EXIT: None.

SIR/XS Host/API 79

ZDTXIN

ZDTXIN, Convert Date String into Date Integer
ARGS: DATEST,ORDINAL,DATEMP,LENGTH
DESC: ZDTXIN converts a date encoded as a character string
 into a julian integer value.
ENTRY: DATEST (B * n) Date string to convert.
 ORDINAL (I * 4) First character in string DATEST to
 use.
 DATEMP(B * n) String containing format for
 decoding the date specified in
 DATEST. Legal characters are
 I(ignore), Y(year), M(month), or
 D(day). For example 'MMIDDIYY'
 LENGTH(I * 4) Number of characters in strings
 specified above.
EXIT: None.

SIR/XS Host/API 80

ZDTXKY

ZDTXKY, Enter Date String into Key
ARGS: DATEST,ORDINAL,LENGTH,DATEMP
DESC: ZDTXKY is called after one of the key initialisation
 routines in order to insert the value of a date
 string into the next location of the key currently
 being defined.
ENTRY: DATEST (B * n) Date string to insert into key.
 ORDINAL (I * 4) Starting byte number in area DATA to
 transfer the value from. For a
 simple variable this value is 1.
 LENGTH (I * 4) Number of characters in strings
 specified above.
 DATEMP (B * n) String containing format for
 decoding the date specified in
 DATEST. Legal characters are
 I(ignore), Y(year), M(month), or D
 (day). For example 'MMIDDIYY'
EXIT: None.

SIR/XS Host/API 81

ZDTXRC

ZDTXRC, Move Date into CIR/Record
ARGS: DATEST,ORDINAL,LENGTH,DATEMP,VDESC
DESC: ZDTXRC transfers the value of a date string into a
 CIR or data record.
ENTRY: DATEST (B * n) Date string to transfer to record.
 ORDINAL (I * 4) Starting byte number in area DATA to
 transfer the value from. For a
 simple variable this value is 1.
 LENGTH (I * 4) Number of characters in strings
 specified above.
 DATEMP (B * n) String containing format for
 decoding the date specified in
 DATEST. Legal characters are
 I(ignore), Y(year), M(month), or
 D(day).
 VDESC (D * 8) Variable descriptor of variable to
 receive value.
EXIT: None.

SIR/XS Host/API 82

ZEND

ZEND, Terminate Processing of HOST
ARGS: TSUSED
DESC: ZEND terminates a HOST run. It must be called after
 using ZENDDB to close all the databases still open
 for the run. ZEND ensures that all information
 related to the databases are properly handled. All
 internal tables are cleared and any scratch files
 used are closed and returned.
ENTRY: None.
EXIT: TSUSED (I * 4) The amount of table space actually used
 in the current job is returned by HOST via
 this argument. If the value is negative then
 during the run some tables had to be
 swapped to a scratch disk file in order to
 continue processing. In this case addition-
 al memory should be allocated to reduce
 the swapping time the next time the
 program is used.

SIR/XS Host/API 83

ZENDDB

ZENDDB, Terminate the Use of Database
ARGS: DBNAME
DESC: ZENDDB terminates the use of a specified database.
 The files are updated and closed. The space
 associated with each database is not freed until
 ZEND is called. ZENDDB must be called for each open
 database prior to calling ZEND. Prior to calling
 ZENDDB, all streams must have terminated their use
 of the database, otherwise the call fails and
 returns a fatal error. Failure to close a database
 can cause destruction of the database.
ENTRY: DBNAME(N * 8) Name of the database. This is the same
 name that appeared on the database
 initialisation routine.
EXIT: None.

SIR/XS Host/API 84

ZERMSG

ZERMSG, Error Description Routine
ARGS: ERRNUM,BUFFER,BUFLEN,LOGFLG,RNAME
DESC: ZERMSG converts an error code ERRNUM into coded text
 that can be printed.
ENTRY: ERRNUM (I * 4) Error code to be converted.
 BUFLEN (I * 4) Maximum number of characters to
 transfer to error text buffer BUFFER.
 LOGFLG (I * 4) Insert error message in log flag. If
 the value of this argument is 0 then
 no message is placed in the system
 log file. If the value of this
 argument is I then the message is
 placed in the system log file and
 also transferred to the BUFFER array.
 RNAME (N * 8) Calling routine name to be included
 in error message placed in system log
 file.
EXIT: BUFFER (B * n) Will contain up to BUFLEN characters
 describing the error code ERRNUM.
RETURN: Number of characters in the returned message,
 negative if error.

SIR/XS Host/API 85

ZEXIT

ZEXIT, Exit One Process Level Regardless of Type
ARGS: OSEED
DESC: ZEXIT exits the block at the lowest level in the
 current stack, regardless its type(case or record).
ENTRY: None.
EXIT: OSEED(I * 4) If this was a process sample level,
 then the current seed value is returned
 here so that it can be used on the next
 call for the next random-number
 generation.

SIR/XS Host/API 86

ZFPTKY

ZFPTKY, Enter Real Value into Key
ARGS: DATA
DESC: ZFPTKY is called after one of the key initialisation
 routines in order to insert a real value into the
 next location of the key currently being defined.
ENTRY: DATA (R * 4) Real value to insert into key.
EXIT: None.

SIR/XS Host/API 87

ZFPTRC

ZFPTRC, Move Real into CIR/Record
ARGS: DATA,VDESC
DESC: ZFPTRC transfers a real value into a CIR or data
 record.
ENTRY: DATA (R * 4) Real value to transfer to record.
 VDESC (D * 8) Variable descriptor of variable to
 receive value.
EXIT: None.

SIR/XS Host/API 88

ZFPXKY

ZFPXKY, Enter Real Value into Key
ARGS: DATA,ORDINAL,LENGTH
DESC: ZFPXKY is called after one of the key initialisation
 routines in order to insert a real value into the
 next location of the key currently being defined.
ENTRY: DATA (R * n) Real value to insert into key.
 ORDINAL (I * 4) Starting byte number in area DATA to
 transfer the value from. For a
 simple variable this value is 1.
 LENGTH (I * 4) Number of bytes in value.
EXIT: None.

SIR/XS Host/API 89

ZFPXRC

ZFPXRC, Move Real into CIR/Record
ARGS: DATA,ORDINAL,LENGTH,VDESC
DESC: ZFPXRC transfers a real value into a CIR or data
 record.
ENTRY: DATA (R * n) Real value to transfer to record.
 ORDINAL (I * 4) Starting byte number in area DATA to
 transfer the value from. For a
 simple variable this value is 1.
 LENGTH(I * 4) Number of bytes in value.
 VDESC (D * 8) Variable descriptor of variable to
 receive value.
EXIT: None.

SIR/XS Host/API 90

ZFROM

ZFROM, Start Creation of FROM Key
ARGS: DUMMY
DESC: ZFROM starts the creation of a key. It creates a
 "FROM" key. That is, a key which is used to select
 all CIR/record's whose key matches or comes after
 the key that is currently being defined. It is
 normally called after one of the case/record level
 initialisation routines in order to initialise the
 key selection options for case or record loops.
 Following a call to ZFROM, other routines are called
 to enter values into the key one at a time. For a
 case key only one call is made to enter the value of
 the case id. For record keys, the case id is
 assumed to be the same as the last CIR retrieved or
 restored. Therefore, only the record sort ids have
 to be inserted into the key. The sort-ids must be
 entered in the order of their appearance in the key
 being created.
ENTRY: DUMMY(I * 4) Dummy argument to make routine a
 syntactically correct FORTRAN function.
 Should always be 0.
EXIT: None.

SIR/XS Host/API 91

ZINTKY

ZINTKY, Enter Integer Value Into Key
ARGS: DATA
DESC: ZINTKY is called after one of the key initialisation
 routines in order to insert an integer value into
 the next location of the key currently being
 defined.
ENTRY: DATA(I * 4) Integer value to insert into key.
EXIT: None.

SIR/XS Host/API 92

ZINTRC

ZINTRC, Move Integer into CIR/record
ARGS: DATA,VDESC
DESC: ZINTRC transfers an integer value into a CIR or data
 record.
ENTRY: DATA (I * 4) Integer value to transfer to record.
 VDESC (D * 8) Descriptor for variable to modify.
EXIT: None.

SIR/XS Host/API 93

ZINXDT

ZINXDT, Convert Integer into Date String
ARGS: IDAYS,DATEST,ORDINAL,LENGTH,DATEMP
DESC: ZINXDT converts an integer value into a date string
 according to a specified format.
ENTRY: IDAYS (I * 4) The integer value to convert.
 ORDINAL (I * 4) Starting byte number in area DATEST
 to transfer the date string to.
 LENGTH (I * 4) Number of characters in strings
 specified above.
 DATEMP (B * n) String containing format for
 decoding the date specified in
 DATEST. Legal characters are
 I(ignore), Y(year), M(month), or
 D(day). For example 'MMIDDIYY'
EXIT: DATEST (B * n) The area in which to place the date
 string created. Starting at
 position ORDINAL as specified above.

SIR/XS Host/API 94

ZINXKY

ZINXKY, Enter Integer Value Into Key
ARGS: DATA,ORDINAL,LENGTH
DESC: ZINXKY is called after one of the key initialisation
 routines in order to insert an integer value into
 the next location of the key currently being defined.
ENTRY: DATA (I * n) Integer value to insert into key.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value from. For a simple
 variable this value is 1.
 LENGTH(I * 4) Number of bytes in value.
EXIT: None.

SIR/XS Host/API 95

ZINXRC

ZINXRC, Move Integer into CIR/Record
ARGS: DATA,ORDINAL,LENGTH,VDESC
DESC: ZINXRC transfers an integer value into a CIR or data
 record.
ENTRY: DATA (I * n) Integer value to transfer to record.
 ORDINAL (I * 4) Starting byte number in area DATA to
 transfer the value from. For a
 simple variable this value is 1.
 LENGTH (I * 4) Number of bytes in value.
 VDESC (D * 8) Descriptor for variable to modify.
EXIT: None.

SIR/XS Host/API 96

ZINXTM

ZINXTM, Convert Integer into Time String
ARGS: ITIME,TIMSTR,ORDINAL,LENGTH,TIMMAP
DESC: ZINXTM converts an integer value into a time string
 according to a specified time format.
ENTRY: ITIME (I * 4) The integer to convert.
 ORDINAL (I * 4) Starting byte number in area TIMSTR to
 transfer the time string to.
 LENGTH (I * 4) Number of characters in strings above.
 TIMMAP (B * n) String containing the decoding
 format for the time string
 contained in TIMEST. Legal values
 are I(ignore), H(hour), M(minute),
 S(second). For example 'HHMMSS'
EXIT: TIMSTR (B * n) The area to receive the time
 string. The location the string is
 placed in this area is dependent on
 ORDINAL.

SIR/XS Host/API 97

ZLABEL

ZLABEL, Get Value Label for Current Value of a Variable
ARGS: VDESC,STRING,LENGTH
DESC: ZLABEL gets the value label for the current value of
 a variable. It is equivalent to the VALLAB
 function.
ENTRY: VDESC (D * 8) The variable descriptor.
 LENGTH (I * 4) Number of characters of value label
 to retrieve.
EXIT: STRING (B * n) String area in which the value label
 will be placed.
RETURN: Number of characters actually transferred, negative
 if error.

SIR/XS Host/API 98

ZLABLN

ZLABLN, Get Value Label for Numeric Variable
ARGS: VDESC,VALUE,STRING,LENGTH
DESC: ZLABLN searches the database for the value label
 associated with the specified variable and the
 numeric value.
ENTRY: VDESC (D * 8) The variable descriptor.
 VALUE (R * 8) The specific value whose label is to
 be returned.
 LENGTH(I * 4) Number of characters of value label to
 retrieve.
EXIT: STRING (B * n) Area in which the value label will be
 placed.
RETURN: Number of characters actually transferred, negative if error.

SIR/XS Host/API 99

ZLABLS

ZLABLS, Get Value Label for String Variable
ARGS: VDESC,VALUE,LENGTHI,STRING,LENGTH2
DESC: ZLABILS searches the database for the value label
 associated with the specified variable and the
 string value.
ENTRY: VDESC (D * 8) The variable descriptor.
 VALUE (B * n) The specific value whose label is to
 be returned.
 LENGTH1(I * 4) Number of characters in the value.
 LENGTH2(I * 4) Number of characters of value label
 to retrieve.
EXIT: STRING (B * n) Area in which the value label is to
 be placed.
RETURN: Number of characters actually transferred, negative if error.

SIR/XS Host/API 100

ZLCKRT

ZLCKRT, Set or Return the Record Type Lock
ARGS: DBNAME,RECTYP,LFLAG
DESC: ZLCKRT sets or returns the lock for a specified
 record type. It works only for concurrent HOST.
 The routine can be invoked from a regular HOST
 program but it does not have any effect, nor does it
 return any significant value.
ENTRY: DBNAME(D * 8) The database name to which the record
 type belongs.
 RECTYP(B * n) If ZLCKRT is invoked to set a record
 type lock, RECTYP is the record type
 number (0 means CIR). If it is
 invoked to return a record type lock,
 RECTYP should be set to a negative
 value that is the -1 minus the record
 type (i.e. -1 for CIR, - 2 for
 rectype 1, etc.)
 LFLAG (I * 4) Value to set the lock record type to (
 if RECTYP is not negative).
EXIT: LFLAG (B * n) Current value of the lock flag for the
 rectype specified by a negative value
 of RECTYP.

SIR/XS Host/API 101

ZLOGIN

ZLOGIN, Initialisation of Master Link
ARGS: MDSN,MLEN,SDSN,SLEN
DESC: ZLOGIN specifies the MASTER and SLAVE names (DSNS)
 and logs the slave (current process) into the
 MASTER. It must be the next routine called after
 ZSTART. If it is not called, the default master and
 slave names are used. For non-concurrent HOST,
 ZLOGIN is not operational.
ENTRY: MDSN (B * n) The MASTER DSN.
 MLEN (I * 4) The length of the MDSN.
 SDSN (B * n) The SLAVE DSN.
 SLEN (I * 4) The length of the SDSN.
EXIT: None.

SIR/XS Host/API 102

ZMSLAB

ZMSLAB, Return Value Label for Missing Value
ARGS: VDESC,VALUE,STRING,LENGTH
DESC: ZMSLAB retrieves the value label for a specified
 missing value of a certain variable.
ENTRY: VDESC (D * 8) The descriptor for the variable.
 VALUE (I * 4) The missing value whose label is
 being returned. (0, 1, 2, 3)
 LENGTH(I * 4) Maximum number of characters to
 return.
EXIT: STRING (B * n) String area that will have the label
 placed in it.
RETURN: The number of characters actually transferred
 negative if error.

SIR/XS Host/API 103

ZMSTRC

ZMSTRC, Transfer Missing Value to Variable
ARGS: NUMBER,VDESC
DESC: ZMSTRC sets the value of a specified variable to
 either undefined or one of the 3 missing values.
ENTRY: NUMBER(I * 4) The value 0 if the variable is to be
 set to undefined or the value 1-3 for
 missing value 1-3.
 VDESC (D * 8) The descriptor of the destination
 variable.
EXIT: None.

SIR/XS Host/API 104

ZNCASE

ZNCASE, Get Number of Cases in Database
ARGS: DBNAME
DESC: ZNCASE returns the number of cases currently in the
 database.
ENTRY: DBNAME (N * 8) The database name.
EXIT: None.
RETURN: The number of cases in the database, negative if error.

SIR/XS Host/API 105

ZNEW

ZNEW, Check if New CIR record was Created
ARGS: DUMMY
DESC: ZNEW returns an indication of whether the
 CIR/record in the lowest level of the retrieval
 stack was just created or if it existed prior to
 this reference.
ENTRY: DUMMY (I * 4) Dummy argument needed to make a
 syntactically correct FORTRAN
 function. Should always be 0.
EXIT: None.
RETURN: 0 if CIR/record previously existed, 1 if CIR/record
 was just created, negative if error.

SIR/XS Host/API 106

ZNOR

ZNOR, Get The Number of Records in Current Case
ARGS: RECTYP
DESC: ZNOR returns the number of records of the specified
 type within the current case. This function
 corresponds to the COUNT function in DBMS. ZNOR
 differs from ZNORD only in that the CIR
 corresponding to the innermost block in retrieval
 stack is used, regardless of database being used.
 ZNOR cannot be used on a caseless database.
ENTRY: RECTYP(I * 4) The record type. If it is zero, then
 it returns the total number of records
 in the case.
EXIT: None.
RETURN: The number of records of the specified type in the
 current case, negative if error.

SIR/XS Host/API 107

ZNORD

ZNORD, Get Number of Records in Current Case for Specified Database
ARGS: DBNAME,RECTYP
DESC: ZNORD returns the number of records of the specified
 type in the current case for the specified database.
 This function corresponds to the COUNT function in
 DBMS.
ENTRY: DBNAME (N * 8) The database name. ZNORD searches
 backwards from the current level for
 a block "belonging" to the specified
 database and uses its CIR to return
 the value from. ZNORD cannot be used
 on a caseless database.
 RECTYP (I * 4) The record type. If it is zero, then
 it returns the total number of
 records in the case.
EXIT: None.
RETURN: The number of records of the specified type in the
 current case, negative if error.

SIR/XS Host/API 108

ZNRECS

ZNRECS, Get Number of Records of Type
ARGS: DBNAME,RECTYP
DESC: ZNRECS returns the number of records of a specified
 type currently in the database.
ENTRY: DBNAME (N * 8) The database name.
 RECTYP (I * 4) The record type number, 0 for CIR.
EXIT: None.
RETURN: The number or records of the specified type,
 negative if error.

SIR/XS Host/API 109

ZNSIDS

ZNSIDS, Get Number of Sort-ids in Record Type
ARGS: DBNAME,RECTYP
DESC: ZNSIDS returns the number of sort-ids in the key for
 the specified record type.
ENTRY: DBNAME (N * 8) The database name.
 RECTYP (I * 4) The record type number.
EXIT: None.
RETURN: The number of sort-ids in the specified record type,
 negative if errors.

SIR/XS Host/API 110

ZNVARS

ZNVARS, Get the Number of Variables in Record
ARGS: DBNAME,RECTYP
DESC: ZNVARS returns the number of variables in a
 specified record type or the CIR. It can be used to
 determine if a database is caseless or not.
ENTRY: DBNAME (N * 8) The database name.
 RECTYP (I * 4) The record type number. Use zero for
 the CIR. If RECTYP is 0 and the
 database is caseless, the function
 returns 0.
EXIT: None.
RETURN: The number of variables in the specified record
 type, zero for the number of variables in the CIR of
 a caseless database, negative if error.

SIR/XS Host/API 111

ZOPEN

ZOPEN, Determine if Database is Available
ARGS: DBNAME
DESC: ZOPEN is called to determine if a specified database
 is currently open for use or not.
ENTRY: DBNAME (N * 8) The database name to check.
EXIT: None.
RETURN: Internal database number (small positive integer),
 negative if error.

SIR/XS Host/API 112

ZOPT

ZOPT, Set or Return Various System Options
ARGS: OPT
DESC: ZOPT allows the user to select, deselect or return
 various options.
ENTRY: OPT (I * 4) The sum of the options to select if
 positive; -1 to return the current
 settings.
 OPT Description
 0*1 or 1*1 allow or disallow the storage of valid
 values
 0*2 or 1*2 allow or disallow the storage of undefined
 values
 0*4 or 1*4 allow or disallow the storage of missing
 values
 0*8 or 1*8 allow or disallow backward search In the
 stack when a "from" descriptor level Is 0
 0*16 or 1*16 allow or disallow backward search in the
 stack when a "to" descriptor level is 0
EXIT: None.
RETURN: 0 if OPT is between 0 and 31, the sum of selected
 options if OPT is -1, negative if error.

SIR/XS Host/API 113

ZORDB

ZORDB, Initialise Specified Random Database
ARGS: DBNAME,DBPASS,HSPASS,RDPASS,WRPASS, UPD,PREFIX,PRELEN
DESC: ZORDB is called to attach the database. It also
 verifies the passwords to ensure database security
 and accessibility. It must be called prior to any
 reference to the new database. Each open database
 requires a significant amount of memory to be
 allocated in the table area regardless of whether it
 is currently being used or not. ZORDB may only be
 called for a database that is in random format.
ENTRY: DBNAME(N * 8) Name of the database. This is the same
 name that would appear on an "OLD FILE"
 command.
 DBPASS(N * 8) The password for the database.
 HSPASS(N * 8) The password required to access the
 database via HOST. If no password is
 required then this field should
 contain a blank name.
 RDPASS(N * 8) The read security password for the
 database. This password is used to
 define the default read security level
 for any stream which does not
 specifically set the read security
 level for this database. If the
 argument contains 8 blanks then the
 standard DBMS default is used for
 any stream not specifying a read
 security password.
 WDPASS(N * 8) The write security password for the
 database. This password is used to
 define the default write security
 level for any stream which does not
 specifically set the write security
 level for this database. If the
 argument contains 8 blanks then the
 standard DBMS default is used for
 any stream not specifying a write
 security password.
 UPD (I * 4) Update/nonupdate flag. If UPD is 0
 then the database is attached for read
 only access. If however the value of
 this argument is 1 or 2 then the
 database is attached for exclusive
 usage in order to allow the job to
 modify the database. If the value is 2
 then every change to the database
 causes the changed internal tables to
 be rewritten to the database file. If
 the value is 1 then only when HOST
 determines it is necessary will the
 tables be rewritten to the database

SIR/XS Host/API 114

 file.
 PREFIX(B * n) Prefix used for database filenames.
 PRELEN(I * 4) Number of characters in "PREFIX".
EXIT: None.
RETURN: The database number used in creating descriptors if
 no errors are encountered (1 for 1st opened
 database, 2 for 2nd, etc. Negative if error.

SIR/XS Host/API 115

ZOSDB

ZOSDB, Initialise Specified Sequential Database
ARGS: DBNAME,DBPASS,HSPASS,RDPASS,WRPASS,UPD,
 PREFIX,PRELEN,SIFNAM,SOFNAM
DESC: ZOSDB is called initially to attach a sequential
 format database. It also verifies the passwords to
 ensure database security and accessibility. Each
 open database requires a significant amount of
 memory to be allocated in the table area regardless
 of whether it is currently being used or not. ZOSDB
 may only be called for a database which is in
 sequential format.
ENTRY: DBNAME(N * 8) Name of the database. This is the same
 name that would appear on an "OLD FILE"
 command.
 DBPASS(N * 8) The password for the database.
 HSPASS(N * 8) The password required to access the
 database via HOST. If no password is
 required then this field should contain
 a blank name.
 RDPASS(N * 8) The read security password for the
 database. This password is used to
 define the default read security level
 for any stream which does not
 specifically set the read security
 level for this database. If the
 argument contains 8 blanks then the
 standard DBMS default is used for any
 stream not specifying a read security
 password.
 WRPASS (N * 8) The write security password for the
 database. This password is used to
 define the default write security level
 for any stream which does not
 specifically set the write security
 level for this database. If the
 argument contains 8 blanks then the
 standard DBMS default is used for any
 stream not specifying a write security
 password.
 UPD (I * 4) Update/nonupdate flag. If UPD is 0 then
 the database is attached for read only
 access. If however the value of this
 argument is 1 or 2 then the database is
 attached for exclusive usage in order
 to allow the job to modify the
 database. If the value is 2 then every
 change to the database causes the
 changed internal tables to be rewritten
 to the database file. If the value is I
 then only when HOST determines it is
 necessary will the tables be rewritten

SIR/XS Host/API 116

 to the database file.
 PREFIX(B * n) Prefix used for database filenames.
 PRELEN(I * 4) Number of characters in "PREFIX".
 SIFNAM (N * 8) The "FILENAME" of the file containing
 the sequential format input database.
 SOFNAM (N * 8) The "FILENAME" of the file which will
 contain the sequential format output
 database. If this is not an update run
 then this argument should contain all
 blanks.
EXIT: None.
RETURN: The database number used in creating descriptors if
 no errors are encountered (1 for 1st opened
 database, 2 for 2nd, etc). negative if error.

SIR/XS Host/API 117

ZRCNT

ZRCNT, Initialise COUNT Record Processing Block
ARGS: RECTYP,TRECS,INDEX,START
DESC: ZRCNT is the first of a series of routines that can
 be called in order to create "PROCESS RECORD" block
 with the COUNT option. ZRCNT can be used to process
 ALL records by setting INDEX and START to 1 and
 TRECS to -1. The arguments correspond to the
 arguments on the COUNT = clause of the PROCESS CASE
 command in RETRIEVAL.
ENTRY: RECTYP(I * 4) The record type number to be
 processed.
 TRECS (I * 4) Total number of records to be
 processed.
 INDEX (I * 4) Every INDEX the record will be
 processed.
 START (I * 4) Starting with the START the record in
 the database.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 118

ZRCNTD

ZRCNTD, Set Current Database and Initialise COUNT
 Record-processing Block
ARGS: RECTYP,TRECS,INDEX,START,DBNAME
DESC: ZRCNTD is called to make DBNAME the current database
 and to start creating a "PROCESS RECORD" block with
 the COUNT option. The purpose of this call is to
 initialise the retrieval stack with the required
 information. The arguments correspond to the
 arguments on the COUNT = clause of the PROCESS CASE
 command in RETRIEVAL.
ENTRY: RECTYP(I * 4) The record type number to be
 processed.
 TRECS (I * 4) Total number of records to be
 processed.
 INDEX (I * 4) Every INDEX the record will be
 processed.
 START (I * 4) Starting with the START the record in
 the database.
 DBNAME(N * 8) Database name.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 119

ZRCNTL

ZRCNTL, Initialise COUNT Record Processing Block
 Belonging to CIR
ARGS: RECTYP,TRECS,INDEX,START,LEVEL
DESC: ZRCNTL is called to start creating a "PROCESS
 RECORD" block (with the COUNT option) that belongs
 to the CIR at the specified level. The purpose of
 this call is to initialise the retrieval stack with
 the required information. Potentially, it can
 switch databases. ZRCNTL can be used to process ALL
 records by setting INDEX and START to 1 and TRECS to
 -1. The arguments correspond to the arguments on
 the COUNT clause of the PROCESS CASE command in
 RETRIEVAL.
ENTRY: RECTYP(I * 4) The record type number to be
 processed.
 TRECS (I * 4) Total number of records to be
 processed.
 INDEX(I * 4) Every INDEX the record will be
 processed.
 START (I * 4) Starting with the START the record in
 the database.
 LEVEL (I * 4) Stack level of the CIR block to which
 the record should belong.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 120

ZRCTDT

ZRCTDT, Transfer Date from CIR/Record
ARGS: VDESC,DATEST,LENGTH,DATEMAP
DESC: ZRCTDT retrieves a date value from the specified
 CIR/data record and converts it to a date string
 according to the user specified date map.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
 DATEST(B * n) Location to place date string.
 LENGTH(I * 4) Number of characters in strings DATEST
 and DATEMP.
 DATEMP(B * n) String containing the decoding format
 for the date string contained in
 DATEST. Legal values are W(day of
 week) M(month), D(day), Y(year). For
 example, 'MM/DD/YY' would produce
 '12/31/86'.
EXIT: DATEST(B * n) Will contain date string retrieved
 from current CIR/data record.

SIR/XS Host/API 121

ZRCTFP

ZRCTFP, Transfer Floating-point Value from Record
ARGS: VDESC,DATA
DESC: ZRCTFP retrieves a real value from the specified
 CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
EXIT: DATA (R * 4) Will contain real value retrieved from
 current CIR/data record.

SIR/XS Host/API 122

ZRCTIN

ZRCTIN, Transfer Integer Value from Record
ARGS: VDESC,DATA
DESC: ZRCTIN retrieves an integer value from the specified
 CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
EXIT: DATA (I * 4) Will contain integer value retrieved
 from current CIR/data record.

SIR/XS Host/API 123

ZRCTRC

ZRCTRC, Transfer Value from One Variable to Another
ARGS: VDESCI,VDESC2
DESC: ZRCTRC transfers data from one variable in one
 record to a variable in either another record or the
 same record.
ENTRY: VDESC1(D * 8) The descriptor of the source
 variable.
 VDESC2 (D * 8) The descriptor of the destination
 variable.
EXIT: None.

SIR/XS Host/API 124

ZRCTST

ZRCTST, Transfer String from CIR/Record
ARGS: VDESC,DATA,LENGTH
DESC: ZRCTST retrieves a character string value from the
 specified CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
 LENGTH(I * 4) Number of characters at location DATA.
EXIT: DATA (B * n) Will contain character string
 retrieved from current CIR/data
 record.

SIR/XS Host/API 125

ZRCTTM

ZRCTTM, Transfer Time from CIR/Record
ARGS: VDESC,TIMEST,LENGTH,TIMEMP
DESC: ZRCTTM retrieves a time string from the specified
 CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
 TIMEST (B * n) Location to place time string.
 LENGTH (I * 4) Number of characters in strings
 TIMEST and TIMEMP.
 TIMEMP (B * n) String containing the decoding
 format for the time string contained
 in TIMEST. Legal values are H(hour),
 M(minute), S(second). For example,
 'HH:MM:SS' would produce '11:59:59'.
EXIT: TIMEST (B * n) Will contain time string retrieved
 from current CIR/data record.

SIR/XS Host/API 126

ZRCXDT

ZRCXDT, Transfer Date from CIR/Record
ARGS: VDESC,DATEST,ORDINAL,LENGTH,DATEMP
DESC: ZRCXDT retrieves a date string from the specified
 CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve. See routines ZDESC and
 ZDESCD for creating a descriptor.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value to. For a simple
 variable this value is 1.
 LENGTH(I * 4) Number of characters in strings
 specified above.
 DATEMP(B * n) String containing format for decoding
 the date specified in DATEST. Legal
 characters are Y(year), M(month), or
 D(day). All other characters are
 transferred "as is" to DATEST. For
 example, 'MM/DD/YY' would produce
 '12/25/81'.
EXIT: DATEST(B * n) Will contain date string retrieved
 from current CIR/data record.

SIR/XS Host/API 127

ZRCXFP

ZRCXFP, Transfer Real from CIR/Record
ARGS: VDESC,DATA,ORDINAL,LENGTH
DESC: ZRCXFP retrieves a real value from the specified
 CIR/data record.
ENTRY: VIDESC (D * 8) Variable descriptor of variable to
 retrieve.
 ORDINAL (I * 4) Starting byte number in area DATA to
 transfer the value to. For a simple
 variable this value is 1.
 LENGTH (I * 4) Number of bytes at location DATA.
EXIT: DATA (R * n) Will contain real value retrieved
 from current CIR/data record.

SIR/XS Host/API 128

ZRCXIN

ZRCXIN, Transfer Integer from CIR/Record
ARGS: VDESC,DATA,ORDINAL,LENGTH
DESC: ZRCXIN retrieves an integer value from the specified
 CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
 ORDINAL (I * 4) Starting byte number in area DATA to
 transfer the value to. For a simple
 variable this value is 1.
 LENGTH(I * 4) Number of bytes at location DATA.
EXIT: DATA (I * n) Will contain integer value retrieved
 from current CIR/data record.

SIR/XS Host/API 129

ZRCXST

ZRCXST, Transfer a String from a CIR/Record
ARGS: VDESC,DATA,ORDINAL,LENGTH
DESC: ZRCXST retrieves a character string value from the
 specified CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value to. For a simple
 variable this value is 1.
 LENGTH (I * 4) Number of bytes at location DATA.
EXIT: DATA (B * n) Will contain character string
 retrieved from current CIR/data
 record.

SIR/XS Host/API 130

ZRCXTM

ZRCXTM, Transfer Time from CIR/Record
ARGS: VDESC,TIMEST,ORDINAL,LENGTH,TIMEMP
DESC: ZRCXTM retrieves a time string from the specified
 CIR/data record.
ENTRY: VDESC (D * 8) Variable descriptor of variable to
 retrieve.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value to. For a simple
 variable this value is 1.
 LENGTH (I * 4) Number of characters in strings
 above.
 TIMEMP (B * n) String containing the decoding format
 for the time string contained in
 TIMEST. Legal values are H(hour),
 M(minute), S(second). For example,
 'HH:MM:SS' would produce '11:59:59'.
EXIT: TIMEST(B * n) Will contain time string retrieved
 from current CIR/data record.

SIR/XS Host/API 131

ZRDEL

ZRDEL, Delete Current Record from Database
ARGS: DUMMY
DESC: ZRDEL is called after a record is retrieved to
 delete the current record.
ENTRY: DUMMY (I * 4) Dummy argument needed to make a
 syntactically correct FORTRAN
 function. Should always be 0.
EXIT: None.

SIR/XS Host/API 132

ZREXIT

ZREXIT, Terminate Record Processing Level
ARGS: OLDSEED
DESC: ZREXIT is called to terminate a record level and pop
 back one level in the retrieval stack. It only
 terminates the innermost record level.
ENTRY: None.
EXIT: OLDSEED(I * 4) It is set to the current value of the
 seed, if the current level is a
 PROCESS RECORD level with the SAMPLE
 option. Otherwise it value is
 undefined.

SIR/XS Host/API 133

ZRFIND

ZRFIND, Find Record with Given Key
ARGS: OPT, LFLAG, DIRECT, BEGINR, BEGINK
DESC: ZRFIND finds an existent record or creates a new
 record with a previously specified key. It is
 called after ZRGDMY, ZRGDML or ZRRDMY has created a
 dummy block and after putting values into the record
 id variable in the record and (if OPT is 1) in
 other record variables. When ZRFIND is executed,
 the values of the record ids are used to create the
 record key. If the record ids variable are
 undefined, then the dummy block is converted into a
 PROCESS RFC ALL block and the next or previous
 record is read. Otherwise, the dummy block ZRGDMY
 is converted into a REC IS block and: a) if OPT is
 1, then the undefined values are updated to the
 values read from the found record or b) if OPT is 2
 the full current record is replaced by the read
 record.
ENTRY: OPT (I * 4) Controls the update/replace of the
 CIR.
 LFLAG (I * 4) Lock flag.
 DIRECT (I * 4) If PROCESS REC then use 1 to get the
 next record and -1 to get the
 previous record.
 BEGINR(I * 4) Number of record ids to include in
 range.
 BEGINK (I * 4) Number of record ids to include in
 starting key.
EXIT: None.
RETURN: -4001 if record not found;
 -3026 if record is found but is incompatible locked;
 + 0003 if record is found and has a compatible lock;
 + 0004 if record is found and available for REC IS;
 + 0000 if record is found and available for PROCESS
 REC; negative if error.

SIR/XS Host/API 134

ZRFRST

ZRFRST, Start-up a Record Level Block and Get First
 Record
ARGS: LFIAG
DESC: ZRFRST is called after record-block initialisation
 and all key creations, and after all key-definition
 routines. It starts-up the record block and gets
 the first record that meets all of the selection
 options previously specified. No other record-level
 function can be called until this block is
 successfully executed. After ZRFRST is executed, no
 further key definitions may be made. The system
 checks that the current lock flag is compatible with
 LFLAG and if it is, LFILAG becomes the new lock.
ENTRY: LFLAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 135

ZRGDMD

ZRGDMD, Set Current Database and initialise Dummy Block
ARGS: RECTYP, DBNAME
DESC: ZRGDMD is called to make DBNAME the current database
 and to start creating a dummy block. The purpose of
 this call is to initialise the retrieval stack with
 the required information.
ENTRY: RECTYP (I * 4) The record type to be processed.
 DBNAME (N * 8) The name of the database from which
 the record should be selected.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 136

ZRGDML

ZRGDML, Start Dummy Record Block Belonging to CIR
ARGS: RECTYP,LEVEL
DESC: ZRGDML is called to start creating a dummy block
 that belongs to the CIR at the specified level. The
 purpose of this call is to initialise the retrieval
 stack with the required information. Potentially,
 it can switch databases.
ENTRY: RECTYP(I * 4) Record type.
 LEVEL (I * 4) Level in stack of the CIR block to
 which the record belongs.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 137

ZRGDMY

ZRGDMY, Start Dummy Record Block
ARGS: RECTYP
DESC: ZRGDMY is called to start creating a dummy block
 that belongs to the CIR at the specified level. The
 purpose of this call is to initialise the retrieval
 stack with the required information
ENTRY: RECTYP(I * 4) Record type for record block.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 138

ZRIS

ZRIS, Initialise RECORD IS Block
ARGS: RECTYP,NEW,OLD
DESC: ZRIS is the first of a series of routines that can
 be called in order to create "RECORD IS" block. The
 purpose of this call is to initialise the retrieval
 stack with the required information.
ENTRY: RECTYP(I * 4) The record type to be processed.
 NEW (I * 4) NEW is I if a new record can be created
 by this level, otherwise it is 0. The
 database must have been opened for
 UPDATE to allow a value of 1.
 OLD (I * 4) OLD is I if an old record can be
 accessed by this level, otherwise it is
 0.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 139

ZRISD

ZRISD, Set Current Database and Initialise RECORD IS
 Block
ARGS: RECTYP,NEW,OLD,DBNAME
DESC: ZRISD is called to make DBNAMF, the current database
 and to start creating a "RECORD IS" block. The
 purpose of this call is to initialise the retrieval
 stack with the required information.
ENTRY: RECTYP(I * 4) The record type to be processed.
 NEW (I * 4) NEW is 0 if a record cannot be created
 by this level. The database must have
 been opened for UPDATE to allow a value
 of 1.
 OLD (I * 4) OLD is 0 if an old record cannot be
 accessed by this level, otherwise it is
 1.
 DBNAME(N * 8) The name of the database from which the
 record should be selected.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 140

ZRISL

ZRISL, Initialise RECORD IS Processing Block Belonging to
 CIR
ARGS: RECTYP,NEW,OLD,LEVEL
DESC: ZRISL is called to start creating a "RECORD IS"
 block that belongs to the CIR at the specified
 level. The purpose of this call is to initialise
 the retrieval stack with the required information.
 Potentially, it can switch databases.
ENTRY: RECTYP(I * 4) The record type to be processed.
 NEW (I * 4) NEW is 0 if a new record is not legal
 (NEW record IS). 1 if editing record is
 legal (OLD record IS or record IS).
 OLD (I * 4) OLD is 0 if an old record is not legal
 (OLD record IS). 1 if a new record is
 legal (NEW record IS or record IS).
 LEVEL (I * 4) Level in stack of the CIR block to
 which the record belongs.
EXIT: None.
RETURN: Stack level of the newly created block, negative if error.

SIR/XS Host/API 141

ZRLAST

ZRLAST, Start-up Record Level Block and Get Last Record
ARGS: LFLAG
DESC: ZRLAST is called after record-block initialisation
 and all key creation, and after all key definition
 routines. It starts-up the record block and gets
 the last record that meets all of the selection
 options previously specified. No other record-level
 function can be called until this block is
 successfully executed. After ZRLAST is executed, no
 further key definitions may be made. The system
 checks that the current lock flag is compatible with
 LFLAG and if it is, LFLAG becomes the new lock.
ENTRY: LFLAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 142

ZRLOCK

ZRLOCK, Get Lock Type of Innermost Level of Execution
 Stack
ARGS: LFLAG
DESC: ZRLOCK returns the lock type at the current
 innermost level of the execution stack.
ENTRY: None.
EXIT: LFLAG (I * 4) Lock type.
RETURN: 0 if the level is not write-locked.
 1 if the level is write-locked.

SIR/XS Host/API 143

ZRNAMD

ZRNAMD, Get the Record Name for Record Type
ARGS: DBNAME,RECTYP,RECNAM
DESC: ZRNAMD lookups a record type and returns the record
 name associated with it.
ENTRY: DBNAME (N * 8) The name of the database to which the
 record belongs.
 RECTYP (I * 4) The record type.
EXIT: RNAME (N * 8) The record name corresponding to
 database and record type specified.

SIR/XS Host/API 144

ZRNEXT

ZRNEXT, Start-up Record Level Block and Get Next Record
ARGS: LFLAG
DESC: ZRNEXT is called after record-block initialisation
 and all key creation, and after all key definition
 routines. It starts-up the record block and gets
 the next record that meets all of the selection
 options previously specified. No other record-level
 function can be called until this block is
 successfully executed. After ZRNEXT is executed, no
 further key definitions may be made. The system
 checks that the current lock flag is compatible with
 LFLAG and if it is, LFLAG becomes the new lock.
ENTRY: LFLAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 145

ZRNUM

ZRNUM, Get Record Number for Record Name of Current
 Database
ARGS: RNAME
DESC: ZRNUM lookups the record name specified in the
 current database and returns the corresponding
 record type number.
ENTRY: RNAME (N * 8) The record name to lookup.
EXIT: None.
RETURN: Record type number, negative if error.

SIR/XS Host/API 146

ZRNUMD

ZRNUMD, Get Type Number for Record Name of Specified
 Database
ARGS: DBNAME,RNAME
DESC: ZRNUMD lookups a record name and returns the record
 type value associated with it for the specified
 database.
ENTRY: DBNAME(N * 8) The database in which the record
 resides.
 RNAME(N * 8) The record name to lookup.
EXIT: None.
RETURN: The record type number associated with the specified
 record name, negative if error.

SIR/XS Host/API 147

ZRPREV

ZRPREV, Start-up Record Level Block and Get Previous
 Record
ARGS: LFLAG
DESC: ZRPREV is called after record-block initialisation
 and all key creation, and after all key definition
 routines. It starts-up the record block and gets
 the previous record that meets all of the selection
 options previously specified. No other record-level
 function can be called until this block is
 successfully executed. After ZRPREV is executed, no
 further key definitions may be made. The system
 checks that the current lock flag is compatible with
 LFLAG and if it is, LFLAG becomes the new lock.
ENTRY: LFLAG (I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 148

ZRRDMY

ZRRDMY, Terminate Innermost Level and Reset Block to
 Dummy
ARGS: DUMMY
DESC: ZRRDMY terminates all processing at this level,
 writes the record if necessary, and resets the block
 back to dummy status.
ENTRY: DUMMY(I * 4) Dummy argument needed to make a
 syntactically correct FORTRAN function.
 Should always be 0.
EXIT: None.

SIR/XS Host/API 149

ZRREST

ZRREST, Restore Record from Database
ARGS: LFLAG
DESC: ZRREST is called to replace a record in the
 retrieval stack with the corresponding record from
 the database.
ENTRY: LFLAG(I * 4) The lock flag.
EXIT: None.

SIR/XS Host/API 150

ZRSAM

ZRSAM, Initialise Record Processing Loop
ARGS: RECTYP,SAMPLE,SEED
DESC: ZRSAM is the first of a series of routines that can
 be called in order to create "PROCESS RECORD" block
 with the SAMPLE option.
ENTRY: RECTYP (I * 4) The record type value to be processed.
 SAMPLE (R * 4) Sample size (SAMPLE).
 SEED (I * 4) Starting seed for random-number
 generator. Same seed always produces
 the same random selection sequence.
 Any odd value can be used for the
 seed. See routine ZREXIT for
 obtaining the value of the seed after
 the loop is finished.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 151

ZRSAMD

ZRSAMD, Set Current Database and Initialise SAMPLE
 Record-processing block
ARGS: RECTYP,SAMPLE,SEED,DBNAME
DESC: ZRSAMD is called to make DBNAME the current database
 and to start creating a "PROCESS CASE" block with
 the SAMPLE option. The purpose of this call is to
 initialise the retrieval stack with the required
 information.
ENTRY: RECTYP(I * 4) Record type.
 SAMPLE (R * 4) Sample size (0 SAMPLE 1)
 SEED (I * 4) Starting seed.
 DBNAME(N * 8) The name of the database form which
 the record is selected.
EXIT: None.
RETURN: Stack level of the newly created block, negative if
 error.

SIR/XS Host/API 152

ZRSAML

ZRSAML, Start SAMPLE PROCESS RECORD Block
 Belonging to CIR
ARGS: RECTYP,SAMPLE,SEED,LEVEL
DESC: ZRSAML is called to start creating a "PROCESS
 RECORD" block (with the SAMPLE option) that belongs
 to the CIR at the specified level. The purpose of
 this call is to initialise the retrieval stack with
 the required information. Potentially, it can
 switch databases.
ENTRY: RECTYP(I * 4) The record type value to be processed.
 SAMPLE(R * 4) Sample size (0 SAMPLE 1).
 SEED (I * 4) Starting seed. The same seed always
 generates the same sequence of random
 numbers.
 LEVEL (I * 4) Level in stack of the CIR block to
 which the record belongs.
EXIT: None.
RETURN: Stack level of the newly created block, negative if error.

SIR/XS Host/API 153

ZRWRIT

ZRWRIT, Replace Modified Record on Database and Lock
 of Block
ARGS: LFLAG
DESC: ZRNWIT is called to replace the database version of
 the record with the current version in the retrieval
 stack. This process is performed automatically by
 the HOST routines when the next record is retrieved
 or the record level is terminated. However the user
 may want to write the modified record to the
 database and change the lock for further processing.
ENTRY: LFLAG (I * 4) Lock flag.
EXIT: None.

SIR/XS Host/API 154

ZSDESC

ZSDESC, Get Descriptor for Sort-id Variable
ARGS: DBNAME,RECTYP,SIDNUM,VDESC
DESC: ZSDESC returns the variable descriptor corresponding
 to a specified sort-id of a given record type.
ENTRY: DBNAME(N*8) The database name.
 RECTYP(I * 4) The record type number.
 SIDNUM(I * 4) The sort-id number.
EXIT: VDESC (D * 8) The descriptor for the specified
 sort-id.

SIR/XS Host/API 155

ZSECLV

ZSECLV, Return the Current Security Values for a Database
ARGS: DBNAME,RDLEV WRLEV
DESC: ZSECLV returns the read and write access levels.
ENTRY: DBNAME N * 8) The database name.
EXIT: RDLEV (I * 4) The read level for the database.
 WRLEV (I * 4) The write level for the database.

SIR/XS Host/API 156

ZSECUR

ZSECUR, Specify Security Passwords
ARGS: DBNAME,RDPASS,WRPASS
DESC: ZSECUR specifies the passwords for the read and
 write security levels for a specific database for
 the current stream. It should be called for each
 database used by each stream, which needs security
 levels different from those specified when the
 database was initially attached. Otherwise the
 default levels specified on the attach call are
 assigned. If the passwords specified by ZSECUR
 select security levels less than the default values,
 then the default values are used.
ENTRY: DBNAME(N * 8) The name of the database the following
 security passwords apply to.
 RDPASS(N * 8) Read security password for the current
 stream.
 WRPASS(N * 8) Write security password for the current
 stream.
EXIT: None.

SIR/XS Host/API 157

ZSTART

ZSTART, Initialise HOST System
ARGS: MAXUSR,TABTYP,TAB1,TAB2
DESC: ZSTART initialises all tables needed by the other
 HOST routines. It must be called prior to any other
 HOST routine.
ENTRY: MAXUSR (I * 4) Maximum number of streams accessing
 the HOST system within this job. A
 small amount of space is allocated
 for each stream specified regardless
 of the number of streams currently
 active.
 TABTYP (I * 4) Type of table space to be allocated
 for use by the HOST system. See
 Machine Specifics documentation
 for more information on use of this
 and the next two associated
 arguments.
 = 1 The HOST system gets space from the
 operating system and returns it when
 ZEND is called.
 TAB1 (I * 4) Amount of space (in "double-word"s)
 to be requested. At the end of the
 job the amount actually used is
 returned so that a better estimate
 can be applied next time.
 TAB2 (R * 8) 0. Unused argument for this type but
 must appear on call in order to obey
 FORTRAN syntax rules.
 = 2 The calling routine provides an area
 to be used by HOST. This area must
 be "doubleword" aligned and must be
 available for use at all times (i.e.
 if program is segmented then this
 area must be in the root segment).
 TAB1 (I * 4) Amount of contiguous space available
 for use by the HOST system (in units
 of "dwrds").
 TAB2 (R * 8) Array to be used by the HOST system.
 In this case the array TAB2 must
 not be modified in any way until
 after ZEND is called. If any item of
 this array is modified by the user
 then the database will probably have
 erroneous information written to it
 and HOST actions will become unpre-
 dictable.
EXIT: None.

SIR/XS Host/API 158

ZSTTKY

ZSTTKY, Enter String Value into Key
ARGS: DATA,LENGTH
DESC: ZSTTKY is called after one of the key initialisation
 routines in order to insert a character value into
 the next location of the key currently being defined.
ENTRY: DATA (B * n) Character string to insert into key.
 LENGTH(I * 4) Number of characters in string.
EXIT: None.

SIR/XS Host/API 159

ZSTTRC

ZSTTRC, Move String into CIR/Record
ARGS: DATA,LENGTH,VDESC
DESC: ZSTTRC transfers a character string into a CIR or
 data record.
ENTRY: DATA (B * n) Character string to transfer to record.
 LENGTH(I * 4) Number of characters in string.
 VDESC (D * 8) Variable descriptor of variable to receive
 value.
EXIT: None.

SIR/XS Host/API 160

ZSTXKY

ZSTXKY, Enter String Value into Key
ARGS: DATA,ORDINAL,LENGTH
DESC: ZSTXKY is called after one of the key initialisation
 routines in order to insert a character value into
 the next location of the key currently being defined.
ENTRY: DATA (B * n) Character string to insert into key.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value from. For a simple
 variable this value is 1.
 LENGTH(I * 4) Number of characters in string.
EXIT: None.

SIR/XS Host/API 161

ZSTXRC

ZSTXRC, Move String into CIR/Record
ARGS: DATA,ORDINAL,LENGTH,VDESC
DESC: ZSTXRC transfers a character string into a CIR or
 data record.
ENTRY: DATA (B * n) Character string to transfer to record.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value from. For a simple
 variable this value is 1.
 LENGTH(I * 4) Number of bytes in value.
 VDESC (D * 8) Variable descriptor of variable to
 receive value.
EXIT: None.

SIR/XS Host/API 162

ZTHRU

ZTHRU, Start Creation of THRU Key
ARGS: DUMMY
DESC: ZTHRU starts the creation of a key. It creates a
 "THRU" key. That is, a key which is used to select
 all CIR/record's whose key matches or comes before
 the key that is currently being defined. It is
 normally called after one of the case/record level
 initialisation routines in order to initialise the
 key selection options for case or record loops.
 Following a call to ZTHRU other routines (described
 below) are called to enter values into the key one
 at a time. For a case key only one call is made to
 enter the value of the case id. For record keys,
 the case id is assumed to be the same as the last
 CIR retrieved or restored. Therefore, only the
 record sort ids have to be inserted into the key.
 The sort-ids must be entered in the order of their
 appearance in the key being created.
ENTRY: DUMMY(I * 4) Dummy argument to make routine a
 syntactically correct FORTRAN function.
 Should always be 0.
EXIT: None.

SIR/XS Host/API 163

ZTIME

ZTIME, Return Current Date and Time as Integers.
ARGS: IDAYS,ISECS
DESC: ZTIME returns the current date and time as standard
 julian date and time values. It returns the same
 values as the DBMS functions TODAY(0) and NOW(0).
ENTRY: None.
EXIT: IDAYS (I * 4) Number of days since Oct 15, 1582.
 ISECS (I * 4) Number of seconds since midnight.

SIR/XS Host/API 164

ZTMTKY

ZTMTKY, Enter Time String into Key
ARGS: TIMEST,LENGTH,TIMEMP
DESC: ZTMTKY is called after one of the key initialisation
 routines in order to insert the value of a time
 string into the next location of the key currently
 being defined.
ENTRY: TIMEST (B * n) Time string to insert into key.
 LENGTH (I * 4) Number of characters in strings TIMEST
 and TIMEMP.
 TIMEMP (B * n) String containing the decoding format
 for the time string contained in
 TIMEST. Legal values are 1(ignore),
 H(hour), M(minute), S(second). For
 example: 'HHMMSS'.
EXIT: None.

SIR/XS Host/API 165

ZTMTRC

ZTMTRC, Move Time into CIR/Record
ARGS: TIMEST,LENGTH,TIMEMP,VDESC
DESC: ZTMTRC transfers the value of a time string into a
 CIR or data record.
ENTRY: TIMEST (B * n) String containing the time value to transfer
 to record.
 LENGTH (I * 4) Number of characters in strings TIMEST
 and TIMEMP.
 TIMEMP (B * n) String containing the decoding format for
 the time string contained in TIMEST.
 Legal values are I(ignore), H(hour),
 M(minute), S(second).
 VDESC (D * 8) Variable descriptor of variables to receive
 value.
EXIT: None.

SIR/XS Host/API 166

ZTMXIN

ZTMXIN, Convert Time String into Integer
ARGS: TIMEST,ORDINAL,TIMEMP,LENGTH
DESC: ZTMXIN converts a time string into a time integer
 value.
ENTRY: TIMEST (B * n) Time string to convert.
 ORDINAL(I * 4) First character in string TIMEST to use.
 TIMEMP (B * n) String containing the decoding format for
 the time string contained in TIMEST.
 Legal values are I(ignore), H(hour), M(minute),
 S(second). For example: 'HHMMSS'.
 LENGTH (I * 4) Number of characters in strings above.
EXIT: None.
RETURN: The integer equivalent of the time string (seconds
 since midnight), negative if error.

SIR/XS Host/API 167

ZTMXKY

ZTMXKY, Enter Time String into Key
ARGS: TIMFST,ORDINAL,LENGTH,TIMEMP
DESC: ZTMXKY is called after one of the key initialisation
 routines in order to insert the value of a time
 string into the next location of the key currently
 being defined.
ENTRY: TIMEST (B * n) Time string to insert into key.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value from. For a simple vari-
 able this value is 1.
 LENGTH (I * 4) Number of characters in strings above.
 TIMEMP (B * n) String containing the decoding format for
 the time string contained in TIMEST.
 Legal values are I(ignore), H(hour),
 M(minute), S(second). For example:
 'HHMMSS'.
EXIT: None.

SIR/XS Host/API 168

ZTMXRC

ZTMXRC, Move Time into CIR/Record
ARGS: TIMEST,ORDINAL,LENGTH,TIMEMP,VDESC
DESC: ZTMXRC transfers the value of a time string into a
 CIR or data record.
ENTRY: TIMEST (B * n) String containing the time value to transfer
 to record.
 ORDINAL(I * 4) Starting byte number in area DATA to
 transfer the value from. For a simple vari-
 able this value is 1.
 LENGTH (I * 4) Number of characters in strings above.
 TIMEMP (B * n) String containing the decoding format for
 the time string contained in TIMEST.
 Legal values are 1(ignore), H(hour),
 M(minute), S(second).
 VDESC (D * 8) Variable descriptor of variables to receive
 value.
EXIT: None.

SIR/XS Host/API 169

ZUNTIL

ZUNTIL, Start Creation of UNTIL Key
ARGS: DUMMY
DESC: ZUNTIL starts the creation of a key. It creates an
 "UNTIL" key. That is, a key which is used to select
 all CIR/record's whose key comes before the key that
 is currently being defined. It is normally called
 after one of the case/record level initialisation
 routines in order to initialise the key selection
 options for case or record loops. Following a call
 to ZUNTIL other routines (described below) are
 called to enter values into the key one at a time.
 For a case key only one call is made to enter the
 value of the case id. For record keys, the case id
 is assumed to be the same as the last CIR retrieved
 or restored. Therefore, only the record sort ids
 have to be inserted into the key. The sort-ids must
 be entered in the order of their appearance in the
 key being created.
ENTRY: DUMMY(I * 4) Dummy argument to make routine a
 syntactically correct FORTRAN function.
 Should always be 0.
EXIT: None.

SIR/XS Host/API 170

ZUPLEV

ZUPLEV, Get Specified Database Update Level
ARGS: DBNAME
DESC: ZUPLEV returns the current update level of the
 database prior to this update.
ENTRY: DBNAME(N*8) The name of the database.
EXIT: None.

SIR/XS Host/API 171

ZUSER

ZUSER, Set to Different Stream
ARGS: USERNO
DESC: ZUSER saves the current stream's retrieval stack and
 reactivates the specified stream's stack.
ENTRY: USERNO(I * 4) The number of the stream to process next.
 Range is from I to maxnum specified on
 HOST initialisation call.
EXIT: None.

SIR/XS Host/API 172

ZVARLB

ZVARLB, Get Label of Variable
ARGS: VDESC,STRING,LENGTH
DESC: ZVARLB searches the database and return the variable
 label for a specified variable.
ENTRY: VDESC (D * 8) The descriptor of the variable.
 LENGTH (I * 4) The number of characters of the label to
 transfer to STRING.
EXIT: STRING (B * n) The area which will receive the
 variable label.
RETURN: Number of characters actually transferred, negative
 if error.

SIR/XS Host/API 173

ZVERS

ZVERS, Return Version, Revision Numbers and Levels of
 HOST
ARGS: VERNUM, VERLEV, REVNUM, REVLEV
DESC: ZVERS returns the version and revision number and
 levels of the HOST package that the user is
 currently using. It also returns an indication of
 whether it is regular or concurrent HOST.
ENTRY: None.
EXIT: VERNUM (I * 4) Version number.
 VERLEV (I * 4) Version level.
 REVNUM (I * 4) Revision number.
 REVLEV (I * 4) Revision level.
RETURN: 0 if regular HOST,1 if concurrent HOST.

SIR/XS Host/API 174

ZVNAME

ZVNAME, Get Name for Variable Descriptor
ARGS: VDESC,VNAME
DESC: ZVNAME looks up a common or record variable
 descriptor and returns the variable's name.
ENTRY: VDESC (D * 8) The variable descriptor.
EXIT: VNAME (N * 8) contains the variable name
 corresponding to the variable
 descriptor specified.

SIR/XS Host/API 175

ZVTYPE

ZVTYPE, Get Type of Variable
ARGS: VDESC,LENGTH
DESC: ZVTYPE returns the type of a specified variable.
ENTRY: VDESC (D * 8) The descriptor of the variable to get
 the type for.
EXIT: LENGTH(I * 4) The size of the variable in bytes.
RETURN: The code of the type of the specified variable,
 negative if error.
 CODE TYPE
 1 String variable
 2 Categorical integer variable
 3 Date integer variable
 4 Time Integer variable
 5 Integer variable
 6 Real variable

SIR/XS Host/API 176

ZWITH

ZWITH, Start Creation of WITH Key
ARGS: DUMMY
DESC: ZWITH starts the creation of a key. It creates a
 "WITH" key. ZWITH is used with CASE/RECORD IS
 levels to specify a key for a single CIR/record. It
 can also be used with the PROCESS RECORD level to
 specify the first n sort-ids of a key, which causes
 all records with the same first n sort-ids to be
 selected in order. It is normally called after one
 of the case/record level initialisation routines in
 order to initialise the key selection options for
 case or record loops. Following a call to ZWITH
 other routines (described below) are called to enter
 values into the key one at a time. For a case key
 only one call is made to enter the value of the case
 id. For record keys, the case id is assumed to be
 the same as the last CIR retrieved or restored.
 Therefore, only the record sort ids have to be
 inserted into the key. The sort-ids must be entered
 in the order of their appearance in the key being
 created.
ENTRY: DUMMY(I * 4) Dummy argument to make routine a
 syntactically correct FORTRAN function.
 Should always be 0.
EXIT: None.

SIR/XS Host/API 177

Program Layout

Column four in the typical HOST program layout on below identify options on the basic
steps through which a typical HOST program moves. The comments in the examples refer
to these steps.

A Typical HOST Program Layout

Step 1 Initialise the system: Call ZSTART (1.A)

 and login into MASTER if Call ZLOGIN (1.B)
 necessary:

Step 2 Open the database: Call ZORDB or
 ZOSDB

Step 3 Start a case block on the Call
 stack: ZCCNT(D) or
 ZCIS(D) or
 ZCSAM(D)

Step 4 If no key processing is done,
 skip to step 5.

 If a single value is used for Call ZWITH (4.A)
 the key("WITH") then:
 Call key definition routines (4.B)
 in the order the sort-ids
 appear in schema definition.
 Skip to step 5.

 If a range of keys is to be Call ZFROM or (4.C)
 specified and a low limit is re- ZAFTER
 quired:
 Call key definition routines (4.D)
 in the order that the sort-ids
 appear in schema definition.

 If no high limit on the key
 range is required, skip to step
 5.

 If a range of keys is to be Call ZTHRU or (4.E)
 specified and a high limit is ZUNTIL
 required:
 Call key definition routines in (4.F)
 the order the sort-ids appear
 in schema definition.

Step 5 End the key processing and Call ZCNEXT
 retrieve one case in range. or ZCPREV or

SIR/XS Host/API 178

 ZCFRST or
 ZCLAST

 If there are cases to delete Call ZCDEL

 If there are cases to be
 processed then continue with
 Step 6, otherwise skip to Step
 13 to end the case-block
 processing.

Step 6 For the case level process-
 ings, call routines that trans-
 fer data to and from CIR vari-
 ables.

Step 7 Start a record processing Call
 block: ZRCNT(D) or
 ZRIS(D) or
 ZRSAM(D)

Step 8 If no key processing is done,
 skip to step 9.

 If a single value is used for Call ZWITH (8.A)
 the key "WITH" then:
 Call key definition routines in (8.B)
 the order the sort-ids appear
 in schema definition.

 Skip to step 9.

 If a range of keys is to be Call ZFROM or (8.C)
 specified and a low range is ZAFTER
 required then:
 Call key definition routines in (8.D)
 the order that the sort-ids
 appear in schema definition.
 If no high limit on the key
 range is required, skip to step 9.

 If a range of keys is to be Call ZTHRU or (8.E)
 specified and a high limit is ZUNTIL
 required:
 Call key definition routines in (8.F)
 the order that the sort-ids
 appear in schema definition.

Step 9 End the key processing and Call ZRNEXT
 retrieve one record in range: or ZRPREV
 or ZRFRST
 or ZRIAST
 If there are records to be
 processed, then continue
 with Step 10. Otherwise, skip
 to Step 11.

SIR/XS Host/API 179

Step 10 Record level processings. (10.A)
 Call routines that transfer
 data to and from the record
 variables.

 If the record is to be deleted Call ZRDEL (10.B)
 then:
 Continue with Step 9 to
 process a new record.

Step 11 End record-block processing: Call ZREXIT
Step 12 Perform additional case Call routines (12.A)
 processing. that transfer
 data to and from
 CIR variables.

 If the case is to be deleted Call ZCDEL (12.B)
 then:
 Continue with Step 5 to
 process a new case.

Step 13 End of case-block processing: Call ZCEXIT

Step 14 Close the database down: Call ZENDDB

Step 15 Shut down the whole HOST Call ZEND
 system:

Another Typical HOST Program Layout

.

(1) Call ZSTART then ZLOGIN

(2) Call ZORDB or ZOSDB

 (3) Call ZCGDMY

 (4) Call routines to transfer values into case-ids variables
 (5) Call ZCFIND
 (6) Ordinary case processing calls
 (7) If case is brand new and update mode: Call ZCWRIT

 (8) Call ZRGDMY

 (9) Call routines to transfer values Into record-ids
 variables
 (10) Call ZRFIND
 (11) Ordinary record processing calls
 (12) K record is to be written call ZRWRIT If record
 is to be deleted call ZRDEL
 (13) To process a new record call ZRREST and
 continue with (9)
 (14) Call ZREXIT when record processing is over

 (15) Ordinary case processing calls

SIR/XS Host/API 180

 (16) If CIR variables were modified and/or records were
 added/deleted call ZCWRIT
 if case is to be deleted call ZCDEL
 (17) To process a new case call ZCREST and continue with (4)

 (18) Call ZCEXUT when case processing Is over

(19) Call ZENDDB

(20) Call ZEND

SIR/XS Host/API 181

A Note on Error Checking

This chapter contains several examples of PQL retrieval programs and their FORTRAN
counterparts using HOST subroutine calls. Every HOST function call always returns a value.
In the following examples, this value is stored in variable 'IERR'. This value should be
checked after each function call in case an error has been detected by the routine. To
continue the program after an error has been generated may damage the databases that the
program accesses.

The examples below do not do this error checking. This is for readability only. It is not
suggested programming practice.

Print the Value of a Variable In a Record

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURITY RS1, WS1
C
C PRINTS THE STATUS OF PATIENT 1 0001.
C THE DATA IS CONTAINED IN RECORD TYPE 47
C WITH SORT IDS 3 AND 5
C
RETRIEVAL
. OLD CASE IS 10001
. OLD RECORD IS 17 (3,5)
. WRITE 'PATIENT 10001 STATUS IS' STATUS1
. END RECORD IS
. END CASE IS
END RETRIEVAL

HOST Retrieval Version

C IN THE FOLLOWING ROUTINE EACH FUNCTION RETURNS AN
C ERRORVALUE AND THAT VALUE IS STORED IN VARIABLE 'IERR', IN
C COMMON BLOCK 'HERROR'. THE FUNCTION NAME IS STORED
C IN VARIABLE 'ZZNAME', IN THE SAME COMMON BLOCK.

 IMPLICIT INTEGER*4 (Z)
 .
 .
 .
 CHARACTER*8 DBNAME
 CHARACTER*8 DBPASS
 CHARACTER*S HSPASS
 CHARACTER*8 RDPASS

SIR/XS Host/API 182

 CHARACTER*8 WRPASS
 CHARACTER*8 VNSTAT
C
 CHARACTER*5 PREFIX
 CHARACTER*6 MDSN
 CHARACTER*10 SDSN
C
 REAL*8 VDSTAT
C
 INTEGER*4 DUMMY
 INTEGER*4 TSPACE
C
C FOR ERROR PROCESSING
C
 REAL*8 ZZNAME
 INTEGER*4 IERR
 INTEGER*4 IDUMMY
 COMMON /HERROR/ ZZNAME,IERR,IDUMMY
C
C
C
 DATA DBNAME /'MOTHERS '/
 DATA DBPASS /'LOVE '/
 DATA HSPASS /'HOSTOKAY'/
 DATA RDPASS /'RS1 '/
 DATA WRPASS /'WS1 '/
 DATA VNSTAT /'STATUS'/
C
 DATA PREFIX/'[SIR]'/
 DATA MDSN /'MASTER'/
 DATA SDSN /'MY_PROGRAM'/
C
C START HOST SYSTEM: STEP 1.A
C
 IF(ZSTART(1,1,5000,0).LT.0) STOP 300
C
C LOG INTO MASTER: STEP 1.B
C
 IF(ZLOGIN(MDSN,LEN(MDSN),SDSN,LEN(SDSN)).LT.0) GOTO 200
C
C ATTACH DATABASE NEEDED FOR RUN: STEP 2
C
 IF (ZORDB(DBNAME,DBPASS,HSPASS,RDPASS,WRPASS,0,
 *PREFIX,LEN(PREFIX)).LT.0) GOTO 200
C
C START A "CASE IS" LEVEL: STEP 3
C
 IF(ZCIS(0, 1) LT.0) GOTO 200
C
C CREATE A "WITH" KEY: STEP 4.A
C
 IF(ZWITH(0).LT.0) GOTO 200
C
C DEFINE THE KEY: STEP 4.B
C
 IF(ZINTKY(10001).LT.0) GOTO 200
C

SIR/XS Host/API 183

C GET THE CASE(FOR SURE, IT IS THERE!): STEP 5
C
 IF(ZCNEXT(0).LT.0) GOTO 200
C
C START A "RECORD IS" LEVEL: STEP 7
C
 IF(ZRIS(17,0,1).LT.0) GOTO 200
C
C CREATE A "WITH" KEY: STEP 8.A
C
 IF(ZWITH(0).LT.0) GOTO 200
C
C DEFINE THE KEY: STEP 8.B
C
 IF(ZINTKY(3).LT.0) GOTO 200
 IF(ZINTKY(5).LT.0) GOTO 200
C
C GET THE RECORD(FOR SURE, IT IS THERE!): STEP 9
C
 IF(ZRNEXT(0).LT.0) GOTO 200
C
C BUILD A DESCRIPTOR FOR VARIABLE
C
 IF(ZDESCO(VDSTAT,DBNAME,17,VNSTAT,0).LT.0) GOTO 200
C
C RETRIEVE THE VALUE (FOR SURE, ISDEFINED!): STEP 10.A
C
 IF(ZRCTIN(VDSTAT,I).LT.0) GOTO 200
 PRINT 100,1
100 FORMAT('PATIENT 10001 STATUS IS',I5)
C
C END OF RECORD IS LEVEL: STEP 11
C
 IF(ZREXIT(0).LT.0) GOTO 200
C
C END OF CASE IS LEVEL: STEP 13
C
 IF(ZCEXIT(0).LT.0) GOTO 200
C
C CLOSE THE DATABASE: STEP 14
C
 IF(ZENDDB(DBNAME).LT.0) GOTO 200
C
C SHUT DOWN HOST: STEP 15
C
150 IF(ZEND(TSPACE).LT.0) STOP 400
 GOTO 1000
C
C ERROR PROCESSING SECTION
C
200 PRINT 201, ZZNAME,IERR
201 FORMAT(1X,A8,' FAILED WITH ERROR CODE',I4) GOTO 150
1000 STOP
END

SIR/XS Host/API 184

Retrieval Update with RECORD IS Nested within a
PROCESS CASE ALL

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURITY RS1,WS1
C PROCESS ALL CASES IN THE DATABASE
C IF VARIABLE 'SICK' IN RECORD TYPE 16 IS
C GREATER THAN 0 SET 'SICK' EQUAL TO 1
RETRIEVAL UPDATE
. PROCESS CASES ALL
. OLD RECORD IS 16
. IFTHEN (SICK GT 0)
. COMPUTE SICK = 1
. ENDIF
. END RECORD IS
. END PROCESS CASES
END RETRIEVAL

HOST Retrieval Version

C IN THE FOLLOWING ROUTINE EACH FUNCTION RETURNS AN
C ERROR VALUE THAT IS PROCESSED BY 'ZCALL'.
C
 IMPLICIT INTEGER*4 (Z)
 CHARACTER*8 DBNAME
 CHARACTER*8 DBPASS
 CHARACTER*8 HSPASS
 CHARACTER*8 RDPASS
 CHARACTER*8 WRPASS
 CHARACTER*8 VNSTAT
 C
 CHARACTER*5 PREFIX
 C
 REAL*8 VDSTAT
 C
 INTEGER*4 DUMMY
 INTEGER*4 TSPACE
 C
 C
 C
 DATA DBNAME /'MOTHERS '/
 DATA DBPASS /'LOVE '/
 DATA HSPASS /'HOSTOKAY'/
 DATA RDPASS /'RS1 '/
 DATA WRPASS /'WS1 '/
 DATA VNSTAT /'STATUS'/
 C
 DATA PREFIX /'[SIR]'/

SIR/XS Host/API 185

C
C START HOST SYSTEM: STEP 1.A
C
100 IERR= ZCALL(ZSTART(1,1,5000,0),2,-2,100,0,0)
C
C ATTACH REQUIRED DBMS FILES: STEP 2
C
200 IERR= ZCALL(ZORDB(DBNAME,DBPASS,HSPASS,RDPASS,
 *WRPASS,L,PREFIX,LEN(PREFIX)),2,-2,200,0,0)
C
C GET VARIABLE DESCRIPTOR OF VARIABLE 'SICK'
C FOR USE LATER
C
300 IERR= ZCALL(ZDESCD(VDSTAT,DBNAME,16,VNSTAT,0),2,-2,300,0,0)
C
C DO PROCESS CASES ALL LEVEL: STEP 3
C
400 IERR= ZCALL(ZCCNT(-I,1,1),2,-2,400,0,0)
C
C GET THE CASE: STEP 5
C
500 IF(ZCALL(ZCNEXT(0),2,-2,500,-4002,-4001).LT.0)GOT01100
C
C DO RECORD IS LEVEL: STEP 7
C
600 IERR=ZCALL(ZRIS(16,0,1),2,-2,600,0,0)
C
C GET THE RECORD: STEP 9
C
700 IF(ZCALL(ZRNEXT(L),2,-2,700,-4002,-4001).LT.0)GOT01000
C
C RETRIEVE VALUE AND UPDATE IT IF NECESSARY:
C STEP 10
C
800 IF(ZCALL(ZRCTIN(VDSTAT,ISICK).2,-2,800,-5008,(-5005).LT.0) GOTO
1000
 IF (ISICK.LE.0) GOTO 1000
 I = 1
900 IERR= ZCALL(ZINTRC(I,VDSTAT),2,-2,900,-5008,-5005)
C
C END OF RECORD IS LEVEL: STEP 11
C
1000 IERR= ZCALL(ZREXIT(0),2,-2,1000,0,0)
C
C CONTINUE WITH STEP 5
C
 GOTO 500
C
C END OF PROCESS CASE LOOP: STEP 13
C
1100 IERR= ZCALL(ZCEXIT(0),2,-2,1100,0,0)
C
C CLOSE THE DATABASE: STEP 14
C
1200 IERR= ZCALL(ZENDDB(DBNAME),2,-2,1200,0,0)
C
C CLOSE HOST SYSTEM: STEP 15

SIR/XS Host/API 186

C
1300 IERR= ZCALL(ZEND(TSPACE),2,-2,1300,0,0)

RECORD IS for a Caseless Database

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURITY RS1,WS1
C PROCESS ALL RECORD TYPE 16 IN THE DATABASE IF VARIABLE
C 'SICK' IS GREATER THAN 0, SET 'SICK' EQUAL TO 1
RETRIEVAL UPDATE
. PROCESS RECORD 16
. IFTHEN (SICK GT 0)
. COMPUTE SICK = 1
. ENDIF
. END RECORD IS
END RETRIEVAL

HOST Retrieval Version

C IN THE FOLLOWING ROUTINE EACH FUNCTION RETURNS AN
C ERROR VALUE THAT IS PROCESSED BY 'ZCALL'.

 IMPLICIT INTEGER*4 (Z)
 .
 .
 .
 CHARACTER*8 DBNAME
 CHARACTER*8 DBPASS
 CHARACTER*8 HSPASS
 CHARACTER*8 RDPASS
 CHARACTER*8 WRPASS
 CHARACTER*8 VNSTAT
C
 CHARACTER*5 PREFIX
C
 REAL*8 VDSTAT
C
 INTEGER*4 DUMMY
 INTEGER*4 TSPACE
C
C
C
 DATA DBNAME /'MOTHERS '/
 DATA DBPASS /'LOVE'/
 DATA HSPASS /'HOSTOKAY'/
 DATA RDPASS /'RS1 '/
 DATA WRPASS /'WS1 '/
 DATA VNSTAT /'STATUS'/
C

SIR/XS Host/API 187

 DATA PREFIX /'[SIR]'/
C
C START HOST SYSTEM: STEP 1.A
C
100 IERR= ZCALL(ZSTART(1,1,5000,0),2,-2,100,0,0)
C
C ATTACH REQUIRED DBMS FILES: STEP 2
C
200 IERR= ZCALL(ZORDB(DBNAME,DBPASS,HSPASS,RDPASS,
 *WRPASS,L,PREFIX,LEN(PREFIX)),2,-2,200,0,0)
C
C GET VARIABLE DESCRIPTOR OF VARIABLE'SICK'
C FOR USE LATER
C
300 IERR= ZCALL(ZDESCD(VDSTAT,DBNAME,16,VNSTAT,0),2,-2,300,0,0)
C
C DO PROCESS RECORD LEVEL: STEP 7
C
600 IERR= ZCALL(ZRCNT(16,-1,1,1),2,-2,600,0,0)
C
C GET THE RECORD: STEP 9
C
700 IF(ZCALL(ZRNEXT(1),2,-2,700,-4002,-4001).LT.0)GOT0 1000
C
C RETRIEVE VALUE AND UPDATE IT IF NECESSARY : STEP10
C
800 IF(ZCALL(ZRCTIN(VDSTAT,ISICK),2,-2,800,-5008,5005).LT.0) GOTO 700
 IF (ISICK.LE.0) GOTO 700
 I = 1
900 IERR= ZCALL(ZINTRC(I,VDSTAT),2,-2,900,-5008,-5005)
C
C CONTINUE WITH STEP 9
C
 GOTO 700
C
C END OF RECORD IS LEVEL: STEP 11
C
1000 IERR= ZCALL(ZREXIT(0),2,-2,1000,0,0)
C
C CLOSE THE DATABASE: STEP 14
C
1200 IERR= ZCALL(ZENDDB(DBNAME),2,-2,1200,0,0)
C
C CLOSE HOST SYSTEM: STEP 15
C
1300 IERR= ZCALL(ZEND(TSPACE),2,-2,1300,0,0)

Multiple Nested Network Retrieval

DBMS Retrieval Version

OLD FILE MOTHERS
PASSWORD LOVE
SECURITY RS1,WS1

SIR/XS Host/API 188

C RECORD TYPE 1 RECORDS ARE PATIENTS IN THE STUDY.
C RECORD TYPE 2 RECORDS ARE CONTROLS FOR PATIENTS.
C
C EACH PATIENT HAS A CONTROL WHOSE CASE ID IS'IDPOINTR'
C AND RECORD TYPE 2 SORT ID IS'RECPOINT'.
C
C PRINT THE NUMBER OF CONTROLS WHOSE VALUE OF VARIABLE
C 'CNTLSTAT' IS LESS THAN THE PATIENT'S VARIABLE'PATSTAT'.
RETRIEVAL
. PROCESS CASES ALL
. COMPUTE CNT = 0
. PROCESS RECORD 1
. MOVE VARS IDPOINTR RECPOINT PATSTAT
. OLD CASE IS IDPOINTR
. OLD RECORD IS 2 (RECPOINT)
. IFTHEN (CNTLSTAT LT PATSTAT)
. COMPUTE CNT = CNT + 1
. ENDIF
. END RECORD IS
. END CASEIS
. END PROCESS RECORD
. END PROCESS CASE
. WRITE CNT 'CONTROLS ARE BETTER THAN CURRENT PATIENTS.'
END RETRIEVAL

HOST Retrieval Version - Function C

C IN THE FOLLOWING ROUTINE EACH FUNCTION RETURNS A CALL
C ERROR VALUE AND THAT VALUE IS STORED IN VARIABLE'IERR'.
C THIS VARIABLE SHOULD BE CHECKED SOMEHOW AFTER EACH
C FUNCTION CALL, HOWEVER, IN ORDER TO IMPROVE THE
C READABILITY OF THE EXAMPLE THE TEST HAS BEEN OMITTED.
 IMPLICIT INTEGER*4 (Z)
 .
 .
 .
 CHARACTER*8 DBNAME
 CHARACTER*8 DBPASS
 CHARACTER*8 HSPASS
 CHARACTER*8 RDPASS
 CHARACTER*8 WRPASS
 CHARACTER*8 VNIDPT
 CHARACTER*8 VNRECP
 CHARACTER*8 VNPATS
 CHARACTER*8 VNCNTL
C
 CHARACTER*5 PREFIX
C
 REAL*8 VDIDPT
 REAL*8 VDRECP
 REAL*8 VDPATS
 REAL*8 VDCNTL
C
 INTEGER*4 DUMMY
 INTEGER*4 IERR

SIR/XS Host/API 189

 INTEGER*4 TSUSED
C
C
C
 DATA DBNAME /'MOTHERS'/
 DATA DBPASS /'LOVE'/
 DATA HSPASS /'HOSTOKAY'/
 DATA PREFIX /'[SIR]'/
 DATA RDPASS /'RS1 '/
 DATA WRPASS /'WS1 '/
 DATA VNIDPT /'IDPOINTR'/
 DATA VNRECP /'RECPOINT'/
 DATA VNPATS /'PATSTAT'/
 DATA VNCNTL /'CNTLSTAT'/

C
C START HOST SYSTEM: STEP 1
C
 IERR = ZSTART(1,1,5000,0)
C
C ATTACH REQUIRED DBMS FILES: STEP 2
C
 IERR = ZORDB(DBNAME,DBPASS,HSPASS,RDPASS,WRPASS,
 *0,PREFIX,LEN(PREFIX)
C
C GET VARIABLE DESCRIPTORS FOR REQUIRED VARIABLES CONCE
C
 IERR = ZDESCD(VDIDPT,DBNAME,1,VNIDPT,0)
 IERR = ZDESCD(VDRECP,DBNAME,1,VNRECP,0)
 IERR = ZDESCD(VDPATS,DBNAME,1,VNPATS,0)
 IERR = ZDESCD(VDCNTL,DBNAME,2,VNCNTL,0)
C
C DO PROCESS CASES ALL LEVELR
C STEP 3
 IERR = ZCCNT(-1,1,1)
C STEP 5
1000 IERR = ZCNEXT(0)
 CNT = 0
C
C IF NO CASES LEFT, SKIP TO STEP 13
C
 IF (IERR.LT.0) GOTO 6000
C
C DO PROCESS RECORD 1 LEVEL
C
C STEP 7
 IERR = ZRCNT(1,-1,1,1)
C STEP 9
2000 IERR = ZRNEXT(0)
C
C IF NO RECORDS LEFT, SKIP TO STEP 11
C
 IF (IERR.LT.0) GOTO 5000
C
C DO MOVE VAR STATEMENT
C

SIR/XS Host/API 190

C STEP 10.A
 IERR = ZRCTIN(VDIDPT,IDPNTR)
 IERR = ZRCTIN(VDRECP,RCPNTR)
 IERR = ZRCTFP(VDPATS,PATSTT)
C
C DO CASE IS STATEMENT
C STEP 3
 IERR = ZCIS(0,I)
C STEP 4.A
 IERR = ZWITH(0)
C STEP 4.B
 IERR = ZINTKY(IDPNTR)
C STEP 5
 IERR = ZCNEXT(0)
C
C IF NO CASES LEFT, SKIP TO STEP 13
C
 IF (IERR.LT.0) GOTO 4000
C
C DO RECORD IS STATEMENT
C STEP 7
 IERR = ZRIS(2,0,1
C STEP 8.A
 IERR = ZWITH(0)
C STEP 8.B
 IERR = ZINTKY(RCPNTR)
C STEP 9
 IERR = ZRNEXT(0)
C
C IF NO RECORDS LEFT, SKIP TO STEP 11
C
 IF (IERR.LT.0) GOTO 3000
C
C INCREMENT CNT AFTER TEST
C
C STEP 10.A
 IERR = ZRCTFP(VDCNTL,CNTSTT)
 IF (CNTSTT.LT.PATSTT) CNT = CNT + 1
C
C DO END RECORD IS
C
C STEP 11
3000 IERR = ZREXIT(0)
C
C DO END CASE IS
C
C STEP 13
4000 IERR = ZCEXIT(0)
C
C LOOP OVER INNER CASE BLOCK
C
 GOTO 2000

C
C DO END PROCESS REC
C STEP 11
C

SIR/XS Host/API 191

5000 IERR = ZREXIT(0)
C
C CONTINUE WITH STEP 5 TO PROCESS A NEW CASE
C
 GOTO 1000
C
C DO END PROCESS CASE
C STEP 13
C
6000 IERR = ZCEXIT(0)
C
C END OF RETRIEVAL PRINT RESULT
C
 PRINT 100, CNT
100 FORMAT(I6,'CONTROLS ARE BETTER THAN CURRENT PATIENTS.')
C STEP 14
C
 IERR = ZENODB(DBNAME) STEP 15
C
 IERR = ZEND(TSPACE)

SIR/XS Host/API 192

SIR/XS Host/API 193

Reserved Entry Point Names and Common Blocks

The following names are reserved for use by HOST and should not be used in any
application program:

 ABORT ADDRES ALLOC ASSIGN BST BSTN BYRSIZ CACHFL CACHMS CACHSH
 CACHST CACHXX CANEXT CHKLOK CHNGDB CL32 CLISF CLOS CM0808 CM0832
 CM3232 CMPC1 CMPI4 CMPRS COMPRS CONSTR CONSTX CPJOIN CPYFIL CPYIND
 CPYREC CPYWDS CRACIQ CRACKD CRACKE CRACKF CRACKP CRACKS CREATK CRKGRP
 CVTGER CVTPUT DALLOC DBWRI DCLEXT DCRYPR DEBUGT DEBUGU DSSIGN DUMPDB

 ENDKEY ENDRUN ESCAPE EXCRPV EXITTK EXPCI EXPHO EXPI4 EXPRS EXTND
 FBREAK FILKEY FRANF FREECH GERATR GERATX GERHLP GERMEM GERMOR GERWDS
 GETKEY GETRCX GETREC GTABNM GTAWDS HELP IBREAK ICHECK ICLOSE IISRTW
 INTJUL INVERT INWR IOPENX IRWSF ISFIIL ISFPDL ISFSEO ISIRCM ISIRGT
 ISIRPT ISKPRC ISKPWD ISOPEN ISPCHR ISPEWD ISPF ISPFAM ISPFI ISPFIL

 ISPFIO ISPFWD ISPFWO ISPMAP ISPMEM ISPNAM ISPNUM ISPREL ISPSKB ISPSKC
 ISPSKP ISRTC ISRTE ISRTO ISRTR ISST IST ISTN ISTRBE ISTRCM
 ISTRPT ISTRSB JNTJUL JRNOOD JRNOPN JULINT KEYCOM LDDUMR LDESORT
LOCATE
 LODMAP LODNAM LRECL MATCH1 MATCH2 MATCHC MATCHF MATCHR MOVEAA MOVEAB
 MOVEAL MOVEAR MOVEB MOVEB1 MOVEBA MOVEBC MOVEBI MOVEBL MOVEBN MOVECA

 MOVECB MOVECT MOVED MOVEDA MOVEDN MOVEDO MOVEHD MOVEIB MOVELA MOVELC
 MOVERA MOVEUA MOVEZB MOVEZD MOVREV MRKDLT MUT MUTN MV0101 MV0808
 MV0832 MV3232 NCRYPT NL32 NLO8 ONVRT OPAUSE OPENDB OPISF OPSYMA
 OPSYSA OPSYSD OPSYSE OPSYSM OPSYSP OPSYSR OPSYST OPSYSX PCNSTR PCNSTX
 PIBBRK PIBCUR PIBDTX PIBSTR PIBTAB PIBTIM PIBTMX PISDAT POSREC PRINTB

 PRINTC PRINTK PRINTR PRNTCA PRNTTA PROMPT PSBBAK PSBCHI PSBCHR PSBDAT
 PSBDTM PSBDTX PSBFAM PSBFMT PSBI PSBID PSBMEM PSBPAR PSBQOT PSBSTI
 PSBSTQ PSBSTR PSBSW PSBTAB PSBTIM PSBTMX PSBTRM PSBWRC PUTBLK PUTKEY
 PUTRCX PUTREC PUTWDS RDISF READ1 READB READC READK READN REMARK
 REMRKN REMRKV REOPEN REWIND RMTIO RMTKY RSTCLO RSTLOD RSTOPN RSTRD

 RSTRDT RSTREC RSTSER RSTTRN RWRISF SBYTPR SCPFLT SCPINT SCRTCH SDLISF
 SETISF SETMEM SHUTDN SIRACT SKPISF SLEEP SPIOPN SPIOPR SPIOPS SPIRES
 SPISAV SPSCLS SPSEOL SPSINO SPSINT SPSISF SPSISN SPSISO SPSLDI SPSRES
 SPSSAV SPSZD SRTNXT SRTOPN SRTPOS SRTWRT STARTS STIMER SVJPCS SWRISF
 SYSACT TFAST TFC01 TFCADR TFCC TFCC2 TFCCI TFCCKR TFCCKS TFCCLN

 TFCCLO TFCCPS TFCCRE TFCDLR TFCDUM TFCFIR TFCGFR TFCGI4 TFCGLR TFCGNR
 TFCGPR TFCGR8 TFCGRC TFCGS TFCGSP TFCGST TFCGTR TFCLAS TFCO TFCOP
 TFCPI4 TFCPMS TFCPOS TFCPR TFCPR8 TFCPS TFCPST TFCPUR TFCR TFCRET
 TFCRPR TFCSBT TFCSKB TFCSKR TFCSTC TFCSTX TFCSTY TFCWMT TFF20 TFFAJR
 TFFCLO TFFCPL TFFCPM TFFCPW TFFCRE TFFCS1 TFFCSC TFFCSP TFFCSV TFFFRB

 TFFFRC TFFGBK TFFGET TFFINT TFFJOU TFFJST TFFJWR TFFLSH TFFOP TFFOPN
 TFFPUR TFFPUT TFFRBK TFFRDB TFFREN TFFRET TFFTBN TFFTFN TFFTIN TFFWBK
 TFFWDB TFFWEN TFIADD TFIAFR TFIAIV TFIARS TFIAS TFICKY TFICRE TFIDEL
 TFIEIC TFIFRM TFIIIT TFIIND TFILOD TFIMKY TFIOP TFIPOS TFIPUR TFIR
 TFIRET TFITHR TFIUNT TFIWTH TFMR TOGGLE TS1STR TS2STR TS3STR TSACOL

SIR/XS Host/API 194

 TSAMVN TSAMVS TSATAB TSAVLM TSAVLN TSAVLS TSEAR TSEND TSLCHR TSLCOL
 TSLFH TSLIVN TSLIVS TSLMVN TSLMVS TSLNUM TSLSTR TSLSWI TSLVLM TSLVLN
 TSLVLS TSSCHR TSSFH TSSIVM TSSIVN TSSIVS TSSNUM TSSSTR TSSSWI TSTFNC
 TTIMER UAREXE UARSET UARTST UC0808 UC0832 UC3232 UNWIND UPDATE VCNALC
 VCNDLC VCNGUN VCNRED VCNRST VCNSET VCNWRT VEDESC VHNAME VHST VHSTNM

 VHSTNO WEOR WRITC XBYTGT XFER XFERFV XFERTV XMAP XPIABS YAFTER
 YATTR YBEGIN YBLTRC YCACHE YCCNT YCCNTD YCDEL YCEXIT YCFIND YCFRST
 YCGDMY YCIS YCISD YCLAST YCLEAR YCLOCK YCMPTB YCNEXT YCPREV YCRDMY
 YCREST YCSAM YCSAMD YCWRIT YDESC YDESCB YDESCD YDESCM YDETAL YDTMST
 YDTXIN YDTXKY YDTXRC YEND YENDDB YERMSG YEXIT YFPXKY YFPXRC YFROM

 YINXDT YINXKY YINXRC YINXTM YLABEL YLABLN YLABLS YLOGIN YMSLAB YMSTRC
 YNCASE YNEW YNOR YNORD YNRECS YNSIDS YNVARS YOPEN YOPT YORBD
 YORDBI YOSDB YRCFFP YRCFST YRCNT YRCNTD YRCNTL YRCTRC YRCXDT YRCXFP
 YRCXIN YRCXST YRCXTM YRDEL YREXIT YRFIND YRFRST YRGDMD YRGDML YRGDMY
 YRIS YRISD YRISL YRLAST YRLOCK YRMXRC YRNAMD YRNEXT YRNUM YRNUMD

 YRPREV YRRDMY YRREST YRSAM YRSAMD YRSAML YRWRIT YSDESC YSECLV YSECUR
 YSTART YSTMDT YSTMTM YSTXKY YSTXRC YTHRU YTIME YTMMST YTMXIN YTMXKY
 YUNTIL YUPLEV YUSER YVARLB YVERS YVNAME YVRYPE YWTH ZAFTER ZATTR

Common Blocks

The following names are reserved as common blocks:

 ACCESS CACHMS CMSOMD COMMON COMO COMTB DETIND ENVIRO FCBS GLOBAL
 HERROR HLPHDR HSPACE HSTCOM INDEX ISFCOM MASKS MONTHS OLDIND PATBLK
 PCINDX PIBSAV PSBSAV RESBLK RMTBLK STRING TABLE TFLCOM

