
SIR/XS PQL Procedures 1

Overview... 4
Syntax ... 7
Common keywords ... 8
Procedure Table .. 10
INCLUDE... 11
EXCLUDE.. 11

BMDP Save File ... 13
Condescriptive .. 15
CSV Save File... 18
DBASE Save File ... 22
Descriptive .. 25

Examples... 27
Frequencies Table for Current monthly salary ... 30

Frequency Bar Chart ... 30
Descriptive Statistics... 30

DIF Save File .. 32
Frequencies ... 35

Examples... 38
GRAPH SAVE FILE .. 43

Graph Examples.. 47
MINITAB Save File ... 51
Plot .. 53
Quick Report ... 56

The REPORT Command .. 56
The Structure of a Quick Report ... 57
Syntax ... 58
Examples... 67

Full Report .. 71
The VisualPQL Subset for Full Report... 72

Syntax ... 73
AFTER REPORT.. 75
AT END BLOCK ... 76
BEFORE REPORT... 77
BLANK LINES .. 78
BREAK LEVEL ... 79
CONNECT TO ... 82
DETAIL BLOCK.. 83
END BREAK LEVEL.. 84
END REPORT.. 85
FOOTING... 86
FOOTING BLOCK .. 87
HEADING .. 88
HEADING BLOCK.. 89
INITIAL BLOCK ... 90
ON ERROR .. 91
PAGE BLOCK.. 92

SIR/XS PQL Procedures 2

PAGE EJECT.. 93
Examples... 94

SAS Save File ... 111
SAVE TABLE .. 114

Example: Creating a Database Subset .. 115
SIR Save File .. 117

Example .. 119
SPREAD SHEET.. 120
SPSS Save File.. 122

Example .. 123
SYSTAT Save File ... 125
Tabulate... 127

Syntax ... 128
Record Filtering .. 128
Cell Statistics .. 128
Data Print Formatting ... 128
Page Formatting.. 128
Header Formatting .. 129
Stub Formatting .. 129
Wafer Formatting.. 129
Other Options.. 129
expressions.. 130

Expressions ... 131
BY... 133
THEN.. 134

Combining BY and THEN.. 135
Variable Types .. 136
Cell Contents... 137
Variable Modifiers .. 139

Statistics .. 141
Total .. 144
Normalized and Quantiles... 146

Percentages ... 148
Shorthand Notation for Base Marker Specification.. 148
Percentages with Counts ... 150
Row Percents .. 150
Column Percents ... 151
Base Markers in Both the Header and the Stub .. 152
Percentages with Observation Variables .. 153
Original Values and Percents.. 154
Percents for Row Totals.. 155
Percentages in Wafers... 157
Example percentage tables.. 158

Record Filtering .. 165
Print Formatting.. 166

Labels.. 167

SIR/XS PQL Procedures 3

Page Formatting.. 168
Header Formatting .. 169
Stub Formatting .. 170
Wafer Formatting.. 172

Other Options.. 174
String Specifications ... 176
Error Processing.. 178

WRITE RECORDS .. 179
XML SAVE FILE... 182

SIR/XS PQL Procedures 4

Overview
 The VisualPQL Procedures create output in various formats such as reports, cross-
tabulations or interfaces to other software such as statistical packages. Reports and other
output intended for printing are written as text files. The interface files are in formats that
are directly useable by other software packages.

A VisualPQL main routine can be followed by one or more procedures. The main routine
specifies the data the procedures use by putting it into a procedure table using the
PERFORM PROCS command. This copies local variables from the main routine into the
procedure table. The procedures either operate on the procedure record immediately it is
put into the procedure table or, if the table has to be sorted, the procedures operate after
all the data has been put in the table and sorted.

The procedure specifications describe how the data in the procedure table is treated.
Other than Full Report, the procedures are specified as a single VisualPQL command
with numerous options. There are some common options that are the same for all
procedures.

The general structure of a program that uses procedures is:

RETRIEVAL | PROGRAM
.
. VisualPQL code that creates variables for the procedure
. PERFORM PROCS
.
PQL_PROCEDURE command and options.
PQL_PROCEDURE command and options.
END RETRIEVAL | PROGRAM
Following is a listing and brief description of the VisualPQL Procedures available.
BMDP SAVE FILE Generates a file that can be directly accessed by the BMDP®

statistical package.
CONDESCRIPTIVE Produces descriptive statistics for specified variables. The

statistics available include sum, mean, minimum, maximum,
standard deviation, skewness, kurtosis, variance, standard error of
the mean, coefficient of variability and confidence interval.

CSV SAVE FILE Generates a file that can be accessed by any package that reads
Comma Separated Variable format.

DBASE SAVE FILE Generates a file that can be directly accessed by DBASE ®.
DESCRIPTIVE Produces descriptive statistics and a frequency bar chart for a

specified variable. The statistics include sum, mean, minimum,
maximum, standard deviation, skewness, kurtosis, variance,
standard error of the mean, coefficient of variability and

SIR/XS PQL Procedures 5

confidence interval. This essentially replaces both
CONDESCRIPTIVE and FREQUENCIES. The frequency chart is
produced by the SIRGRAPH module. Output can be in HTML
format suitable for viewing through a browser.

DIF SAVE FILE Generates a file in the Data Interchange Format accepted by many
PC packages.

FREQUENCIES Produces descriptive statistics of variables with counts and
percentage distributions for values of the variables. Seventeen
statistics are available.

GRAPH Produces file suitable for input to the SIRGRAPH module (only
available on Windows). The file is a text file that can be
transferred to a Windows based computer if necessary. A wide
variety of 2D and 3D graphs can be produced.

MINITAB SAVE FILE Generates a file that can be directly accessed by the MINITAB®
statistical package.

PLOT Produces a file for graphical display of line or scatter plots. Linear
regression statistics are also produced. The graphic output is
produced by the SIRGRAPH module.

REPORT - Quick Produces columnar reports with a minimum of specification using
keywords to specify formats, sorting, break-points, totals and
subtotals.

REPORT - Full Extends the VisualPQL programming language to handle complex
reports with changing report formats, conditional branching,
nesting and computations.

SAS SAVE FILE Generates files that can be directly accessed by the SAS® statistical
package. The schema information and data are output in SAS text
export format.

SAVE TABLE Creates tables on SIR/XS tabfiles.
SIR SAVE FILE Creates a sequential copy of a SIR/XS database.
SPREAD SHEET Displays data in a spreadsheet style format.
SPSS SAVE FILE Generates a file that can be accessed by the SPSS® statistical

package.
SYSTAT SAVE FILE Generates a file that can be accessed by the SYSTAT® statistical

package.
TABULATE Produces cross tabulations with options for nesting categories and

concatenating tables. Cells can contain various statistics in
addition to counts, percentages and quantiles. Output can be in
HTML format suitable for viewing through a browser.

WRITE RECORDS Generates a fixed format text data file that may be in any
sequence.

XML SAVE FILE Generates a file in XML (eXtensible Markup Language), that can

SIR/XS PQL Procedures 6

be accessed by many other packages and applications.

SIR/XS PQL Procedures 7

Syntax

 Each of the procedures is specified with a command that has keywords to specify
options. Some keywords are common to all the procedure commands. Keywords and
associated options are continuations of the command. Continuation lines can be used to
continue a command across multiple lines.

Except for the Full Report procedure, the actions of the procedure are completely
specified by the keywords and options on the procedure command. Full Report is a
programming language and subsequent VisualPQL commands specify the processing
performed.

As many procedures as necessary may be specified in a single program. Options specified
on one procedure have no effect on subsequent procedures.

The end product of any procedure is a file. Specify a filename on the command.
Frequencies, Condescriptive and Tabulate can append the output of one procedure to the
end of the previous procedure's output. If there are multiple procedures of the same type,
specify the output file on the first such procedure. If subsequent procedures of the same
type have no output file specification, the output is appended to the end of the previously
specified file.

All procedures can produce sorted output.

SIR/XS PQL Procedures 8

Common keywords

The following clauses are standard to all VisualPQL procedures. Where there are any
exceptions, these are noted:

FILENAME = filename | CONSOL | STDOUT
VARIABLES = variable list
SORT = [(n)] variable [(A)|(D)], ...
BOOLEAN = (logical_expression)
SAMPLE = fraction
FILENAME Specify the filename to be created by the procedure. Enclose

filenames that are not in the same format as standard SIR/XS
names in quotes. Specify either STDOUT or CONSOL (Not in quotes)
to display the result of a procedure in normal place that output is
being written to. In the case of a normal interactive session this is
the scrolled output buffer. FILENAME is a required clause except
where noted.

VARIABLES Specifies the procedure variables that are used by the procedure.
For procedures that allow multiple variables, the order in which
variables are specified is the order they appear in the output file. If
VARIABLES is not specified, the default variables are output. (See
INCLUDE and EXCLUDE.)

A variable list contains variable names or three keywords:
ALL Specifies that the default variables are used (taking regard to
INCLUDE/EXCLUDE)
AS Specifies an alternate name for the variable. This can also be
achieved simply by following the variable name with a new name
in quotes e.g.

 VARIABLES = S(1) AS SALARY or
 VARIABLES = S(1) 'Salary‘
TO Specifies a list of selected variables A to B. The variables
included in the list depend on the sequence in which variables are
defined and include all variables defined between the two
specified variables as well as the specified variables themselves. If
summary variables are created with a GET VARS ALL rowm a
record type, then the sequence is the same as the record.

The whole list can be enclosed in brackets (recommended) and
thus the list starts and stops with brackets (). If the list is not in
brackets then one of the following signifies the end of the list:
A new command is read. That is a command that starts in the first
column, not simply the next clause on the same command.

SIR/XS PQL Procedures 9

A special character is read, in particular a slash /. Other special
characters may be invalid.
A name is processed that is not a valid variable. This is taken to be
a keyword for the command and is processed as such. If it is not
valid keyword, then an error message ‘Error 4 Keyword is invalid'
is generated.

Some procedures allow certain non-standard specifications in their
variable lists and these are noted in the documentation for those
procedures.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.
A sort is implicit when a BREAK clause is specified in Quick
Report.

BOOLEAN Selects procedure table records used by the procedure. The
procedure table records that match the logical expression are
selected. If this option is not specified, all procedure table records
are used.

SAMPLE Selects a random sample of the procedure table records for use by
the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). e.g.
Specify .25 to use a 25% sample.
If you wish to alter the default seed used to initialise the random
number generator, use the SEED option on the retrieval command.

SIR/XS PQL Procedures 10

Procedure Table

The procedure table is built during the execution of the main routine and contains a
number of data records . Each record in the table contains the values of a number of
variables, referred to as the Procedure Variables. The values in these variables are copied
into the procedure table whenever the PERFORM PROCS command is executed.

Procedure Variables

Each VisualPQL program, retrieval and subroutine has its own local or program
variables. VisualPQL can explicitly declare variables using commands such as INTEGER,
REAL, STRING, DATE and TIME. In addition, local variables are implicitly declared when
a value is assigned to an undeclared variable through commands such as COMPUTE, SET
and GET VARS. See variables for further details.

Each variable and array has a schema entry that includes information about data type,
valid values, missing values, variable labels and value labels. The GET VARS command
copies schema information from the database or table into the schema for that local
variable. The schema for other variables is created from the variable declaration and
definition commands in the program. The VisualPQL Procedures use these schema
entries as they format their output.

A routine may access database or table data and may reference an external block of
variables.

Selecting Variables for the Procedure Table

By default, all of the local variables, excluding arrays, are procedure variables. The
DEFINE PROCEDURE VARIABLES command specifies particular variables to use to build
the procedure table. Using this command can result in performance improvements if the
program has a large number of local variables that are not required by the procedures.
This command is also used to include data from arrays or from EXTERNAL VARIABLE
BLOCKs in the procedure table.

Conditional Use of Procedure Table Records

The BOOLEAN option specifies selects records from the procedure table to include in the
procedure. This feature is useful when specifying multiple procedures in a single
VisualPQL program where each procedure is to work with a subset of the procedure table
records.

Selecting Variables from the Procedure Table

SIR/XS PQL Procedures 11

The procedures allow any of the variables in the procedure table to be accessed by name.
Certain procedures output all variables if particular variables are not specified with the
VARIABLES keyword on the procedure command. The INCLUDE and EXCLUDE commands
alter the default variables used by a procedure; they do not alter the content of the
procedure table, merely the default list of variables. These commands are placed in the
main routine anywhere before the first procedure command. INCLUDE and EXCLUDE are
mutually exclusive; specify either one or the other, not both.

If the DEFINE PROCEDURE VARIABLES command has excluded a particular variable from
the procedure table, do not specify that variable on an INCLUDE or EXCLUDE as this has no
effect.

INCLUDE
INCLUDE variable,
Specifies the default variables referenced by all procedures. The order of the variables
determines the sequence used on the output file.

EXCLUDE
EXCLUDE variable, ...
Excludes variables from the default variable list.

Disk Space

If a large procedure table has to be sorted, a temporary file is used. Be sure that sufficient
disk space is available. Use the DEFINE PROCEDURE VARIABLES command to include
only the variables that are needed.

Saved Executables

If large programs are run frequently, consider saving the compiled, executable version of
the program. See the SAVE = option on the RETRIEVAL and PROGRAM commands. The
NOPROCS option on these commands saves the executable version of the program without
the procedure specifications. This executable can be run and procedure commands
appended to it. The general structure for this is:

Create the executable:

RETRIEVAL | PROGRAM SAVE=member_name NOPROCS NOEXECUTE
 PQL_COMMAND ...
 PERFORM PROCS ...
 ...
 PQL_PROC_COMMAND
 END RETRIEVAL | PROGRAM
Run the executable:

SIR/XS PQL Procedures 12

 RETRIEVAL | PROGRAM GET = member_name
 PQL_PROC_COMMAND . . .
 PQL_PROC_COMMAND . . .
 END RETRIEVAL | PROGRAM

Saving the Procedure Table

Use SAVE TABLE to save the Procedure Table as a SIR/XS Tabfile table if necessary. Run
any subsequent procedures against this subset of data rather than the full database. For
example

Create the table:

RETRIEVAL | PROGRAM SAVE=member_name NOPROCS NOEXECUTE
 PQL_COMMAND ...
 PERFORM PROCS ...
 ...
 SAVE TABLE MYTABFILE.MYTABLE
 END RETRIEVAL | PROGRAM
Use the table:

PROGRAM
. PROCESS ROWS MYTABFILE.MYTABLE
. GET VARS ALL
. PERFORM PROCS
. END ROW
PQL_PROC_COMMAND option
END PROGRAM

SIR/XS PQL Procedures 13

BMDP Save File
BMDP ® is a statistical package produced by the Department of Biomathematics, at the
University of California, Los Angeles.

The BMDP SAVE FILE procedure produces a BMDP system file that contains data and
data dictionary (schema) information in a format that is directly useable by the BMDP
programs. The file contains procedure table data, value labels, variable labels and missing
value indicators.

Values are assigned to all missing values when the file is prepared for BMDP and original
missing values are no longer accessible when the file is read by the BMDP programs.

The procedure produces a summary report listing the variables in the file, the name of the
output file, the file code and other information.

BMDP SAVE FILE FILENAME = filename
 [VARIABLES = varlist | ALL]
 [SORT = [(n)] variable [(A)|(D)], ...]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction

FILENAME Specifies the filename created by the procedure.
VARIABLES Specifies the procedure variables that are written to the output file.

The order that variables are specified is the order that they appear
in the output file. If this option is not specified, the default
variables are output.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records is

SIR/XS PQL Procedures 14

used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample is used.

Example

The following produces a BMDP system file with the variables ID, GENDER, SALARY,
EDUC and the computed variable AGE:
RETRIEVAL
INTEGER * 1 AGE
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS ID GENDER SALARY EDUC
. COMPUTE AGE = (TODAY(0) -BIRTHDAY) / 365
. PERFORM PROCS
. END REC
END CASE
BMDP SAVE FILE FILENAME = BMDP.SYS
END RETRIEVAL
The following report is displayed upon completion of the program.
BMDP SAVE FILE SYNOPSIS

WRITTEN TO: "BMDP.SYS"
CODE IS: SYSUSR2
NUMBER OF CASES: 20
NUMBER OF VARIABLES: 5

VARIABLES IN SAVE FILE ORDER

AGE ID GENDER SALARY EDUC

SIR/XS PQL Procedures 15

Condescriptive
CONDESCRIPTIVE produces statistics for numeric variables in the procedure table. It is
usually used with continuous variables that can assume any value in a given range.
Discrete variables are usually analysed with FREQUENCIES.

CONDESCRIPTIVE may not be used with string variables. If a string variable is specified, a
warning message is issued and the variable is ignored.

CONDESCRIPTIVE [FILENAME = filename]
 [VARIABLES = varname [AS varname] | ALL]
 [WEIGHT = varname]
 [SAMPLE = fraction]
 [BOOLEAN = (logical expression)]
 [TITLE = 'text']
 [STATISTICS = keyword list]
 [NOLABELS]

FILENAME Specifies the filename created by the procedure.

If multiple CONDESCRIPTIVE procedures are specified and this
clause is omitted, output is appended to the end of the previous
output file.
If no filename is specified, the output is written to the default
output file (the scrolled output buffer in an interactive session).

VARIABLES Specifies the procedure table variables for which statistics are
produced. The order in which they are specified is the order in
which they appear in the output file. If this option is not specified
the default variables are output. Specify the AS varname option to
rename variables on output. This is particularly useful for array
elements, where otherwise just the array name is used. Specify the
AS option separately for each variable to rename:
VARIABLES = S(1) AS SALARY, S(2) AS TAX

WEIGHT Specifies the procedure variable used to weight the variables. A
weight of 1 is the default. The WEIGHT affects all statistics except
MINIMUM and MAXIMUM values.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for

SIR/XS PQL Procedures 16

example specifies that a 25% sample be used.
TITLE The TITLE clause defines the subtitle that is printed on the

CONDESCRIPTIVE report. The subtitle text must be enclosed in
quotes. If the TITLE clause is not used, the subtitle line is left
blank.

STATISTICS The STATISTICS clause contains a list of keywords that name the
statistics produced by CONDESCRIPTIVE. ALL is the default. The
keywords are:
ALL produces all the statistics. Has the same

result as omitting the STATISTICS clause
or specifying all of the keywords.

WCOUNT weighted count of non-missing values
MAX maximum value
MIN minimum value
MEAN mean value
STDV standard deviation
SKEW skewness
KURT kurtosis
VAR variance
STDE standard error of the mean
CV coefficient of variability
CI 95 percent confidence interval about the

mean
SUM sum

NOLABELS Specifies that variable labels are not printed. By default, the
CONDESCRIPTIVE report lists both the variable name and label.

Example

In the following simple example, the procedure table contains one record for each record
type 1 record in the database. Statistics are then produced by the condescriptive
procedure.
RETRIEVAL
PROCESS CASES
. PROCESS REC 1
. GET VARS SALARY
. PERFORM PROCS
. END REC
END CASE
CONDESCRIPTIVE VARIABLES =SALARY /
 FILENAME = COND.TXT
END RETRIEVAL

SIR/XS PQL Procedures 17

The output is:
SALARY Current monthly salary

WGT CNT 20.000 MAXIMUM 4000.000
MINIMUM 1650.000 MEAN 2780.000
STD 573.631 SKEWNESS .217
KURTOS -.161 VARIANCE 329052.632
STD ERR 128.268 C.V. PCT 20.634
.95 C.I. 2511.532 TO 3048.468
SUM 55600.000

VALID OBSERVATIONS 20
MISSING OBSERVATIONS 0

SIR/XS PQL Procedures 18

CSV Save File
The CSV SAVE FILE procedure creates a file that can be used to transfer data to a
software package that recognises Comma Separated Variables format.

 CSV SAVE FILE [FILENAME = ldi]
 [VARIABLES = { varname [(['header_text'] [format]
)]... | ALL }]
 [BOOLEAN = (logical_expression)]
 [HEADER]
 [SAMPLE = fraction]
 [SEPARATOR = "single_character" | TAB]
 [SORT = [(n)]variable [(A)|(D)], ...]
FILENAME Specifies the filename created by the procedure. If no filename is

specified a file named sirproc.csv is produced.
VARIABLES Specifies the procedure variables that are written to the output file.

Specify the variables in the order in which they are to appear in
the output file. If this option is not specified or the keyword ALL is
specified, the default variables are output.

When specific variables are output, header text and/or a format
can be specified following the variable name within parentheses.

String variables, categorical variables and value labels are output
within double quotes - "". Numeric variables, dates and times are
output as per the format without quotes.

header_text If a header record is written, by
default, the variable name is used.
Specify header text in quotes to use
for this column in the header.

Format [The default format is taken from the
schema. Specify a format expression
to alter this. The width of a column is
calculated from the format
expression. If the data for the column
does not fit in the specified width, a
numeric column is filled by X's and a
character column is truncated to fit.
In the format expressions below, "w"

SIR/XS PQL Procedures 19

is a number specifying the width in
columns.

Aw Specifies Alphanumeric string
format.

Bw Specifies reverse string format. If
there is a column header it is written
as normal and the data is written in
reverse (backwards).

Lw Specifies that Value Labels are
written instead of the data value. If a
value has no defined label, blanks are
output.

Iw Specifies Integer format. Any
decimal portion of the number is
ignored.

Fw.d Specifies Floating point format. Use
for either floating point or scaled
integers with decimal portions. "d" is
the number of decimal places.

Ew Specifies Exponential (scientific).
DATE Specifies a date variable formatted

using the date format. See date
formats for a complete description of
date formats. The width of the
column is specified by the characters
in the format. For example:
VARIABLES = BIRTHDAY
(DATE'Wwwwww Mmm DD, YYYY')

TIME Specifies a time variable formatted
using the time format. See time
formats for a complete description of
time formats. The width of the
column is specified by the characters
in the format. For example:
VARIABLES = TESTTIME
(TIME'HH:MM:SS PP')

D, C, P D puts a dollar sign ($) before the
numeric value.
C separates thousands with the
comma character.
P puts a percent sign (%) after the
numeric value. These can be
specified in addition to other numeric
format expressions. For example:

SIR/XS PQL Procedures 20

VARIABLES = MONEY (F9.2, D, C)

BOOLEAN Specifies which procedure table records are used by the procedure.

The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

HEADER Specifies that a header is written to the output file. This contains
one entry per column, entries separated by columns. Each entry is
up to 32 characters in quotes. Each entry is either the name of the
variable or any specified header text.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

SEPARATOR Specifies that a character is used instead of the default comma to
separate fields. Specify the character in quotes or use the keyword
TAB to use a tab character as the separator.

 SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

Examples

The following produces a CSV file with the variables ID, SALARY, EDUC and BIRTHDAY.
retrieval
process cases
. process rec employee
. get vars id salary educ birthday
. perform procs
. end rec
end case
csv save file filename = example.csv header
end retrieval
When the above program is run, the following summary report is displayed:

CSV SAVE FILE Summary Report

SIR/XS PQL Procedures 21

No of data records 20
No of columns 4
The file itself contains:

"ID","SALARY","EDUC","BIRTHDAY"
1,2150,1,01 15 38
2,2650,4,12 07 42
3,3150,3,08 10 53
....

The following produces a CSV file with some variables to illustrate format options.

program
integer * 1 sex
string*10
value labels sex (1)'Male'(2)'Female'
real * 8 realnum

DATE filedate ('MM/DD/YYYY')
DATE bdate ('MM/DD/YYYY')

. COMPUTE filedate = today(0);bdate=today(0)
. compute realnum=12.12345
. compute sex=1
. compute string = 'abcdefhij'
. perform procs

CSV SAVE FILE FILENAME = "test.csv" /
 VARIABLES= realnum ('Salary' f8.2)
 filedate(date"mm/dd/yyyy")
 bdate(date"mm/dd/yyyy")
 sex(L6) string(b8) /
 HEADER
END RETRIEVAL
The file itself contains:

"Salary","FILEDATE","BDATE","SEX","STRING"
 12.12,03/06/2002,03/06/2002,"Male ","jihfedcb"

SIR/XS PQL Procedures 22

DBASE Save File
The DBASE SAVE FILE procedure creates a file that can be used to transfer data to a
software package that recognises DBASE® format.

DBASE SAVE FILE FILENAME = filename
 [VARIABLES = { varname [('header_text')] ...| ALL }]
 [SORT = [(n)]variable [(A)|(D)], ...]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction]
FILENAME Specifies the filename created by the procedure.
VARIABLES Specifies the procedure variables that are written to the output file.

Specify the variables in the order in which they are to appear in
the output file. If this option is not specified or the keyword ALL is
specified, the default variables are output.
Specify any header text in quotes in parentheses following the
variable name. If header text is not specified, the variable name is
used.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

Example 1: Using Defaults

SIR/XS PQL Procedures 23

In the following example a DBASE file is created containing each employee's name, social
security number and birth date. The variable names are used as the default column
headers. BIRTHDAY is converted to a string in a date format before being sent to the
procedure.
RETRIEVAL
STRING*12 BDAY
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS NAME SSN
. COMPUTE BDAY = DATEC(BIRTHDAY,'Mmm DD, YYYY')
. PERFORM PROCS
. END REC
END CASE
Dbase SAVE FILE FILENAME = DBASE.OUT /
END RETRIEVAL
When the above program is run, the following summary report is displayed:
DBASE SAVE FILE Summary Report

No of data records 20
No of columns 3

Example 2: Sorting and Custom Headers

In the following example, custom column headers for each variable are specified and the
output file is sorted by social security number.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS NAME SSN
. COMPUTE BDAY = DATEC(BIRTHDAY,'Mmm DD, YYYY')
. PERFORM PROCS
. END REC
END CASE
DBASE SAVE FILE FILENAME = DBASE.OUT /
 SORT = SSN /
 VARIABLES = NAME ('Employee Name')
 SSN ('Soc Sec Number')
 BDAY ('Birthday')
END RETRIEVAL

Example 3: Dummy Columns

In the following example, two dummy columns are created. The first column called
'Dummy One' and the column between SSN and BDAY called 'Dummy Two'
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS NAME SSN
. COMPUTE BDAY = DATEC(BIRTHDAY,'Mmm DD, YYYY')
. PERFORM PROCS
. END REC
END CASE

SIR/XS PQL Procedures 24

DBASE SAVE FILE FILENAME = DBASE.OUT/
 SORT = SSN /
 VARIABLES = ('Dummy One')
 NAME ('Employee Name')
 SSN ('Soc SecNumber')
 ('Dummy Two')
 BDAY ('Birthday')
END RETRIEVAL

SIR/XS PQL Procedures 25

Descriptive
 The DESCRIPTIVE procedure produces a frequency barchart and descriptive statistics on
a numeric or short string (up to eight characters) variable. Frequency counts show how
many times a variable had a particular value, or had a value which fell within a range.
 DESCRIPTIVE VARIABLE = var
 [BOOLEAN = (log_expression)]
 [FILENAME = ldi]
 [HTML]
 [INTERVALS = (n,n+,n++,...)]
 [RANGE = (categories,min,max)]
 [SAMPLE = sample]
 [STRINGS = ('n','n+','n++',...)]
 [SUBTITLE = 'text']
 [TITLE = 'text']
 [WEIGHT = varname]
Specify a variable name. This produces a frequency table and counts of included
observations (values in the frequency table) and missing observations (missing and
undefined values) plus a set of descriptive statistics.

Default frequency ranges for numeric variables are calculated from the minimum and
maximum values of observations. The number of ranges is taken from the square root of
the number of observations with a minimum of seven and a maximum of fifty.
There are no default ranges for string variables and these must be specified as part of the
STRING parameter.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

FILENAME Specify the filename created by the procedure.
If no FILENAME clause is specified, the output is written to a
default file sirdesc.srg.

If the filename CGI is specified then output is written to the user's
internet browser if the procedure is run through the CGI interface.
If this filename is used and the procedure is run when the CGI
interface is not active, output is written to a file sircgi.htm.
Output written to CGI is normally in HTML format (see below).

HTML Specifies that output is produced in HTML format suitable for
viewing through a browser.

INTERVALS Specify a set of values, in increasing order, that represent the
boundaries of the ranges in the frequency table. Values below the
first and beyond the last value are omitted. For example, to create

SIR/XS PQL Procedures 26

three ranges for Salary:

 DESCRIPTIVE VARIABLE = SALARY /
 INTERVALS = (0,2000,3000,9999)
Cannot specify both INTERVALS and RANGES.

RANGE Specify that the frequency table consists of n ranges with the
specified lowest and highest limits. Values below the first and
beyond the last value are omitted. For example, to create three
ranges for Salary (0-2000,2000-4000,4000-6000):

 DESCRIPTIVE VARIABLE = SALARY /
 RANGE = (3,0,6000)

SAMPLE Specifies that a random sample of the procedure table records is
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

STRINGS Specifies that the variable to be analysed is a string (up to eight
characters in length) and the set of values to use for the frequency
chart. Specify a set of values, in increasing order, that represent
the boundaries of the ranges in the frequency table. Values below
the first and beyond the last value are omitted. Note that
descriptive statistics are not produced for strings.

SUBTITLE Specifies the text on the DESCRIPTIVE report footer. Enclose the
text in quotes. If SUBTITLE is not used, the subtitle is "Created by
SIR/XS on DATE at TIME".

TITLE Specifies the text on the DESCRIPTIVE report title. Enclose the text
in quotes. If TITLE is not used, the title is the variable label or
name when no label.

WEIGHT Specifies the procedure variable used as a weighting factor for the
variables in FREQUENCIES. Normally, cell counts are incremented
by one for each appropriate occurrence. When a weighting value is
specified, the cell count is incremented by the value in the
specified variable.

See examples.

SIR/XS PQL Procedures 27

Examples

Example 1

Produces a default analyses on Education Level (EDUC).
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS EDUC
. PERFORM PROCS
. END REC
END CASE
DESCRIPTIVE VARIABLE = EDUC
 FILENAME = EDUC.SRG /
 TITLE = 'Education Levels in Company' /
END RETRIEVAL
On completion of the program, the file EDUC.SRG contains text which can be viewed
with
ESCAPE 'sirgraph.exe educ.srg'
which looks something like:

SIR/XS PQL Procedures 28

Example 2

Produce a default analysis on salary.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS SALARY
. PERFORM PROCS
. END REC
END CASE
DESCRIPTIVE VARIABLE = SALARY /
 FILENAME = SALARY.SRG /
END RETRIEVAL
On completion of the program, the file SALARY.SRG contains text which can be viewed
with
ESCAPE 'sirgraph.exe salary.srg'
which looks something like:

Example 3

Analyse a string variable (name) by letter.
RETRIEVAL
STRING*4 SNAME

SIR/XS PQL Procedures 29

PROCESS CASES
. PROCESS REC EMPLOYEE
. COMPUTE SNAME = NAME
. PERFORM PROCS
. END REC
END CASE
DESCRIPTIVE VARIABLE = SNAME /
 FILENAME = NAMES.SRG /
 STRING = ('A','E','I','O','U','Z') /
 TITLE = 'Names in Company' /
END RETRIEVAL
On completion of the program, the file NAMES.SRG contains text which can be viewed
with
ESCAPE 'sirgraph.exe names.srg'
which looks something like:

Example 4

Produce an analysis on salary in eight $500 bands between 1000 and 5000 and produce
the output as html.

RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS SALARY
. PERFORM PROCS

SIR/XS PQL Procedures 30

. END REC
END CASE
DESCRIPTIVE VARIABLE = SALARY
 RANGE = (8,1000,5000)
 FILENAME = SALARY.HTM HTML
END RETRIEVAL
On completion of the program, the file SALARY.HTM contains text which can be viewed
with any browser which looks something like:

Frequencies Table for Current monthly salary

Values Frequency

1000 - 1500 1

1500 - 2000 0

2000 - 2500 3

2500 - 3000 5

3000 - 3500 2

3500 - 4000 0

4000 - 4500 1
4500 - 5000 0

Frequency Bar Chart

1000 -
1500

1500 -
2000

2000 -
2500

2500 -
3000

3000 -
3500

3500 -
4000

4000 -
4500

4500 -
5000

Descriptive Statistics

Number of Observations 12.00

Number of Missing Observations 2.00

Mean 2702.83

Standard Deviation 678.84

Variance 460823.61

Minimum 1234.00

Maximum 4000.00

First Quartile 2337.50

Median 2725.00

Third Quartile 2962.50

SIR/XS PQL Procedures 31

Mean (95% C.I) 2271.52 - 3134.15

CV Percent 25.12

Skewness -0.288310643

Kurtosis 1.7548682

SIR/XS PQL Procedures 32

DIF Save File
The DIF SAVE FILE procedure creates a text file in Data Interchange Format. The DIF
file can be used to transfer data to a software package that recognises DIF format.
DIF SAVE FILE FILENAME = filename
 [VARIABLES = varname [('header')] ...|ALL]
 [SORT = [(n)] variable [(A)|(D)] , ]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction]
 [TITLE = 'text' | NOTITLE]
 [NOHEADING]
FILENAME Specifies the filename created by the procedure.
VARIABLES Specifies the procedure variables that are written to the output file.

The order in which they are specified is the order in which they
appear in the output file. If this option is not specified, the default
variables are output.
Header text may be specified as text in quotes in parentheses
following the variable name. If header text is not specified, the
variable name is used. Dummy columns are specified as header
text that does not immediately follow a variable name. The
NOHEADING option suppresses all headers. Multiple strings in
quotes in one set of parentheses specify multi-line headers.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

BOOLEAN Specifies procedure table records used by the procedure. The
procedure table records where the logical expression is true are
used by the procedure. If this option is not specified, all procedure
table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

TITLE Specifies the title written to the DIF file. If TITLE is not specified,
a default title is generated.

SIR/XS PQL Procedures 33

NOTITLE Suppresses the default title.
NOHEADING Suppresses generation of column headers.

Example 1: Using Defaults

The following creates a DIF file containing each employee's name, social security
number and birth date using the variable names as the default column headers. BIRTHDAY
is converted to a string in a date format before being sent to the procedure.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS NAME SSN
. COMPUTE BDAY = DATEC(BIRTHDAY,'Mmm DD, YYYY')
. PERFORM PROCS
. END REC
END CASE
DIF SAVE FILE FILENAME = DIF.OUT /
END RETRIEVAL
When the above program is run, the following summary report is displayed:
DIF SAVE FILE Summary Report

Title generated
No of header records ... 1
No of data records 20
No of columns 3

Example 2: Sorting and Using Column Headers

The following example specifies a title and custom column headers for each variable and
the output is sorted by social security number.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS NAME SSN
. COMPUTE BDAY = DATEC(BIRTHDAY,'Mmm DD, YYYY')
. PERFORM PROCS
. END REC
END CASE
DIF SAVE FILE FILENAME = DIF.OUT /
 SORT = SSN /
 TITLE = 'Employee Listing' /
 VARIABLES = NAME ('Employee Name')
 SSN ('Soc Sec Number')
 BDAY ('Birthday')
END RETRIEVAL

Example 3: Creating Dummy Columns

The following creates two dummy columns, the first called 'Dummy One' and the second
(between SSN and BDAY), 'Dummy Two'
RETRIEVAL
PROCESS CASES

SIR/XS PQL Procedures 34

. PROCESS REC EMPLOYEE

. GET VARS NAME SSN

. COMPUTE BDAY = DATEC(BIRTHDAY,'Mmm DD, YYYY')

. PERFORM PROCS

. END REC
END CASE
DIF SAVE FILE FILENAME = DIF.OUT /
 SORT = SSN /
 TITLE = 'Employee Listing' /
 VARIABLES = ('Dummy One')
 NAME ('Employee Name')
 SSN ('Soc Sec Number')
 ('Dummy Two')
 BDAY ('Birthday')
END RETRIEVAL

SIR/XS PQL Procedures 35

Frequencies
 The FREQUENCIES procedure produces frequency counts, histograms and descriptive
statistics on numeric variables. Frequency counts show how many times a variable had a
particular value, or had a value that fell within a specified range. There are four ways of
categorising values:
INTEGER Produces counts for each discrete integer value. Used for

categorical variables or other codes.
GENERAL Produces counts for each discrete value. The expected number of

counts must be specified on the command. Used for non-integer
numbers with a relatively low number of discrete values.

CONTINUOUS Counts the values that fall into each range. Specify a number of
ranges within an overall range so that each range is equal. Used
for variables with a large range of values.

INTERVALS Similar to CONTINUOUS except that each range is specified
individually and may be unequal.

FREQUENCIES {INTEGER = {varlist | ALL} (min,max) |
 GENERAL = {varlist | ALL} (categories) |
 CONTINUOUS = {varlist | ALL} (categories,min,max) |
 INTERVALS = {varlist | ALL} (intervals)}

 [FILENAME = filename]
 [STATISTICS = keywordlist]
 [WEIGHT = varname]
 [TITLE = 'text']
 [HISTOGRAM]
 [ORDER]
 [NOLABELS]
 [BOOLEAN = (logical expression)]
 [SAMPLE = fraction]
Specify one of INTEGER, GENERAL, CONTINUOUS or INTERVALS. This produces a
frequency table with the specified number of entries. In addition a summary is printed
giving counts of Included Observations (values in the frequency table), Missing
Observations (missing and undefined values) and Rejected Observations (values outside
the specified ranges).
INTEGER Specify the numbers to count. One entry is produced for each

integer value in the range.
GENERAL Specify the number of discrete values to count.
CONTINUOUS Specify an overall range and a number of equal sub-ranges within

this. Values that fall outside of the range are omitted from the
frequencies table and are not included in the calculations of the
statistics. Specify the overall range by min and max . This is
divided into the specified number of equal sized ranges.

SIR/XS PQL Procedures 36

INTERVALS Specify a set of values, in increasing order, that represent the
boundaries of the ranges in the frequency table. Values below the
first and beyond the last value are omitted. For example, to create
three ranges for Salary:

 FREQUENCIES INTERVALS =
 SALARY (0,2000,3000,9999)

FILENAME Specify the filename created by the procedure.
If multiple FREQUENCIES statements are specified and no
FILENAME clause is specified on a second or subsequent command,
the output is written to the file specified on the previous command.
If no filename is specified, the output is written to the default
output file (the scrolled output buffer in the case of interactive
sessions).

STATISTICS Specify the statistics produced. Specify one or more of the
following keywords:
ALL produces all the statistics.
WCOUNT weighted count of non-missing values
MAX maximum value
MIN minimum value
MEAN mean value
STDV standard deviation
SKEW skewness
KURT kurtosis
VAR variance
STDE standard error of the mean
CV coefficient of variability
CI 95% confidence interval about the mean
SUM sum
MODE mode value
MED median value
Q25 first quartile
Q50 second quartile (same as MED)
Q75 third quartile

If the STATISTICS clause is not specified, statistics are not
produced.

TITLE Specifies the text on the FREQUENCIES report subtitle line. Enclose
the text in quotes. If TITLE is not used, the subtitle line is left

SIR/XS PQL Procedures 37

blank.
HISTOGRAM Specifies that a histogram is printed in addition to the frequency

table. A histogram is a bar chart that displays a frequency
distribution the values of a variable.

WEIGHT Specifies the procedure variable used as a weighting factor for the
variables in FREQUENCIES. Normally, cell counts are incremented
by one for each appropriate occurrence. When a weighting value is
specified, the cell count is incremented by the value in the
specified variable.

ORDER Specifies that the frequency table is printed in increasing order of
frequency count (the smallest frequency first), rather than in
increasing order of category value that is the default.

NOLABELS Specifies that variable labels are not printed. By default, the
FREQUENCIES report lists both the variable name and label. Value
labels, if they exist, are printed.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

See examples.

SIR/XS PQL Procedures 38

Examples

Example 1: Integer Mode with Statistics and Title

Produces a report on Education Level (EDUC) that includes all statistics:
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS EDUC
. PERFORM PROCS
. END REC
END CASE
FREQUENCIES INTEGER = EDUC (1 , 6) /
 FILENAME = FREQS1.TXT /
 TITLE = 'Education Levels in Company' /
 STATISTICS = ALL /
END RETRIEVAL
The file FREQS1.TXT contains the following report upon completion of the program.

Education Levels in Company

EDUC Education level

VALUE LABEL VALUE ABSOLUTE RELATIVE CUMULATIVE
 FREQUENCY FREQUENCY REL FREQ
 (PERCENT) (PERCENT)

Elementary 1.00 3.00 15.00 15.00
High School 2.00 2.00 10.00 25.00
Some University 3.00 4.00 20.00 45.00
B.Sc. or B.A. 4.00 6.00 30.00 75.00
M.S. 5.00 3.00 15.00 90.00
Ph.D. 6.00 2.00 10.00 100.00
 ---------- ------- -------
 TOTAL 20.00 100.00 100.00

STATISTICS.....

WGT CNT 20.000 MAXIMUM 6.000
MINIMUM 1.000 MEAN 3.500
STD DEV 1.539 SKEWNESS -0.193
KURTOSIS -0.690 VARIANCE 2.368
STD ERR 0.344 C.V. PCT 43.971
.95 C.I. 2.780 TO 4.220
SUM 70.000 MODE 4.000
MEDIAN 4.000 QUARTILE-25 2.500
QUARTILE-75 4.500

VALID OBSERVATIONS 20
MISSING OBSERVATIONS 0
REJECTED OBSERVATIONS 0

SIR/XS PQL Procedures 39

 -

Example 2: Continuous Mode with Selected Statistics

The following specifies six equal sized categories within the salary range of 1000 to
4000. Note that the Frequencies output does not list the range from 1000 to 1500 because
no values in that range were encountered.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS SALARY
. PERFORM PROCS
. END REC
END CASE
FREQUENCIES CONTINUOUS = SALARY (6 , 1000 , 4000) /
 FILENAME = FREQS2.TXT /
 STATISTICS = MEAN MEDIAN STDV MIN MAX /
END RETRIEVAL
Output:
SALARY Current monthly salary

LOWER UPPER ABSOLUTE RELATIVE CUMULATIVE
LIMIT LIMIT FREQUENCY FREQUENCY REL FREQ
 (PERCENT) (PERCENT)

1500.00 2000.00 1.00 5.00 5.00
2000.00 2500.00 6.00 30.00 35.00
2500.00 3000.00 6.00 30.00 65.00
3000.00 3500.00 5.00 25.00 90.00
3500.00 4000.00 2.00 10.00 100.00
 ---------- ------- -------
 TOTAL 20.00 100.00 100.00

STATISTICS.....

MAXIMUM 4000.000 MINIMUM 1650.000
MEAN 2780.000 STDDEV 573.631
MEDIAN 2750.000

VALID OBSERVATIONS 20
MISSING OBSERVATIONS 0
REJECTED OBSERVATIONS 0

Example 3: General Mode with No Statistics

Note that the output of this is identical to that of the first example, specified with the
INTEGER clause. Given a choice of modes, INTEGER is slightly more efficient than
GENERAL.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE

SIR/XS PQL Procedures 40

. GET VARS EDUC

. PERFORM PROCS

. END REC
END CASE
FREQUENCIES GENERAL = EDUC (6) /
 FILENAME = FREQS3.TXT /
 TITLE = 'Education Levels in Company' /
END RETRIEVAL
Output:
Education Levels in Company

EDUC Education level

VALUE LABEL VALUE ABSOLUTE RELATIVE CUMULATIVE
 FREQUENCY FREQUENCY REL FREQ
 (PERCENT) (PERCENT)

Elementary 1.00 3.00 15.00 15.00
High School 2.00 2.00 10.00 25.00
Some University 3.00 4.00 20.00 45.00
B.Sc. or B.A. 4.00 6.00 30.00 75.00
M.S. 5.00 3.00 15.00 90.00
Ph.D. 6.00 2.00 10.00 100.00
 ---------- ------- -------
 TOTAL 20.00 100.00 100.00

STATISTICS.....

VALID OBSERVATIONS 20
MISSING OBSERVATIONS 0
REJECTED OBSERVATIONS 0

Example 4: Interval Mode for Unequal Sized Categories

RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS SALARY
. PERFORM PROCS
. END REC
END CASE
FREQUENCIES INTERVALS =SALARY (1000,2000,3000,3500,4000) /
 FILENAME = FREQS4.TXT /
END RETRIEVAL
Output:
SALARY Current monthly salary

LOWER UPPER ABSOLUTE RELATIVE CUMULATIVE
LIMIT LIMIT FREQUENCY FREQUENCY RELFREQ
 (PERCENT) (PERCENT)

1000.00 2000.00 1.00 5.00 5.00
2000.00 3000.00 12.00 60.00 65.00
3000.00 3500.00 5.00 25.00 90.00

SIR/XS PQL Procedures 41

3500.00 4000.00 2.00 10.00 100.00
 ---------- ------- -------
 TOTAL 20.00 100.00 100.00
STATISTICS....

VALID OBSERVATIONS 20
MISSING OBSERVATIONS 0
REJECTED OBSERVATIONS 0

Example 5: A Histogram

RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS EDUC
. PERFORM PROCS
. END REC
END CASE
FREQUENCIES INTEGER = EDUC(1 , 6) /
 FILENAME = FREQS5.TXT /
 HISTOGRAM /
END RETRIEVAL
Output:
EDUC Education level

VALUE LABEL VALUE ABSOLUTE RELATIVE CUMULATIVE
 FREQUENCY FREQUENCY REL FREQ
 (PERCENT) (PERCENT)

Elementary 1.00 3.00 15.00 15.00
High School 2.00 2.00 10.00 25.00
Some University 3.00 4.00 20.00 45.00
B.Sc. or B.A. 4.00 6.00 30.00 75.00
M.S. 5.00 3.00 15.00 90.00
Ph.D. 6.00 2.00 10.00 100.00
 ---------- ------- -------
 TOTAL 20.00 100.00 100.00

EDUC Education level

VALUE
 I
 1.00 *******************************
 I Elementary
 I (3.00) 15.00PCT
 I
 2.00 *********************
 I High School
 I (2.00)10.00 PCT
 I
 3.00 ***
 I Some University
 I (4.00) 20.00 PCT
 I
 4.00 ***
 I B.Sc. or B.A.

SIR/XS PQL Procedures 42

 I (6.00) 30.00 PCT
 I
 5.00 *******************************
 I M.S.
 I (3.00) 15.00 PCT
 I
 6.00 *********************
 I Ph.D.
 I (2.00) 10.00PCT
 I
 I
 I....I....I....I....I....I....I....I....I....I....I
FREQUENCY 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

STATISTICS.....

VALID OBSERVATIONS 20
MISSING OBSERVATIONS 0
REJECTED OBSERVATIONS 0

SIR/XS PQL Procedures 43

GRAPH SAVE FILE

GRAPH SAVE FILE OBS = [var| function(var)] [, ...]
 ROW = var ['row title']
 [(i1 [,i2 [,i3]])]
 ['value labels' 'xxxx' ...]
 [BOOLEAN = (log_expression)]
 [COL = var ['col title']
 [(i1 [,i2 [,i3]])]
 ['value labels' 'xxxx' ...]]
 [FILENAME = filename]
 [MULTIPLE]
 [SAMPLE = sample]
 [SUBTITLE = 'subtitle']
 [TITLE = 'title']
The GRAPH SAVE FILE procedure produces a text file suitable for input to the SIRGRAPH
module. The procedure can run on any supported hardware platform but SIRGRAPH itself
is Windows based.

The resulting graph can be two-dimensional, stacked two dimensional or three
dimensional.
A two dimensional graph has an observation variable to control the magnitude of each
graphed item and a row control variable with discrete values that determines the number
of categories graphed.
A stacked two dimensional graph has multiple values in each category. These may be
separate observation variables or may represent the different values from a second control
variable.
A three dimensional graph has a row and a column control variable that determine the
number of categories and an observation variable that controls the magnitude of each
category.

OBS This is required. Specifies the variable that is used to calculate
totals, averages or other values that then translates into the
magnitude on the graph e.g. the height of individual bars in the
chart.

The default magnitude for numeric observation variables is the
total or SUM. The default for string observation variables is COUNT
that adds 1 to the magnitude for each non-missing value. Specify
either the name of a variable or the name of a function with the
name of the variable in parentheses. e.g. OBS=SALARY or
OBS=COUNT(SALARY). The functions are:

SIR/XS PQL Procedures 44

• AVG - Average value (AVERAGE & MEAN are synonyms)
• CNT - Count of non-missing values (COUNT is a synonym)
• MAX - Maximum Value (MAXIMUM is a synonym)
• MIN - Minimum Value (MINIMUM is a synonym)
• PCCOUNT - Percentage of the column using counts
• PCSUM - Percentage of the column using totals
• PRCOUNT - Percentage of the row using counts
• PRSUM - Percentage of the row using totals
• PTCOUNT - Percentage of the total using counts
• PTSUM - Percentage of the total using totals
• SUM - Sum of values (TOTAL is a synonym)

Multiple observation variables can be specified that generate a
stacked 2D graph (cannot specify a COL clause with multiple
observation variables).

ROW This is required. Specifies a row control variable. The values of
this variable determine the number of rows on the graph. The
variable can either have discrete values specified as part of the
variable definition or you can specify the values in this clause. The
variable may be numeric or a short string (up to eight characters).

The default row title is the variable label or variable name if there
is no label. Specify a row title in quotes immediately after the
variable name if required.

If the variable does not have defined specific values or you want to
specify different categories, specify the values in parentheses.
One number, (n), specifies the number of cells that have the first n
values from the variable (cannot be used for floating point
variables).
Two numbers, (min,max), specify the integer values between min
and max are the number of cells (can only be used for integers).
Three numbers, (min,max,interval), specify values between min
and max in interval sizes e.g. (1000,6000,500) produces 10 rows.
This must be specified for floating point control variables and
cannot be used for strings.

The individual row values have labels. By default these are taken
from the value labels or categorical string values. Specify value
labels on the command to label specified category values or to use
instead of the defaults. Enclose each label in quotes.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SIR/XS PQL Procedures 45

COL Specifies a column control variable. If specified, must not precede
the ROW parameter. Cannot be used with multiple observation
variables.

The values of this variable determine the number of columns on
the graph unless the MULTIPLE option is specified (see below).
The variable can either have discrete values specified as part of the
variable definition or you can specify the values in this clause. The
variable may be numeric or a short string (up to eight characters).

The default column title is the variable label or variable name if
there is no label. Specify a column title in quotes immediately
after the variable name if required.

If the variable does not have defined specific values or you want to
specify different categories, specify the values in parentheses.
One number, (n), specifies the number of cells that have the first n
values from the variable (cannot be used for floating point
variables).
Two numbers, (min,max), specify the integer values between min
and max are the number of cells (can only be used for integers).
Three numbers, (min,max,interval), specify values between min
and max in interval sizes e.g. (1000,6000,500) produces 10 rows.
This must be specified for floating point control variables and
cannot be used for strings.

The individual column values have labels. By default these are
taken from the value labels or categorical string values. Specify
value labels on the command to label specified category values or
to use instead of the defaults. Enclose each label in quotes.

FILENAME Specify the filename created by the procedure.
If no FILENAME clause is specified, the output is written to a
default file sirgraph.srg.

MULTIPLE The keyword MULTIPLE specifies that a stacked 2D graph using
the column variable is produced rather than a 3D graph.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

SUBTITLE Specifies the heading text on the graph footer. Enclose the text in
quotes. If SUBTITLE is not used, the subtitle is "Created by SIR/XS
on DATE at TIME".

TITLE Specifies the text on the graph title. Enclose the text in quotes. If

SIR/XS PQL Procedures 46

TITLE is not used, the title is the variable label or name when no
label.

See examples.

SIR/XS PQL Procedures 47

Graph Examples

Example 1

Produces an analysis of the number of employees by Education Level (EDUC).
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS EDUC
. PERFORM PROCS
. END REC
END CASE
GRAPH SAVE FILE OBS = COUNT(EDUC) /
 ROW = EDUC /
 FILENAME = GRAPH1.SRG /
 TITLE = 'Education Levels in Company'
END RETRIEVAL
On completion of the program, the file GRAPH1.SRG contains text that can be viewed
with
ESCAPE 'sirgraph.exe GRAPH1.srg'
which looks something like:

Example 2

SIR/XS PQL Procedures 48

Produces an analysis of salary by current position (CURRPOS).
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS SALARY CURRPOS
. PERFORM PROCS
. END REC
END CASE
GRAPH SAVE FILE OBS = SALARY /
 ROW = CURRPOS /
 FILENAME = GRAPH2.SRG /
 TITLE = 'Total salary by position in Company'
END RETRIEVAL
On completion of the program, the file GRAPH2.SRG contains text that can be viewed
with
ESCAPE 'sirgraph.exe GRAPH2.srg'
which looks something like:

Example 3

Produces an analysis of percentage of salary by gender.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS SALARY GENDER
. PERFORM PROCS

SIR/XS PQL Procedures 49

. END REC
END CASE
GRAPH SAVE FILE OBS = PTSUM(SALARY) /
 ROW = GENDER /
 FILENAME = GRAPH3.SRG /
 TITLE = 'Salary percentage by Gender'
END RETRIEVAL
On completion of the program, the file GRAPH2.SRG contains text which can be viewed
with
ESCAPE 'sirgraph.exe GRAPH3.srg'
You might then use some of the options in sirgraph to produce a chart something like:

Example 4

Produces an analysis of percentage of salary by gender by education.
RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS SALARY GENDER EDUC
. PERFORM PROCS
. END REC
END CASE
GRAPH SAVE FILE OBS = PRSUM(SALARY) /
 ROW = GENDER /
 COL = EDUC /
 FILENAME = GRAPH4.SRG /
 TITLE = 'Salary percentage by Gender & Education'

SIR/XS PQL Procedures 50

END RETRIEVAL
On completion of the program, the file GRAPH2.SRG contains text which can be viewed
with
ESCAPE 'sirgraph.exe GRAPH4.srg'
You might then use some of the options in sirgraph to produce a chart something like:

SIR/XS PQL Procedures 51

MINITAB Save File
The MINITAB SAVE FILE procedure creates a text file in MINITAB® external format that
contains data and schema information produced in a VisualPQL program. MINITAB is a
statistical package that runs on a number of different types of computers.

MINITAB SAVE FILE EXPORT = filename
 [VARIABLES = var_list | ALL]
 [SORT = [(n)] variable [(A)|(D)], ...]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction]
EXPORT Specifies the filename created by the procedure.
VARIABLES Specifies the procedure variables written to the output file. Specify

the variables in the order they are to appear in the output file. If
this option is not specified, the default variables are output.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

Example

The following example creates a MINITAB file with one record per employee and the
variables ID, GENDER, CURRPOS and SALARY. The records are sorted by Salary in
descending order.
RETRIEVAL
. PROCESS CASES
. PROCESS REC EMPLOYEE

SIR/XS PQL Procedures 52

. GET VARS ID GENDER CURRPOS SALARY

. PERFORM PROCS

. END REC

. END CASE
MINITAB SAVE FILE EXPORT = MINITAB.DAT /
 SORT = SALARY (D)
END RETRIEVAL
After the retrieval finishes, the following summary report is displayed.
MINITAB PORTABLE WORKSHEET SYNOPSIS

WRITTEN TO 'MINITAB.DAT'

NO OF ROWS 20
USER VARIABLES 5

VARIABLES IN SAVE FILE ORDER

ID
GENDER
CURRPOS
SALARY

SIR/XS PQL Procedures 53

Plot
The PLOT procedure generates a two dimensional table containing pairs of values which
are the values in those variables for each occurrence in the procedure table. This
information is written to a text file together with a set of statistics calculated from the
data. This file is then used by the sirgraph module to produce LINE or SCATTER plots.

The statistics are the results of a simple linear regression of the variables. The following
statistics are calculated:
The mean and standard deviation for each variable independently;
The correlation coefficient - r and r squared and the probability of significance of r;
The T-distribution and DF (which is two less than the number of observations).

PLOT {LINE | SCATTER} = var , var
 [FILENAME = ldi]
 [BOOLEAN = (log_expression)]
 [SAMPLE = sample]
 [SORT = [N] var [A|D], ...]
 [SUBTITLE = 'text']
 [TITLE = 'text']
 [XTITLE = 'text']
 [YTITLE = 'text']

LINE | SCATTER

Specify either LINE or SCATTER. Specify two variables to plot that
must both be numeric. The first variable is the X variable and
values go across the plot; the second variable is the Y variable and
values go up the plot.

FILENAME Specify the filename produced by the procedure.
If no filename is specified, the output is written to the default
filename sirplot.srg.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

TITLE Specifies the main title displayed at the top of the plot. Enclose the
text in quotes. If TITLE is omitted, the title is the names of the two

SIR/XS PQL Procedures 54

variables.
XTITLE Specifies a title for the x-axis displayed at the bottom of the plot.

There is no default.
YTITLE Specifies a title for the y-axis displayed vertically up the left axis

of the plot. There is no default.

Example Scattergram

Produce statistics and a scatter plot age and salary.
RETRIEVAL
. INTEGER*4 AGE
. PROCESS CASES
. PROCESS REC 1
. COMPUTE AGE = (TODAY(0) - BIRTHDAY)/365
. MOVE VAR SALARY GENDER
. PERFORM PROCS
. END PROCESS REC
. END PROCESS CASES
PLOT SCATTER = AGE, SALARY /
 FILENAME = PLOT1.srg /
 XTITLE = 'Age in Years'/
 YTITLE = 'Monthly Salary'/
END RETRIEVAL
On completion of the program, the file PLOT1.SRG contains text which can be viewed
with
ESCAPE 'sirgraph.exe plot1.srg'
which looks something like:

SIR/XS PQL Procedures 55

SIR/XS PQL Procedures 56

Quick Report
Quick Report produces reports with a minimum of specification by the user. Quick
Report offers many features including:

• automatic column headings
• automatic data formatting
• automatic totals and subtotals
• automatic layout of the report
• sorting and breakpointing

The REPORT Command

Specify a Quick Report using the REPORT command with a PRINT clause. A Full Report is
specified using the REPORT command without the PRINT clause.

Quick Report vs. SQL

Quick Report produces reports while SQL display simply outputs data in a formatted
way. Quick report can thus be used when reports need to be formatted. It can also be used
when VisualPQL features such as the computation of new variables or the calculation of
statistics are needed. It can also be simpler to use VisualPQL rather than SQL when
complex navigation of the database is required.

Quick Report vs. Full Report

Quick Report is used for reports with:

• Fixed headings and footings
• Fixed field columns
• Simple totals and subtotals
• Simple breakpointing and sorting

Full Report gives complete control over the report output. Full Report allows the use of
VisualPQL with additional commands for report formatting. Full Report requires that
each detail of the report be specified; i.e., there are no default formats, headings or totals.

Consider using the Full Report when:

• The formats for headings change during the report.
• Formatting requirements go beyond a simple column structure.
• Computations are required during report.

SIR/XS PQL Procedures 57

• Summary information is required beyond simple subtotals or totals.
• Exact control of the output format is required.

The Structure of a Quick Report

The main components of a report are specified with keywords and options on the REPORT
command. These control:

• Page Headings and Footings and Column headings.
• Detail lines displaying the data.
• Subtotal lines for sections of the report.
• Total line of grand totals.

Quick Report processes the procedure table records. If the report specifications include
SORT or BREAK options, the procedure table is sorted. As each record is processed, a
number of conditions may occur:

Page Break

REPORT keeps track of lines on a page. When the current page is full, the page footing is
printed and a new page is created. The page counter is incremented, the heading for the
new page is written and then column headers are written.

Column Break

 REPORT tracks any specified Break Variables. When the value of a break variable
changes, break actions are taken. Break actions include the printing of a subtotal line and
possibly triggering a page break.

Detail Line

Detail Line actions are taken for each record in the procedure table after any Page or
Column Break actions. Detail line actions include the printing of any specified blank
lines above the detail line, the printing of the formatted data line itself and the printing of
any specified blank lines below the detail line. Totals and subtotals are maintained.

The printing of detail lines can be suppressed.

End of Report Actions

After the last procedure table record has been dealt with, a final subtotal line (if required),
the Total Line and page footing for the last page is printed.

SIR/XS PQL Procedures 58

Syntax

Quick Report is a single command with options:

REPORT FILENAME = filename
 PRINT = {variable [(['heading' LABEL] [position]
[format])]...| ALL

 [BOOLEAN = (logical_expression)]
 [BREAK = [(n)] variable [([A|D][G][C][P]['text'])],...]
 [FOOTING = [LEFT | RIGHT | CENTER] (footing)]
 [HEADCENTER]
 [HEADING = [LEFT | RIGHT | CENTER] (heading)]
 [MISSCHAR = character]
 [NOCENTER]
 [NOCOLHEAD]
 [NODETAIL]
 [NOGROUPING]
 [NOPAGEHEAD]
 [NOPAGING]
 [NOSORT]
 [NOSUBTOTALS]
 [NOTOTALS]
 [NOUNDERCOL]
 [NOUNDERHEAD]
 [PAGEWIDTH = c]
 [PAGELENGTH = l]
 [PAGESIZE = l, c]
 [PAGELIMIT = n]
 [SAMPLE = fraction]
 [SHOWMISS]
 [SORT = [(n)] variable [(A|D)], ...]
 [SPACING = SINGLE | DOUBLE | TRIPLE
 COLHEAD (b,a)
 DETAIL (b,a)
 SUBTOTALS (b,a)
 TOTALS (b,a)]
 [SUBTOTALS = {break_var [(subtotal_var, ...)|(subtotal_var)} ...]]
 [TOTALS = variable,[('total_text')]]
 [UPPERCASE]
FILENAME Specify the filename produced by the procedure. This is a required

clause.
PRINT Specifies that this is a Quick Report. This is a required clause.

Specify the variables required. Each specified variable creates one
column from left to right in the order specified.
Heading The default heading is the variable

name.
Specify the keyword LABEL to use the
variable label.

SIR/XS PQL Procedures 59

Specify a text string in quotes to use
as the heading. For example:
PRINT = POSITION ('Job')
 If the heading does not fit within the
column, it is automatically split into
multiple lines. Specify two or more
text strings to control multiple heading
lines. The character specified between
the text strings controls how lines are
printed.
Specify a blank to force a new line.
Specify a minus sign to break the
heading if it does not fit on a line
(conditional break). The general
syntax is:
PRINT = variable ('text' [-]
'text')
Specify a plus sign (+) between two
strings to concatenate them. Use this
to specify long strings which do not fit
on a single line (strings cannot be split
across input lines).

Position The default print position for each
column is two characters to the right
of the end of the previous column. By
default, the overall report is left
justified on the page.

nT Specifies the absolute (nth) print
position. For example, 45T specifies
that the first position of the column is
in print position 45.

nX Specifies that the column is positioned
n spaces to the right of the end of the
previous column. Specify nX (n is a
number) to change the position
relative to the previous column.
For example, to print division in
column 10 and salary four columns to
the right:
PRINT = division (10T)
 salary (4X)

Format The default format is taken from the
schema. Specify a format expression
to alter this. The width of a column is
calculated from the format expression.

SIR/XS PQL Procedures 60

If the data for the column does not fit
in the specified width, a numeric
column is filled by X's and a character
column is truncated to fit.
In the format expressions below, "w"
is a number specifying the width in
columns.

Aw Specifies Alphanumeric string format.
Bw Specifies reverse string format.

Column headers and data are printed
in reverse (backwards).

Lw Specifies that Value Labels are
printed instead of the data value. If a
value has no defined label, blanks are
printed.

Iw Specifies Integer print format. Any
decimal portion of the number is
ignored.

Fw.d Specifies Floating point print format.
Use for either floating point or scaled
integers with decimal portions. "d" is
the number of decimal places.

Ew Specifies Exponential (scientific).
DATE Specifies a date in the appropriate

format. See date formats for a
complete description of date format
specifications. The width of the
column is specified by the characters
in the date format. For example:
PRINT = BIRTHDAY (DATE'Wwwwww
Mmm DD, YYYY')

TIME Specifies a time in the appropriate
format. See time formats for a
complete description of time format
specifications. The width of the
column is specified by the characters
in the time format. For example:
PRINT = TESTTIME (TIME'HH:MM:SS
PP')

D, C, P D puts a dollar sign ($) before the
numeric value.
C separates thousands with the comma
character.
P puts a percent sign (%) after the
numeric value. These can be specified

SIR/XS PQL Procedures 61

numeric value. These can be specified
in addition to other numeric format
expressions. For example:
PRINT MONEY (F9.2, D, C)

BOOLEAN Selects procedure table records. If the logical expression is true for
the record, the record is used in the report. The variable names
used in the expression must be procedure variables. For example,
to select all procedure records where SALARY is greater than or
equal to 18000:
BOOLEAN = (SALARY GE 18000)

BREAK Specifies break variables which control subtotaling. Specify the
variables in break level order, most significant first.
n Defines the number of procedure

records to be sorted. The default is the
A|D A specifies sort in ascending order;

this is the default. D specifies sort in
G Turns on grouping for the variable.

Grouping means that repeated values
C Turns on reprinting of column

headings when the variable breaks. If
P Starts a new page when this variable

breaks. By default, there is no paging

SIR/XS PQL Procedures 62

breaks. By default, there is no paging
at break points.

'text' Specifies a string printed on the
subtotal line when the variable breaks;
the default is the variable name. If the
BREAK clause is specified without a
SORT clause, the order of the break
variables defines the sorting order for
the procedure table records. If a SORT
clause is specified, its sorting order is
used. If the NOSORT keyword is
specified, no sorting occurs. For
example, to sort and break on age in
descending order within department,
with a new page for each department:
BREAK = DEPARTMENT (P) , AGE(D)

SORT Specifies the sequence of the output. n is an integer that specifies

the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

FOOTING FOOTING defines one or more lines of text printed at the bottom of
each page of the report. There is no default page footing.

The specification for headings and footings have the same
clauses:
LEFT|RIGHT|CENTER
Left, right or centre justifies the heading or footing. LEFT is
the default.
output spec
Specify the text of the heading or footing in parentheses
using the same syntax as the WRITE command.
Three system maintained variables may be used in the
specification:
DATE, for current date; TIME, for current time; and PAGE,
for current page number, are available for use in the
HEADING and FOOTING output specifications. For example:
FOOTING = CENTER ('- ' PAGE '-')

HEADCENTER Centers column headings within each column. By default, column
headings for string variables are left justified and column headings
for numeric variables are right justified.

SIR/XS PQL Procedures 63

HEADING HEADING defines one or more lines of text printed at the top of
each page of the report. The default heading is the date, the time
and the page number. Suppress the default heading with the
NOHEADING keyword. If the NOPAGING keyword is specified, no
headings or footings are produced.
The specification for headings and footings have the same clauses:
LEFT|RIGHT|CENTER
Left, right or centre justifies the heading or footing. LEFT is the
default.
output spec
Specify the text of the heading or footing in parentheses using the
same syntax as the WRITE command.
Three system maintained variables may be used in the
specification:
DATE, for current date; TIME, for current time; and PAGE, for
current page number, are available for use in the HEADING and
FOOTING output specifications. For example:
HEADING = ('Employee Report', 2X, DATE,
 60T, 'Page ' PAGE(I3)) /

MISSCHAR Specifies the character printed for fields containing missing
values. The default character is the asterisk (*). The specified
character may be any character (including blank), except the slash
(/) and comma (,).

NOCENTER Left justifies the report. By default, when output to a file, the
report is centred. (If output to CONSOL, the report is left-justified.)
Specify NOCENTER when positioning individual columns using nT
(tab).

NOCOLHEAD Turns off column heading printing at all break points. By default,
column headings are printed at break points. If NOCOLHEAD is
specified, specifying individual column headings on the BREAK
option, results in a compilation error.

NODETAIL Turns off the printing of detail lines, only subtotal lines are
printed. By default, detail lines are printed.

NOGROUPING Turns off grouping for all break variables. By default, grouping is
on.

NOPAGEHEAD Turns off printing of page headings. By default, page headings are
printed.

NOPAGING Suppresses all paging. By default, page ejects are performed when
a page is full.

NOSORT Turns off sorting of procedure records. By default, the records are
sorted when a BREAK or SORT clause is specified.

NOSUBTOTALS Turns off subtotals. By default, subtotals are calculated and
printed for numeric variables when a BREAK clause is specified.

SIR/XS PQL Procedures 64

NOTOTALS Turns off grand totals. By default, grand totals are calculated and
printed for numeric variables.

NOUNDERCOL Turns off underlining of the detail line above subtotals. By default,
a detail line above a subtotal is underlined.

NOUNDERHEAD Turns off underlining of column headings. By default, column
headings are underlined. Underlines by minus (-) printed one line
below the text.

PAGEWIDTH=n Sets the number of print characters per line. The default is to make
the report as wide as necessary.

PAGELENGTH=n Sets the number of print lines per page. The default is 60 lines per
page. The NOEJECT keyword suppresses paging entirely.

PAGESIZE=l,c Sets the pagelength and pagewidth in a single statement. l is the
number of lines; c is the number of columns. If the required width
of a report exceeds the page width, a compilation error message is
issued and the program is not executed.

PAGELIMIT=n Sets the maximum number of pages produced. When this limit is
reached, the report is terminated.

SAMPLE Specifies that a random sample of the procedure table records are
used by the REPORT.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

SHOWMISS Specifies that a variable's original missing values are printed for
fields containing missing values. The default character is the
asterisk (*). Missing values are always excluded from totals - this
option only affects printing.

SORT Specifies the sorting order for the report.
n is an integer that specifies the maximum number of records to be
sorted. The default for this parameter is either the number of
records in the database or the value specified in the sortn
parameter and need only be specified if the number of records in
the procedure table is greater than the default. The procedure table
is sorted by the specified variables in variable list order. A variable
name followed by (A) or (D) specifies that for that variable the
sort is in Ascending order (the default) or in Descending order.
For example, to sort on NAME in ascending order and SALARY in
descending order:
SORT = NAME SALARY (D)

SPACING Controls the spacing between lines of the report.

SINGLE Single spaces detail lines. This is the

default.

SIR/XS PQL Procedures 65

DOUBLE Double space detail lines. Each detail
line is followed by one blank line.

TRIPLE Triple space detail lines. Each detail
line is followed by two blank lines.

COLHEAD Specifies the number of blank lines
printed before and after column
headers.

DETAIL Specifies the number of blank lines
printed before and after each detail
section.

SUBTOTALS Specifies the number of blank lines
printed before and after each subtotal
line.

TOTALS Specifies the number of blank lines
printed before and after each total line.
The default spacing options are:

SPACING = SINGLE
 COLHEAD (1
, 0)
 DETAIL (0
, 0)
 SUBTOTALS (0
, 1)
 TOTALS (0
, 1)

SUBTOTALS Specifies variables to subtotal. The BREAK clause also specifies
when subtotals are printed. By default, all numeric variables, that
do not appear in the BREAK clause, are subtotaled.
Two types of variables can be specified on the subtotal clause.
Break variables, i.e. the variables which control the printing of the
subtotals, and subtotal variables, i.e. variables which are added up
to calculate the subtotals. Differentiate these by the use of
parentheses (). Specify break variables outside the parentheses;
specify subtotal variables inside the parentheses. Either set of
variables may be omitted. This gives rise to three possible formats
of the SUBTOTALS clause, one with just break variables, the second
with just subtotal variables and the third with both:
SUBTOTALS = break variable, ...
Specify break variables to determine which breaks cause subtotal
printing. By default, all breaks print subtotals.
SUBTOTALS = (subtotal variable, ...)
Specify subtotal variables to determine which numeric variables
are subtotaled. By default, all numeric variables which are not
break variables are subtotaled. Subtotals cannot be calculated for
variables which cause breaks. Subtotals are printed at every

SIR/XS PQL Procedures 66

breakpoint. SUBTOTALS = break variable1 (subtotal
variable1, ...)
break variable2 (subtotal variable2, ...) ...
Specify both break variables and subtotal variables to determine
which subtotals print at which breaks. Subtotals in the
parenthesised list are printed when the corresponding break
variable changes value. For example, subtotals for the variables
GROSS and NET are calculated and printed when STATE changes
value; subtotals for the variable TAXES are calculated and printed
when COUNTY changes values.
SUBTOTALS = STATE (GROSS NET)
 COUNTY (TAXES)

TOTALS Specifies grand totals. By default, grand totals are printed for all
numeric variables. The variable list specifies numeric variables
which are then totaled.
To suppress totals, specify the NOTOTALS keyword.
The 'total text' string is optional and defines the text printed to the
left of the grand totals. If this string is not specified, the default
text 'TOTAL' is printed.
For example, to calculate totals for GROSS and NET and print them
with the label 'Grand Totals'.
TOTALS = GROSS NET ('Grand Totals')

UPPERCASE Converts all text in the report to uppercase. By default, both upper
and lower case are produced.

See Examples.

SIR/XS PQL Procedures 67

Examples

Example 1: Standard Program

The following VisualPQL program is used for all the examples in this section. The
REPORT specifications use the procedure table produced by this program.

RETRIEVAL
. PROCESS CASES
. RECORD IS EMPLOYEE
C Find Last Name
. COMPUTE REVNAME = TRIMLR(REVERSE (NAME))
. COMPUTE LEN = ABS (SRST(REVNAME,' '))
. COMPUTE LNAME = REVERSE(SBST(REVNAME,1,LEN-1)
. END RECORD IS
. PROCESS REC OCCUP
. GET VARS POSITION STARTDAT STARTSAL DIVISION
. PERFORM PROCS | copy variables to proc table
. END PROCESS REC
. END CASES
REPORT . . .

END RETRIEVAL

Example 2: A Simple Report

This simple report uses most of the defaults provided by the Quick Report Procedure.
The page is made narrower than the default 136 and totals are suppressed.

REPORT FILENAME = REPORT1.REP
 PRINT = LNAME DIVISION POSITION STARTDAT STARTSAL
 PAGESIZE = 60 , 79
 NOTOTALS

Dec 27, 2005 10:07:25 Page 1

LNAME DIVISION POSITION STARTDAT STARTSAL
--------------- -------- -------- -------- --------
Jones 1 4 02 10 80 1500
Jones 1 5 10 15 81 2000
Arblaster 1 6 01 18 80 2500
Black 1 9 10 13 79 2750
Black 1 10 02 18 81 3000
Brown 1 14 10 13 77 3200
Green 1 10 11 04 79 3000
Safer 1 9 05 07 79 2000
Safer 1 10 03 08 81 2500
West 1 12 07 10 81 2200
Moore 1 13 01 01 74 2200

SIR/XS PQL Procedures 68

Example 3: Value Labels, Headings and Footings

This example specifies that value labels for DIVISION and POSITION are printed rather
than their numeric values. STARTSAL is formatted as money with decimal digits, dollar
signs and commas to separate thousands. The page number is displayed in the footing and
a page header is defined.

REPORT FILENAME = REPORT2.REP
 PRINT = LNAME (A12)
 DIVISION (L10)
 POSITION (L10)
 STARTDAT
 STARTSAL (F10.2 , D , C)
 HEADING =('Employee Jobs and Starting Salaries')
 FOOTING = CENTER ('- ' PAGE'-')
 PAGESIZE = 60 , 79

Employee Jobs and Starting Salaries

NAME DIVISION POSITION STARTDAT STARTSAL
----------- -------- --------- -------- ----------
Jones Chemical Laborer 02 10 80 $1,500.00
Jones Chemical Technician 10 15 81 $2,000.00
Arblaster Chemical SnrTechn 01 18 80 $2,500.00
Black Chemical Chemist 10 13 79 $2,750.00
Hiller Corporate Sr Engin 01 12 75 $2,600.00
.......................
.......................
Nugent Corporate Sr Accoun 07 03 78 $2,300.00
Neuman Corporate Engineer 04 12 79 $2,000.00
Pau Manufactur Sr Techn 10 10 78 $2,700.00
Fauntleroy Manufactur Sr Secre 06 11 80 $2,000.00
Josephine Manufactur Director 01 10 76 $3,000.00
Rabinowitz Corporate President 01 01 73 $4,000.00

 TOTAL $75,550.00
- 1 -

Example 4: Break Variables and Column Headers

This example creates a report section for each division in the company by breaking on
division. Each division section begins on a new page. Note the use of an expression in the
HEADING clause that causes the division value label to appear in the page header. The
column headers have also been customised.

REPORT FILENAME = REPORT3.REP
 PRINT = DIVISION (L13 , 'Division')
 LNAME (A13 , 'Employee' 'Name')
 POSITION (L16 , 'Job' 'Title')

SIR/XS PQL Procedures 69

 STARTDAT (DATE 'MM/DD/YY' , 'Job Starting Date')
 STARTSAL (F10.2 , D , C , 'Starting' 'Salary')
 BREAK = DIVISION ('Division Totals' , P)
 TOTALS = STARTSAL ('Company Totals')
 HEADING = ([TRIM(VALLAB(DIVISION))
 + ' Division Job History'])
 FOOTING = CENTER ('- ' PAGE '-')
 PAGESIZE = 60 , 79
Chemical Division Job History

 Job
 Employee Job Starting Starting
Division Name Title Date Salary
--------- --------- --------- --------- ---------
Chemical Jones Laborer 02/10/80 $1,500.00
 Jones Technician 10/15/81 $2,000.00
 Arblaster SrTechnician 01/18/80 $2,500.00
 Black Chemist 10/13/79 $2,750.00
 Black Sr Chemist 02/18/81 $3,000.00
 Brown Sr Administr 10/13/77 $3,200.00
 Green Sr Chemist 11/04/79 $3,000.00
 Safer Chemist 05/07/79 $2,000.00
 Safer Sr Chemist 03/08/81 $2,500.00
 West Sr Engineer 07/10/81 $2,200.00
 Moore Administrator 01/01/74 $2,200.00
 Moore Sr Administr 12/05/75 $2,700.00
 Moore Director 01/07/77 $3,500.00

Division Totals $33,050.00

- 1 -
................
................
................
Company Totals $75,550.00

Example 5: Two Break Variables and Suppressed Subtotals

This example breaks on POSITION within DIVISION but suppress subtotals and repeated
column header for POSITION to get grouping. The page heading is centred.

REPORT FILENAME = REPORT4.REP
 PRINT = DIVISION (L10 , 'Division')
 POSITION (L10 , 'Job' 'Title')
 LNAME(A12 , 'Employee' 'Name')
 STARTDAT (DATE'MM/DD/YY','Job'-'Starting'-'Date')
 STARTSAL (F10.2 , D , C ,'Starting' 'Salary')
 BREAK = DIVISION ('Division Totals' , P , C)
 POSITION
 SUBTOTALS= DIVISION (STARTSAL)
 TOTALS = STARTSAL('Company Totals')
 HEADING = CENTER([TRIM(VALLAB(DIVISION)) +
 ' Division Job History'])
 FOOTING = CENTER ('- ' PAGE '-')

SIR/XS PQL Procedures 70

 PAGESIZE = 60 , 79

 Chemical Division Job History

 Job
 Job Employee Starting Starting
Division Title Name Date Salary
-------- ---------- ------------ -------- ----------
Chemical Laborer Jones 02/10/80 $1,500.00
 Technician Jones 10/15/81 $2,000.00
 Arblaster 01/18/80 $2,500.00
 Chemist Black 10/13/79 $2,750.00
 Safer 05/07/79 $2,000.00
 West 02/18/81 $3,000.00
 Green 11/04/79 $3,000.00
 Safer 03/08/81 $2,500.00
 Sr Enginee West 07/10/81 $2,200.00
 Administra Moore 01/01/74 $2,200.00
 Sr Adminis Brown 10/13/77 $3,200.00
 Moore 12/05/75 $2,700.00
 Director Moore 01/07/77 $3,500.00
Division Totals $33,050.00
 - 1 -
...........
...........

Company Totals $75,550.00

SIR/XS PQL Procedures 71

Full Report
The Full Report procedure offers the facilities of VisualPQL within a structure provided
by additional report processing commands.

Full Report differs from other procedures in that it is specified with a set of commands
rather than a single command. The report specification follows the first part of the
program as do the other VisualPQL Procedures.

In contrast to Quick Report, Full Report gives precise control over the program logic and
the structure and appearance of the report. Full Report is used when branched reports are
required or computations beyond subtotals and totals are needed. It is also used when
output formats other than columns are needed and when different sections of the report
have different formats.

A Full Report procedure starts with the REPORT command without the PRINT option,
and ends with an END REPORT command. All commands from REPORT to END REPORT
are a single REPORT procedure. A single program may include an unlimited number of
REPORT procedures. Output from each report procedure is written to a separate file.

As the report executes, each record in the procedure table is processed. The values in any
given procedure table record are set at the time the PERFORM PROCS command copies the
local variables to the procedure table. Values in the procedure table cannot be updated in
the procedure. New variables (variables that were not used before the report) can be
created and used as required.

If multiple report procedures are specified in one program, the local variables used in one
are not available for update in subsequent procedures. In other words, the locally defined
variables in the first report become procedure variables in subsequent reports and cannot
be modified. If referenced, these contain the last value assigned.

Specify a BEFORE REPORT or AFTER REPORT to create blocks of commands that are
executed before or after a report. If any new local variables are required these are
typically declared in the BEFORE REPORT block using any of the standard PQL variable
definition features.

The key structuring in a report is Break Levels. Breaks are triggered by the change in
value of a named variable and determine the appropriate processing for that condition. If
a break level block is specified without a variable, it is actioned for every record.

Commands are further broken into Action Blocks. The action blocks identify sets of
commands executed within a break level for particular conditions such as when the break

SIR/XS PQL Procedures 72

level initially happens, for every record in the break level and at the end of the break
level.

Once the procedure has identified the appropriate block to execute, it executes these
standard VisualPQL commands. The primary output for producing a report is the PQL
WRITE command. Every detail line that appears in the final report gets there because a
WRITE command specified it.

Page Breaks

REPORT tracks how full a page is and performs page breaks. The PAGE EJECT command
also causes a new page.

One type of action block, the PAGE BLOCK specifies the commands to be executed
when there is a page break. When a page break occurs, all specified page blocks in all
levels are executed.

The HEADING, HEADING BLOCK, FOOTING or FOOTING BLOCK commands
specify the headings or footings which are output when a page break occurs. HEADING
BLOCK or FOOTING BLOCK define multiple lines, HEADING or FOOTING define a single line.

These commands are executed according to the flow of control and may alter the
heading, but the output is not written until the page break occurs. If the heading or
footing is only defined once, the recommended place for these blocks is in the BEFORE
REPORT block of commands.

The VisualPQL Subset for Full Report

All VisualPQL commands and functions may be used in full report except those dealing
with database and table processing (case, record and row commands) and those using
subroutines and subprocedures. The excluded commands are:

• Database commands including PROCESS CASE, CASE IS, PROCESS REC,
RECORD IS;

• Tabfile commands including PROCESS ROW, ROW IS;
• GET VARS and
• PUT VARS;
• PERFORM PROCS
• SUBPROCEDURE,
• EXECUTE SUBPROCEDURE and
• EXECUTE SUBROUTINE;
• database functions
• PQL Procedures

SIR/XS PQL Procedures 73

Syntax

The syntax for the REPORT command is:

REPORT FILENAME = filename
 [BOOLEAN = (logical condition)]
 [MISSCHAR = char]
 [PAGESIZE = lines[,chars]]
 [SAMPLE = fraction]
 [SHOWMISS]
 [SORT = [(n)] varname [A|D]...]

REPORT, without the PRINT option, specifies the full report procedure.

FILENAME Specify the filename produced by the procedure. This is a required
clause.

BOOLEAN Selects procedure table records. If the logical expression is true for
the record, the record is used in the report. The variable names
used in the expression must be procedure variables.

MISSCHAR Specifies the character printed for variables having missing values.
The default is an asterisk (*). The specified character may be any
character including blank, except the slash (/) or comma (,).

PAGESIZE Sets the page length and page width of the Report output file. The
default page size is 60 lines per page and 136 print positions
(characters) per line.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

SHOWMISS Specifies that a variable's original missing values are printed for
fields containing missing values. The default character is the
asterisk (*). Missing values are always excluded from totals - this
option only affects printing.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in

SIR/XS PQL Procedures 74

variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

For example:

REPORT FILENAME = REPORT1.LIS /
 SORT = GENDER /
 PAGESIZE = 60,132

SIR/XS PQL Procedures 75

AFTER REPORT
AFTER REPORT

Initiates a block of commands executed once at the end of the report procedure. If this
command is used, it must be the last report block in the report specification.

AFTER REPORT is typically used to print report summary information such as grand totals
and other statistics.

It is not recommended practice to reference procedure variables in this block. If
procedure variables are referenced, then, if the report contained a SORT clause, these
contain the last record in the procedure table. If the report does not contain a SORT, these
contain the last values put in by the main body of the program.

SIR/XS PQL Procedures 76

AT END BLOCK
AT END BLOCK

Initiates a block of commands executed when a break condition is triggered, before the
next INITIAL BLOCK is executed. It is also executed after the last record has been
processed.

When an AT END BLOCK is executed, the old procedure table record prior to the break
condition is current. It is not recommended practice to reference procedure records in the
AT END BLOCK. If a value from a procedure variable is needed, compute the value into a
report variable in either the INITIAL BLOCK or the DETAIL BLOCK.

If multiple AT END BLOCKs along a report path are triggered by higher level break
conditions, all of the AT END BLOCKs are executed in reverse order, from highest
numbered break level outwards.

SIR/XS PQL Procedures 77

BEFORE REPORT
BEFORE REPORT

BEFORE REPORT initiates a block of commands executed once at the beginning of the
report. The block is terminated by the first BREAK LEVEL command. If BEFORE REPORT is
specified, it must be the first command following REPORT. The first procedure table
record is available in the BEFORE REPORT block. BEFORE REPORT is used to:

• Declare report variables
• Initialise report variables such as totals
• Define report page headings and footings
• Print a report cover page

For example:

REPORT FILENAME = 'EXAMPLE.REP' PAGESIZE = 66,80
BEFORE REPORT
. STRING * 80 TITLE FOOTLINE HEADLINE
. INTEGER SALTOTAL SALCOUNT
. SET TITLE FOOTLINE HEADLINE ('')
. SET SALTOTAL SALCOUNT (0)
. HEADING BLOCK 2
. COMPUTE HEADLINE = 'Salary Report'
. WRITE HEADLINE
. COMPUTE HEADLINE = DATEC(TODAY(0) , ' MM/DD/YY')
. WRITE HEADLINE
. END HEADING BLOCK
. FOOTING 37T 'Page ' PAGE
. PAGE EJECT
BREAK LEVEL 1
..........

SIR/XS PQL Procedures 78

BLANK LINES
BLANK LINES n

Skips the specified number of blank lines. Blank lines specified by this command do not
extend across pages. If the command causes a page break, counters are reset and the new
page produced. In contrast, the WRITE command produces physical blank lines which do
span pages.

SIR/XS PQL Procedures 79

BREAK LEVEL

BREAK LEVEL {break_level [,break varname]} |
 {break_level.identifier (condition)}

BREAK LEVEL defines a break condition and starts the block of commands executed when
the condition is true. End the block of commands with the END BREAK LEVEL
command. Every report has at least one break level and can have as many as necessary.
Multiple break levels are defined hierarchically and are nested within each other. Each
break level is uniquely identified with a number which increases as more deeply nested
levels are defined. That is the highest level is 1, the next is 2, etc.

A break at a level causes breaks at all lower levels. The first record triggers the top level
break.

It is possible to specify a logical break condition on the command. This creates a report
that can have different formats depending on the data values. The CONNECT TO
command can be used to execute a lower level break without having to respecify it in
every logical branch.

The ON ERROR command is equivalent to a break level command and deals with
records not matching any other logical break condition.

For each break level, specify Action Block(s) which contain commands that are executed
when the break condition is encountered. Each action block command initiates a block of
commands that is ended by another action block command or by the end of the break
level. If an action block is not specified, commands in the break level are considered to
be in a detail block.

The four action blocks are:

INITIAL BLOCK which is executed when the break initially happens.

PAGE BLOCK which is executed when a page break happens.

DETAIL BLOCK which is executed for every record in the break level.

SIR/XS PQL Procedures 80

AT END BLOCK which is executed at the end of the break.

Simple Break

A simple break is specified with the following syntax:

BREAK LEVEL level [,break varname]

A simple break is triggered by a change in the value of the named variable from one
procedure table record to the next. For example:

REPORT SORT = GENDER AGE
BREAK LEVEL 1, GENDER
BREAK LEVEL 2, AGE

SIR/XS PQL Procedures 81

Conditional Break

 Conditional breaks allow specification of different actions that depend on the value of
the break variable. Conditional breaks occur when the value changes to a particular value,
as opposed to simple breaks which occur whenever the value changes. This branch of the
break level is executed when the condition is true. For example, different report formats
might be produced for males as opposed to females.

Other break levels (either simple or conditional) may be defined within conditional break
levels. Each procedure table record that matches the specified condition follows the path
of break levels nested within it. Typically, this means that a detail block is defined within
each path.

Once a conditional break is specified, specify the entire branch, including any more
deeply nested break levels, before specifying other conditional breaks at the original
level. When specifying conditional break levels, specify a branch for all possibilities.

Use the ON ERROR command to specify the path to take for any unanticipated
conditions.

A conditional break has additional syntax. Multiple conditions specify the same level,
and the level is further qualified by a condition identifier. which is a number following
the level, separated by a period. The break level is initiated by the specified condition
being met. Specify the condition in parentheses. For example:

BREAK LEVEL 1.1 (GENDER = 1)
BREAK LEVEL 1.2 (GENDER = 2)

A conditional break creates a branching structure which may have further lower levels.
These must have unique level numbers. Instead of additional level numbers, lower level
simple breaks can qualify the level number with from one to three characters. These have
no meaning other than as a label. The level number determines the level. For example:

BREAK LEVEL 1.1 (GENDER = 1)
BREAK LEVEL 2A AGE
BREAK LEVEL 1.2 (GENDER = 2)
BREAK LEVEL 2B AGE

Any conditional lower level breaks must use the level.identifier (N.n) syntax.

SIR/XS PQL Procedures 82

CONNECT TO
CONNECT TO level.condition_ident

CONNECT TO specifies that a BREAK LEVEL in another branch is executed at that point. The
BREAK LEVEL referenced on the CONNECT TO must have been defined previously and
must be a lower level i.e have a numerically higher number.

Complex branched reports frequently converge at some lower level, for example, the
specifications for level 4 detail blocks might be identical. Respecifying identical blocks
in different paths is avoided by using CONNECT TO. For example:

BREAK LEVEL 1.1 (GENDER = 1)
BREAK LEVEL 2.1 (AGE LT 18)
..... commands
BREAK LEVEL 2.2 (AGE GE 18)
..... commands
BREAK LEVEL 1.2 (GENDER = 2)
BREAK LEVEL 2.3 (AGE LT 18)
..... commands
BREAK LEVEL 2.4 (AGE GE 18)
CONNECT TO 2.2

SIR/XS PQL Procedures 83

DETAIL BLOCK

DETAIL BLOCK

Commands in the DETAIL BLOCK are executed once for each procedure table record. If
the block is within a conditional break level, it is only executed for records which satisfy
the condition.

A typical report has one DETAIL BLOCK in each branch of the report, though there is no
restriction on how many different break levels may contain detail blocks.

SIR/XS PQL Procedures 84

END BREAK LEVEL

END BREAK LEVEL

Defines the end of a break level.

SIR/XS PQL Procedures 85

END REPORT
END REPORT

Defines the end of the report procedure. This is not required and is specified for
readability.

SIR/XS PQL Procedures 86

FOOTING
FOOTING output_specifications

Specifies the text printed at the bottom of each report page. The text is written when the
page eject occurs. The syntax of the FOOTING command is identical to that of the WRITE
and the HEADING command. In addition, report variables and the system maintained
variables PAGE, DATE, and TIME may be used to print the current page, date and time. If
multiple FOOTING commands are executed, the output from the most recent is written. Do
not specify both a FOOTING and a FOOTING BLOCK. There is no default FOOTING. For
example:

FOOTING 70T 'Page ' PAGE

SIR/XS PQL Procedures 87

FOOTING BLOCK

FOOTING BLOCK n

Specifies a block of commands which creates a footing to be output when a page break is
encountered. The command must appear within a break level or before report block. The
block is terminated with END FOOTING BLOCK. The WRITE command specifies the
output. Typically used when the footer contains multiple lines, when logical conditions
control the footer text and when computations are performed to construct the footer. The
maximum number of output lines is specified on the command. If multiple FOOTING
BLOCK commands are executed, the output from the most recent is written. Do not specify
both a FOOTING BLOCK and a FOOTING. There is no default FOOTING BLOCK. For
example:

FOOTING BLOCK 1
. IF(PAGE EQ 1) WRITE 33T 'Company Report'
. IF(PAGE GT 1) WRITE 38T '-' PAGE '-'
END FOOTING BLOCK

SIR/XS PQL Procedures 88

HEADING

HEADING output_specifications

Specifies the text printed at the top of each report page. The text is written when the page
eject occurs. The syntax of the HEADING command is identical to that of the WRITE and
the FOOTING command. In addition, report variables and the system maintained
variables PAGE, DATE, and TIME may be used to print the current page, date and time. If
multiple HEADING commands are executed, the output from the most recent is written. Do
not specify both a HEADING and a HEADING BLOCK. There is no default HEADING. For
example:

'Company Report' 65T DATE(DATE'Mmm DD, YYYY')

SIR/XS PQL Procedures 89

HEADING BLOCK
HEADING BLOCK n

Defines a block of commands executed when a page break is encountered. The command
must appear within a break level or before report block. The block is terminated with END
HEADING BLOCK. The WRITE command specifies the output. Typically used when the
header contains multiple lines, when logical conditions control the header and when
computations are performed to construct the header text. Specify the maximum number
of output lines the block can produce on the command. If multiple HEADING BLOCK
commands are executed, the output from the most recent is written. Do not specify both a
HEADING and a HEADING BLOCK. There is no default HEADING BLOCK. For example:

HEADING BLOCK 3
. COMPUTE HEADLINE = 'Company Report'
. WRITE HEADLINE
. COMPUTE HEADLINE = DATEC (TODAY(0) , ' MM-DD-YY'
. WRITE HEADLINE
. COMPUTE HEADLINE = 'Division: ' + VALLAB(DIVISION)
. WRITE HEADLINE
END HEADING BLOCK

SIR/XS PQL Procedures 90

INITIAL BLOCK
INITIAL BLOCK

The INITIAL BLOCK is executed once each time the break condition is triggered, i.e.
when the value of the break variable changes. This block is executed for the first record.

SIR/XS PQL Procedures 91

ON ERROR
ON ERROR [level.condition]

The ON ERROR command is a special form of the BREAK LEVEL command that may be
specified once at any conditional break level. It defines actions for conditions not
explicitly covered on other BREAK LEVEL commands at that level.

A single ON ERROR block may be specified without the level identifier and it may be
specified at any point. This block is executed any time a procedure table record is not
covered by a break condition.

Typically, ON ERROR blocks contain code to display error messages and terminate the
program (with the STOP command).

If there are no ON ERROR levels of any kind within a report and an error is detected, i.e., a
procedure record is read that does not meet any of the logical conditions at a branching
point, the program and report are automatically terminated. Any output written to the
report file up to the point of such a termination is preserved.

SIR/XS PQL Procedures 92

PAGE BLOCK
PAGE BLOCK [n]

The PAGE BLOCK is executed under two conditions. It is executed on every page eject and
is also executed when the break is triggered.

A number may be specified on the PAGE BLOCK command. If the command is executed
because of the break and fewer lines than this remain on the current page, a page eject is
done. This ensures that there is room for data after printing out column headers.

Note: A page block does not cause a page break, it is executed when a page break occurs.
To force a page break, use the PAGE EJECT command at a suitable place in another action
block.

SIR/XS PQL Procedures 93

PAGE EJECT
PAGE EJECT n

Causes a page break when executed. This can be used to trigger all the page break
dependent code in the report. If a number is specified, this conditionally executes the
Page Eject if fewer than the specified number of lines remain on the current page. For
example, to force a section of the report to begin on a new page, place the PAGE EJECT in
the INITIAL BLOCK.

SIR/XS PQL Procedures 94

Examples

The following are examples of full report:

A simple listing

Simple statistics

A simple branched report

Simple breaks

Detail lines and subtotals

Multiple breaks

Branched report with different formats

Underlines

Total data in AFTER REPORT

External files and Edit Buffers

SIR/XS PQL Procedures 95

Example 1: A Simple Listing

This example is a very simple full report. It lists the values of the variable ID, which is
the case identifier in the example database.

RETRIEVAL
. PROCESS CASES
. GET VARS ID | put ID in local variables
. PERFORM PROCS | copy procedure rec to procedure table
. END CASE
REPORT FILENAME= 'REPORT1.REP' | name the report file
. BREAK LEVEL 1 | dummy break
. DETAIL BLOCK | for each procedure table record
. WRITE ID | write ID to the report file
. END BREAK LEVEL
END REPORT
END RETRIEVAL

The above program illustrates the basic requirements for a report specification. These
requirements are:

• values are put in local variables which are written to the procedure table with a
PERFORM PROCS

• the REPORT command specifies an output file
• there is at least one BREAK LEVEL
• the DETAIL BLOCK specifies actions for each procedure table record
• a WRITE command outputs data to the Report file

Though neither the DETAIL BLOCK nor the WRITE command are strictly required by the
VisualPQL compiler, if these are deleted, the program would execute but would write
nothing to the file. The report outputs 20 lines, each with an ID number:

1
2
.....
20

SIR/XS PQL Procedures 96

Example 2: Simple Statistics

Suppose a count of the records is required. This requires a minor change to the previous
example:

RETRIEVAL
. PROCESS CASES
. GET VARS ID
. PERFORM PROCS
. END CASE
REPORT FILENAME = 'REPORT2.REP'
BEFORE REPORT
. SET IDCOUNT (0)
. BREAK LEVEL 1
. DETAIL BLOCK
. COMPUTE IDCOUNT = IDCOUNT + 1
. AFTER REPORT
. WRITE 'The Count is: ' IDCOUNT
END REPORT
END RETRIEVAL

The count is initialised in a BEFORE REPORT block.

The detail block is executed once for each procedure table record and is used to
increment the count. The AFTER REPORT block is executed when the entire procedure
table has been processed to write out the totals. This report outputs a single line.

The count is: 20

SIR/XS PQL Procedures 97

Example 3: A Simple Branched Report

This example, and the next, show two different techniques for producing a count by sex.
The first example uses a conditional break to construct a report that branches to a
different COMPUTE statement depending on the value of the variable GENDER. Each
computation increments a different counter variable.

RETRIEVAL
. PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS GENDER
. PERFORM PROCS
. END REC
. END CASE
REPORT FILENAME ='REPORT3.REP'
BEFORE REPORT
. SET BOYS GIRLS (0) | initialise counter variables

BREAK LEVEL 1.1 (GENDER EQ 1) | do this block for men
. DETAIL BLOCK
. COMPUTE BOYS = BOYS + 1
END BREAK LEVEL

BREAK LEVEL 1.2 (GENDER EQ 2) | do this block for women
. DETAIL BLOCK
. COMPUTE GIRLS = GIRLS + 1
END BREAK LEVEL

AFTER REPORT| write out the grand totals
. WRITE 'Male count is ' BOYS
. WRITE 'Female count is ' GIRLS
END REPORT
END RETRIEVAL

This branches to one of the two conditional break level blocks and increments either the
variable BOYS or GIRLS. This report outputs only two lines.

Male count is 12
Female count is 8

SIR/XS PQL Procedures 98

Example 4: Simple Breaks

The next example produces the identical report by a different method. The logic of this
report is to sort the procedure table by GENDER and specify a break level that breaks on
GENDER. All of the men are first in the table, followed by all of the women. A break is
triggered by the first record in the table and another break is triggered when the value of
GENDER changes from male to female. The initial block is used to initialise a counter and
to get the value label for GENDER. The counter is incremented in the detail block and the
counts are written in the at end block at the end of each group (each gender).

RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS GENDER
. PERFORM PROCS
. END REC
END CASE
REPORT FILENAME ='REPORT4.REP'/ SORT = GENDER
BEFORE REPORT
. STRING * 6 SEX | variable for gender label
. INTEGER COUNTER | counter variable

BREAK LEVEL 1 GENDER | simple break on GENDER
. INITIAL BLOCK | when break occurs
. SET COUNTER (0) | initialise counter
. COMPUTE SEX = VALLAB(GENDER) | get gender label

. DETAIL BLOCK | for each record
. COMPUTE COUNTER = COUNTER + 1 | increment counter

. AT END BLOCK | when break is done
. WRITE SEX ' count is ' COUNTER| output count to report

END BREAK LEVEL
END REPORT
END RETRIEVAL

SIR/XS PQL Procedures 99

Example 5: Detail Lines and Subtotals

Many reports contain detail lines displaying data from each procedure table record. In
this example, the report is broken into two sections, by gender, and reports name, current
job position (CURRPOS) and salary. Each section appears on a different page and reports
average salary for the section. It is formatted as below, where x's stand for data.

Male Salary Report Page 1
Name Job Title Salary
-------------------- -------------------- ------
xxxxx xxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxx
xxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxx xxxx
xxxxxx xxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxx

Average Male Salary xxxx

 - - - - new page - - -
Female Salary Report Page 2
Name Job Title Salary
-------------------- -------------------- ------
xxxxx xxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxx
xxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxx xxxx
xxxxxx xxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxx

Average Female Salary xxxx

The requirements for this report are that the variables GENDER, NAME, CURRPOS and
SALARY are in the procedure table and that the procedure table is sorted by GENDER. A
break on gender is used to calculate the average salary and to separate the two sections of
the report. Each gender section is printed on a new page by specifying a PAGE EJECT
when the break occurs. Since the heading and average salary line change with each
gender, these are also calculated at each break.

To calculate the averages, a sum and a count of the salaries is calculated. These are
initialised at gender breaks, and incremented in the detail block for each record. The
average is calculated at the end of each gender group in the at end block:

RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS GENDER NAME CURRPOS SALARY

SIR/XS PQL Procedures 100

. PERFORM PROCS

. END REC
END CASE

REPORT FILENAME = 'REPORT5.REP' | specify output file
 SORT = GENDER | sort by gender

BEFORE REPORT | before we really start
. INTEGER SALSUM SALCNT AVGSAL | declare vars for stats
. STRING * 40 HEADLINE SUBTLINE | declare string vars
BREAK LEVEL 1 GENDER | break on gender
. INITIAL BLOCK | for each new gender
. SET SALSUM SALCNT (0) | initialise sum and count
. COMPUTE HEADLINE = | construct header label
 TRIM(VALLAB(GENDER))+
 ' Salary Report'
. COMPUTE SUBTLINE = | construct subtotal label
 'Average '+
 TRIM(VALLAB(GENDER))+
 ' Salary'
. HEADING HEADLINE 44T 'Page 'PAGE| define heading
. PAGE EJECT | force a newpage
. PAGE BLOCK | at each new page break
. WRITE 'Name' | output column headers
 22T 'Job Title'
 44T 'Salary'
. WRITE '--------------------'| output col underlines
 22T '--------------------'
 44T '------'
. DETAIL BLOCK | for each table record
. COMPUTE SALSUM = SALSUM + SALARY| increment salary sum
. COMPUTE SALCNT = SALCNT + 1 | increment salary count
. WRITE NAME(A20) | output data line
 22T [VALLAB(CURRPOS)](A20)
 44T SALARY(I6)
. AT END BLOCK | when gender is done
. COMPUTE AVGSAL = SALSUM / SALCNT| average salary
. WRITE 44T '------' | output subt underline
. WRITE SUBTLINE 44T AVGSAL (I6) | output subtotal line

END BREAK LEVEL
END REPORT
END RETRIEVAL

SIR/XS PQL Procedures 101

Example 6: Multiple Breaks

Suppose the same report is required with a different report section for every combination
of Gender and Marital Status giving four sections, married men, single men, married
women and single women.

Changing the previous program to accomplish this is trivial. There are four things to do:
put the Marital Status (MARSTAT) into the procedure table; change the header to include
the marital status label; get the same label into the average salary display line; ensure that
the report is broken by both Gender and Marital Status.

A new break level on Marital Status is added and Marital Status is included in the sort
specification. Placing this break at a higher level than Gender without specifying any
action blocks, means that it serves only to trigger the break point actions at the lower
level. Exactly the same report is produced as before, except that it is broken every time
either Marital Status or Gender changes. Note how few changes have been made to the
program. Changed lines are marked with an '*' in the comment area.

RETRIEVAL
. PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS MARSTAT GENDER NAME CURRPOS SALARY |* add MARSTAT
. PERFORM PROCS
. END REC
. END CASE

REPORT FILENAME = 'REPORT6.REP'
 SORT = MARSTAT GENDER |* add marstat
BEFORE REPORT | before we really start
. INTEGER SALSUM SALCNT AVGSAL | declare vars for stats
. STRING * 40 HEADLINE SUBTLINE | declare string vars
BREAK LEVEL 1 MARSTAT |*break on marstat to trigger
END BREAK LEVEL | actions at next break level
BREAK LEVEL 2 GENDER |*break on gender (note new #)
. INITIAL BLOCK | for each new gender/marstat
. SET SALSUM SALCNT (0) | initialise sum and count
. COMPUTE HEADLINE = |construct header label
 TRIM(VALLAB(MARSTAT)) |*added marstat label
 +' '+TRIM(VALLAB(GENDER))
 +' Salary Report'
. COMPUTE SUBTLINE = |construct subtotal label
 'Average'+
 TRIM(VALLAB(MARSTAT)) |*added marstat label
 +' '+TRIM(VALLAB(GENDER))+
 ' Salary'
. HEADING HEADLINE 44T 'Page 'PAGE | define heading
. PAGE EJECT | force a newpage

. PAGE BLOCK | at each new page or break

SIR/XS PQL Procedures 102

. WRITE 'Name' | output column headers
 22T 'JobTitle'
 44T 'Salary'
. WRITE '--------------------'| outputcol underlines
 22T '--------------------'
 44T '------'
. DETAIL BLOCK | for each proc table record
. COMPUTE SALSUM = SALSUM + SALARY | increment salary sum
. COMPUTE SALCNT = SALCNT +1 | increment salary count
. WRITE NAME(A20) | outputdata line
 22T [VALLAB(CURRPOS)](A20)
 44T SALARY(I6)
. AT END BLOCK | when break group is done
. COMPUTE AVGSAL =SALSUM / SALCNT| calculate average salary
. WRITE 44T '------' | output subt underline
. WRITE SUBTLINE 44T AVGSAL (I6) | output subtotalline
END BREAK LEVEL
END REPORT
END RETRIEVAL

Married Male Salary Report Page 1
Name Job Title Salary
-------------------- --------------------- ------
John D Jones Technician 2150
James A Arblaster Sr Technician 2650
Jack Brown Sr Administrator 3350

Average Married Male Salary 2862

Married Female Salary Report Page 2
Name Job Title Salary
-------------------- --------------------- ------
Carol F Safer Sr Chemist 1650
Bonnie Rosen Director 3200

.......

.......

SIR/XS PQL Procedures 103

Example 7: A Branched Report with Differing Formats

Consider a report that is broken into sections, where the sections contain different data
depending on the value of some variable. For example an employment history by
employee, with certain data for men and other data for women.

This is a case where a conditional or branched report is required. When reporting
females, it follows one path through the report code and when reporting males, it takes
another. The layout of the report is as follows:

For Females:

Employee Report date Page x

ID Number xx
Name xxxxxxxxxx
Gender Female
Date of Birth xxxxxxxxxxxxx

 Title Salary
 xxxxxxxxxxxx xxxx
 xxxxxxxxxxxx xxxx
 xxxxxxxxxxxx xxxx

 xxxxxxxxxx xxxx
 xxxxxxxxxx xxxx
 xxxxxxxxxx xxxx

For Males:

Employee Report date Page x

ID Number xx
Name xxxxxxxxxx
Gender Male
Date of Birth xxxxxxxxxxxxx

Position Title Date Salary Rating
 xx xxxxxxxxxxxxxxxx xxxxxxxx xxxx xxxxxxxxx
 xxxxxxxx xxxx xxxxxxxxx

 xx xxxxxxxxxxxxxxxx xxxxxxxx xxxx xxxxxxxxx
 xxxxxxxx xxxx xxxxxxxxx

Variables are read from three record types in the COMPANY database. The report is a
complete salary history of each employee, including salaries and dates from two different
record types. The initial program puts the values of STARTSAL from the OCCUP record

SIR/XS PQL Procedures 104

type and NEWSAL from the REVIEW record type into a single variable. The same thing
happens with STARTDAT and REVDATE.

In the report specification, there are three break levels, one to produce a new report
section for each employee, another to deal with the different format for men and women
and the last to group output lines by position. The first break level is a simple break on
the employee ID number. The second level is a conditional break on the value of Gender
that formats the data differently for each sex.

Note in the format for the men, some detail lines have position data and others do not.
The lines that have values for position come from the OCCUP record and those that don't
come from REVIEW records at the position printed in the previous line. This requires
different processing depending on which record type the data came from with one of two
WRITE commands with different line formats. Following is the code for the report.

RETRIEVAL
PROCESS CASES
. PROCESS REC 1
. GET VARS ID NAME GENDER BIRTHDAY | rec 1 vars to proc rec
. END REC

. PROCESS REC 2
. GET VARS POSITION | put position in proc rec
. GET VARS DATE SALARY = | put revdate and startsal
 STARTDAT STARTSAL | into vars date, salary
. SET RECTYPE (2) | set record typeflag
. PERFORM PROCS | copy rec 2 to proc table

. PROCESS REC 3 VIA (POSITION) | get rec 3 using position
. GET VARS RATING | put rating in procedure rec
. GET VARS DATE SALARY = | put revdate and newsal
 REVDATE NEWSAL | into vars date, salary
. SET RECTYPE (3) | set record type flag
. PERFORM PROCS | copy rec 3 to proc table
. END REC

. END REC
END CASES
REPORT FILENAME = REPORT7.REP /SORT = ID GENDER POSITION DATE
BEFORE REPORT
. HEADING BLOCK 7
. WRITE 'Employee Report' 2X DATE 60T 'Page' PAGE(I3)//
. WRITE 'ID Number' 17T ID
. WRITE 'Name'17T NAME
. WRITE 'Gender ' 17T [VALLAB(GENDER)]
. WRITE 'Date of Birth' 17T BIRTHDAY(DATE'Mmm DD, YYYY')
. END HEADING BLOCK
. BREAK LEVEL 1 ID | break on each employee
. INITIAL BLOCK
. PAGE EJECT | put each employee on a new page
END BREAK LEVEL
BREAK LEVEL 2.1, (GENDER EQ 1) | take this branch for men

SIR/XS PQL Procedures 105

. PAGE BLOCK | at break or page eject

. BLANK LINES 2 | output 2 blank lines

. WRITE 'Position Title' 32T 'Date' 42T 'Salary' 50T 'Rating'
END BREAK LEVEL
BREAK LEVEL 3A, POSITION | for every new position
. DETAIL BLOCK | for every procedure rec
. IFTHEN (RECTYPE EQ 2) | do following if rec 2
. WRITE POSITION(I8), | output data line with
 10T [VALLAB(POSITION)] (A20) | position information
 32T DATE(DATE'MM/DD/YY')
 42T SALARY(I6)
 50T 'n/a' | no rating data in rec 2
. ELSEIF (RECTYPE EQ 3) | do following if rec 3
. WRITE 32T DATE (DATE'MM/DD/YY')| output data without
 42T SALARY(I6) | position data
 50T [VALLAB(RATING)]
. END IF
. AT END BLOCK | before next Position
. BLANK LINES 1 | output a blank line
END BREAK LEVEL
BREAK LEVEL 2.2, (GENDER EQ 2) | take this branch for women
. PAGE BLOCK | at break or page eject
. BLANK LINES 2 | output 2 blank lines
. WRITE 20T 'Title' 42T,'Salary' | output column headers
END BREAK LEVEL
BREAK LEVEL 3B,POSITION | break on position
. DETAIL BLOCK | for each procedure record
. WRITE 20T [VALLAB(POSITION)](A20) 42T SALARY(I6)
. AT END BLOCK | before next position
. BLANK LINES 1 | output a blank line
END BREAK LEVEL
END REPORT
END RETRIEVAL

Employee Report Jan 03, 2006 Page 1

ID Number 1
Name John D Jones
Gender Male
Date of Birth Jan 08, 1968

Position Title Date Salary Rating
 4 Laborer 02/04/03 1500 n/a
 04/05/03 1600 Good
 06/05/03 1650 Very Good

 5 Technician 10/09/04 2000 n/a
 12/09/04 2100 Good
 02/04/05 2150 Very Good

Employee Report Jan 03, 2006 Page 2

ID Number 2

SIR/XS PQL Procedures 106

Name James A Arblaster
Gender Male
Date of Birth Dec 02, 1962

Position Title Date Salary Rating
 6 Sr Technician 01/12/03 2500 n/a
 03/16/03 2550 Acceptable
 04/27/03 2600 Good
 08/08/03 2650 Very Good

Employee Report Jan 03, 2006 Page 3

ID Number 3
Name Mary Black
Gender Female
Date of Birth Aug 05, 1973

 Title Salary
 Chemist 2750
 Chemist 2800
 Chemist 2850
 Chemist 2900

 Sr Chemist 3000
 Sr Chemist 3100
 Sr Chemist 3150

SIR/XS PQL Procedures 107

Example 8: Underlines

Reports frequently contain underlined column headers. Typically, these are produced
with a WRITE commands that contains the appropriate number of dashes as quoted
strings. An alternative is to have a string variable that contains nothing but dashes and to
use that variable repeatedly on the WRITE statement, controlling the number of dashes
with the formatting options. Consider a typical WRITE statement with quoted dashes:

WRITE '----------' 2X '-----' 2X '------------' 2X '-------'

If there is a variable UL, filled with dashes, this gives the same output with:

WRITE UL(A10) 2X UL(A5) 2X UL(A13) 2X UL(A7)

Following is an example of part of a report program using this technique.

BEFORE REPORT
. STRING UL
. SET UL ('--------------------')

BREAK LEVEL 1
. PAGE BLOCK
. WRITE 'Employee Name' 25T 'Job Title' 50T 'Salary'
. WRITE UL(A20) 25T UL(A20)50T UL(A6)
. DETAIL BLOCK
. WRITE NAME (A20) 25T JOBTITLE(A20) 50T SALARY(I6)
END BREAK LEVEL

SIR/XS PQL Procedures 108

Example 9: Totals and After Report

Sometimes reports need a data value calculated in the pre-report part of the program,
which is needed for every procedure record.

Suppose, for example, that the percent of the total payroll each employee's salary
represents is to be written. The calculation of this percentage needs the sum of all the
salaries and each employee's salary. Getting the sum of salaries simply requires adding
up salaries in the retrieval. The problem is that in the report any given procedure table
record only has a partial sum. The basic technique is to store the sum in a new variable
(which is not part of the procedure table) at the end of the retrieval section in an AFTER
RETRIEVAL block and then to access it in the report.

Remember that unless the Procedure Table is sorted, the report operates as PERFORM
PROCS sends each procedure table record. Since the percent cannot be calculated until all
the database records have been processed, delay execution with a dummy sort. Create a
dummy variable (DUMMY) that always has the value 0 for this purpose. If the report is
sorted for other reasons, this is unnecessary.

The following program produces the required results:

RETRIEVAL
SET TOTSAL DUMMY (0) | initialise total salary
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS NAME SALARY
. COMPUTE TOTSAL = TOTSAL + SALARY | increment total salary
. PERFORM PROCS
. END REC
END CASE
AFTER RETRIEVAL
SALTOT = TOTSAL | put total in variable
REPORT FILENAME = REPORT8.REP /
 SORT = DUMMY | do a dummy sort to delay
execution

BREAK LEVEL 1
DETAIL BLOCK
COMPUTE PCT = (SALARY/SALTOT) * 100 | calculate percentage
WRITE NAME (A20) | output the data
 2X SALARY (I4)
 2X PCT ('999.99')
END BREAK LEVEL

SIR/XS PQL Procedures 109

Example 10: Using External Files and Edit Buffers

Full Report includes the capability of reading from and writing to files and of using edit
buffers. In the previous example, it would have been possible to write the sum to a file or
edit buffer and then read it back.

If a file is written in the first part of the program and then read from in the report, delay
execution of the report with a sort parameter and make sure that the file is closed at the
end of the retrieval section and then re-opened before reading it in the report section. Edit
buffers have the advantage of being randomly accessed for both read and write
operations, though the data can only be retrieved in strings, a single line at a time.

Files may be written from within the report section as well as read. Consider a report
from census data in which detail lines are reported for counties with summary data by
state as a subtotal line. A summary section might be required which reprints all the
subtotal (state) data on a single page at the end of the report. This could be done by
storing all the data in a report array and then printing it out again in the AFTER REPORT
section.

Since the subtotal lines are formatted for its WRITE statement, it takes almost no extra
effort to write once to the report and a second time to a file. In the AFTER REPORT section
read the lines of text in the file and print them. The general structure of the report would
be:

BEFORE REPORT
STRING * 80 FILETEXT
INTEGER STATE1 TO STATE5 | declare state total vars
OPEN TFILE.TXT WRITE
BREAK LEVEL 1 STATE
.INITIAL BLOCK
. SET STATE1 TO STATE5(0) | initialise state totals
. AT END BLOCK
. WRITE STATE1 TO STATE5 | write totals to report
. WRITE (TFILE.TXT) STATE1 TO STATE5 | write totals to file
END BREAK LEVEL
BREAK LEVEL 2 COUNTY
. DETAIL BLOCK
. WRITE COUNTY1 COUNTY2 COUNTY3 COUNTY4 COUNTY5
 | increment state totals
 | (e.g. STATE1 = STATE1
+COUNTY1)
END BREAK LEVEL
AFTER REPORT
CLOSE TFILE.TXT | close file
OPEN TFILE.TXT READ | open file for read
PAGE EJECT | start on a new page
WRITE 30T 'State Summary Data' // | pagetitle
LOOP | loop thru records

SIR/XS PQL Procedures 110

. READ (TFILE.TXT,ERR=EOF)FILETEXT(A80)| read a line from file

. WRITE FILETEXT | write line to report
END LOOP
EOF:
END REPORT

SIR/XS PQL Procedures 111

SAS Save File
SAS® software is a data analysis and reporting tool published by SAS Institute, Inc. of
Cary, North Carolina.

The SAS SAVE FILE procedure generates files in "exportable" (text) format.

These files include procedure table data and schema information from the PQL program,
including value labels, variable labels and missing value indicators.

SAS SAVE FILE EXPORT = filename1 , filename2
 [BOOLEAN = (logical_expression)]
 [FORMAT = 'formatprefix']
 [LRECL = n]
 [NOLABELS]
 [SAMPLE = fraction]
 [SORT = [(n)] variables [(A)|(D)], ...]
 [VARIABLES = varlist | ALL]
EXPORT Creates two text files. The first is the SAS control statement file.

It contains a SAS DATA step including all appropriate SAS
commands such as MISSING, INFILE, INPUT and LABEL and a
PROC FORMAT step containing the value labels. If the NOLABELS
clause is specified, the PROC FORMAT step is not generated.
The second file is a fixed format data file, containing the data from
the procedure table. This file is referenced in the DATA step of the
first file.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

FORMAT The names assigned to the value label formats in the PROC FORMAT
are generated names in the format TnX where 'T' and 'X' are the
letters used and n is a sequence number from 1 upwards for each
variable requiring a format. Format names for character variables
begin with a $ sign. If the SAS analyst combines multiple datasets,
the same generated name would be used on each dataset and this
would cause conflicts. Specify a different format prefix for each
SIR/XS procedure to ensure unique generated format names. The
specified prefix is used instead of the default 'T'. The final
generated name must not exceed 32 characters.

LRECL An LRECL parameter is generated on the SAS INFILE command.

SIR/XS PQL Procedures 112

Use the LRECL parameter to set this value. It must be greater than
50.

NOLABELS Specifies that variable and value labels are not written to the SAS
file. This can save significant processing time if many labels are
involved.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

VARIABLES Specifies the procedure variables that are written to the output file.
The order in which they are specified is the order in which they
appear in the output file. This corresponds to the order in which
they are declared in the SAS DATA step. If this option is not
specified, the default variables are output.

A summary report is produced that lists the variables in the files, the name of the files and
other information.

Example 1: SAS

The following produces a SAS file. The files created by this run are text and can be edited.
The program creates a procedure table record for each employee and contains the
computed time spent in the current position (TCURRENT) and the variables ID, GENDER,
MARSTAT and CURRPOS from the database.

RETRIEVAL
INTEGER TCURRENT
PROCESS CASES ALL
. PROCESS REC 1
. GET VARS ID GENDER MARSTAT CURRPOS
. PROCESS REC 2 VIA (CURRPOS)
. COMPUTE TCURRENT = TODAY(0) - STARTDAT
. END PROCESS REC
. PERFORM PROCS
. END PROCESS REC
END PROCESS CASE

SIR/XS PQL Procedures 113

SAS SAVE FILE EXPORT = SASPROC.TXT , SASDATA.DAT
END RETRIEVAL

SIR/XS PQL Procedures 114

SAVE TABLE
SAVE TABLE creates a table from data in the VisualPQL procedure table. If a table of the
same name already exists, it can be replaced. Tables can be accessed by PQL, SQL and
FORMS. Tables are stored on tabfiles.

The SAVE TABLE procedure creates a table and populates it with data. The definitions for
the columns in the table are taken from the schema and the values for each row are taken
from the procedure table records. One table row is created for every procedure table
record.

The tabfile to contain the table must exist before the procedure is run. The CREATE
TABFILE command in SQL and DBMS and the Create Tabfile... option from the
Tabfile menu can be used to create tabfiles.

 SAVE TABLE [tabfile_name.]table_name
 [FILENAME = fileid]
 [VARIABLES = varlist | ALL]
 [USERS = group[/pword][.user[/pword]]...]
 [REPLACE]
 [SORT = [(n)] variable [(A)|(D)], ...]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction]
tabfile name Specify the tabfile to save the table on. If a tabfile name is not

specified, the current default tabfile is used. If the tabfile is not
connected at the time the VisualPQL program is run, SIR/XS
attempts to connect the tabfile. Note that there is no provision to
specify an IDENTIFIED BY clause so, if a tabfile has groups or
users defined, the tabfile must be connected at run time with a
CONNECT TABFILE command.

table name The table name that is created. This must be specified.
FILENAME Specifies the physical filename of the tabfile. If the physical

filename is the same as the tabfile name (appended with '.tbf' or
the tabfile is connected, this clause need not be specified.

VARIABLES Specifies the procedure variables that are the columns (variables)
of the table. The order in which they are specified is the column
order of the table. If this option is not specified, the default
variable list is used. All variable schema information is carried
over to the table that is created.

USERS Specifies a list of groups or users in groups for tabfiles that have
permissions. For the table being created, these groups or users are

SIR/XS PQL Procedures 115

granted all permissions. Other users have no permissions on the
table. If the group does not exist, it is created. Passwords may be
specified at the group or user level. If the group(.user) already
exists, there is no need to specify passwords. If the group(.user)
already exists and passwords are specified, these become the
current passwords. This is the equivalent of the SQL command
GRANT ALL for the list of users where the permissions were
granted by the group(.user) specified to connect the tabfile.

Regardless as to whether this clause is specified or not, the
group(.user) specified to connect the tabfile has full permissions
on the table. To create a PUBLIC table on a tabfile with
permissions, specify USERS = PUBLIC. (For tabfiles without
permissions, all tables are public and the USER clause has no
affect.) See Permissions for further details on tabfile permissions.

REPLACE The REPLACE keyword gives permission to overwrite an existing
table of the same name if it exists. If the option is omitted and the
table exists, the program terminates with an error message.

SORT Specifies the order in which the procedure table records are sorted
and written to the tabfile table.
n specifies the maximum number of records to be sorted. The
default for this parameter is either the number of records in the
database or the value specified in the sortn parameter and need
only be specified if the number of records in the procedure table is
greater than the default. The procedure table is sorted by the
specified variables in variable list order. A variable name followed
by (A) or (D) specifies that for that variable the sort is in
Ascending order (the default) or in Descending order.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

Example: Creating a Database Subset

Since it is very simple to create table variables with the same definitions as record
variables in the database, tables can be used as a database subset. The following program
creates a table that is identical to a database record type.

RETRIEVAL

SIR/XS PQL Procedures 116

PROCESS CASES
. PROCESS REC 1
. GET VARS ALL
. PERFORM PROCS
. END REC
END CASE
SAVE TABLE REC1BKUP
END RETRIEVAL

*** Table replaced REC1BKUP
*** on tabfile SQLTAB
*** no of rows 20
*** no of columns 4
*** variable names 1. NAME
 2. GENDER
 3. MARSTAT
 4. SSN

After the retrieval is run, the procedure records are passed to the SAVE TABLE procedure.
The default tabfile SQLTAB is used. A new table called REC1BKUP is created. (The
REPLACE option is used to overwrite the old table if it exists.) After the retrieval is
finished, a summary report is produced showing the tabfile written to, the number of rows
and columns written, and the variable names written to the table.

SIR/XS PQL Procedures 117

SIR Save File
The SIR SAVE FILE procedure creates a sequential file in the same format as that
produced by the UNLOAD and SIR SUBSET utilities. Reload this file to create a new
SIR/XS database or use the SIR MERGE utility to merge this file into an existing database.

The output records all have the same format and record type. Variables carry with them
all variable schema information, including valid values, variable ranges, missing values,
variable labels and value labels.

SIR SAVE FILE does not produce an INPUT FORMAT or DATA LIST with input columns.
Using this procedure is equivalent to having defined a record schema using the variable
declarations of internal storage types and sizes. Once the new database has been reloaded,
the schema may be modified to specify input columns for Batch Data Input use.

Many of the options on this command specify schema information for the database that is
created when the file is reloaded.

Note that the SIR SAVE FILE procedure cannot be run from a PROGRAM. It must be run
from a database RETRIEVAL.

SIR SAVE FILE
 { {DATABASE = database_name | FILENAME = filename } |
 DATABASE = database_name FILENAME = filename }
 RECTYPE = recnum [, recname]

 [{CASEID = varname [(D | A)] | NOCASEID }]
 [VARIABLES = var_list]
 [SORTIDS = variable [(D | A)] ...]
 [NOFCASES = number]
 [RECSCASE = number]
 [MAXTYPES = number]
 [MAXRECS = number]
 [MAXKEYSZ = number]
 [SAMPLE = fraction]
 [BOOLEAN = (logical_expression)]
 [NOLABELS]
DATABASE Specify either the name of the new database or a filename or both.

If not specified, the name defaults to the attribute name assigned to
the file. The name must comply with the rules for naming a
SIR/XS database. The password for the new database is the same
as the password of the original database.

FILENAME Specify the name of the output file. If not specified, a file with the
same name as the DATABASE clause is written.

SIR/XS PQL Procedures 118

RECTYPE Specifies the record number of the records when reloaded in the
new database. This clause is required. The record name is
optional, if it is omitted, a default name in the form RECn is
assigned.

VARIABLES Specifies the procedure variables to form the new database record
type. The order in which they are specified becomes the data list
order.

CASEID Specifies the procedure variable used as the Case Id in the new
database. If the CASEID clause is omitted, the case id of the
original database is used for the new database. The original case id
must be included as a procedure variable. To alter the default sort
sequence, specify D for Descending or A for Ascending in
parentheses following the variable name.

NOCASEID Specifies that a caseless database is created.
SORTIDS Specifies the Key Fields of the new database record type. By

default, the records are sorted in Ascending order by Key Field
(Sort ID) value. To alter the default sort sequence, specify D for
Descending or A for Ascending in parentheses following the
variable name.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

MAXKEYSZ Specifies the maximum key size for the new database. This clause
is the equivalent of the database parameter MAX KEY SIZE. If this
clause is omitted, the value from the original database or the size
implied by this record type (if it is larger) is used.

MAXRECS Specifies the maximum number of records per case of any record
type in the new database. This clause is the equivalent of the
database parameter MAX REC COUNT. If this clause is omitted, the
value from the original database is used.

MAXTYPES Specifies the maximum number of record types in the new
database. This clause is the equivalent of the database parameter
MAX REC TYPES. If this clause is omitted, the MAX REC TYPES of
the original database is used.

NOFCASES Specifies the maximum number of cases in the new database. This
clause is the equivalent of the N OF CASES database parameter. If
this clause is omitted, the N OF CASES specification from the

SIR/XS PQL Procedures 119

original database is used.
RECSCASE Specifies the average number of records per case in the new

database. This clause is the equivalent of the RECS PER CASE
database parameter. If this clause is omitted, the RECS PER CASE
specification from the original database is used.

NOLABELS Specifies that variable and value labels for the variables used in
the procedure are not transferred to the new database.

Example

The requirement is to extract from an educational database, a new database where a case
includes all students in a grade level and record type 10 contains essential information on
each student.

SIR SAVE FILE DATABASE = EDUCAT /
 FILENAME = SAVE /
 CASEID = GRADE /
 RECTYPE = 10 , STUDENTS/
 SORTIDS = STUDNO /
 VARIABLES = STUDNO , GRADE , AGE , SEX ,IQ

SIR/XS PQL Procedures 120

SPREAD SHEET
The SPREAD SHEET procedure displays summary data in a format similar to that used by
spreadsheets. This procedure does not produce an intermediate file, it writes directly to
the SIR/XS spreadsheet interface.

SPREAD SHEET
 [VARIABLES = varlist]
 [SORT = [(n)]variable [(A)|(D)], ...]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction]
 [TITLE = 'spreadsheet title']
VARIABLES Specifies the procedure variables to display. Specify the variables

in the order in which they are to appear. If this option is not
specified or the keyword ALL is specified, the default variables are
output.

SORT Specifies the sequence of the output. therefore the spreadsheet
rows are sorted.n is an integer that specifies the maximum number
of records to be sorted. The default for this parameter is either the
number of records in the database or the value specified in the
sortn parameter and need only be specified if the number of
records in the procedure table is greater than the default. The
procedure table is sorted by the specified variables in variable list
order. A variable name followed by (A) or (D) specifies that for
that variable the sort is in Ascending order (the default) or in
Descending order.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

TITLE Specifies a title for the spreadsheet.

Example

SIR/XS PQL Procedures 121

RETRIEVAL
. PROCESS CASES
. GET VARS ID
. PROCESS RECORD 1
. GET VARS NAME GENDER SSN CURRPOS
. PROCESS RECORD 2 WITH (CURRPOS)
. GET VARS DIVISION
. PERFORM PROCS
. EXIT RECORD
. END RECORD
. END RECORD
. END CASE
SPREAD SHEET VARIABLES = NAME GENDER SSN DIVISION
 TITLE = "EMPLOYEE LOCATION TABLE"
END RETRIEVAL

The summary data is displayed as a spreadsheet which looks something like:

You can view, edit and save this data as text, html or in EXCEL® format.

SIR/XS PQL Procedures 122

SPSS Save File
SPSS®, the Statistical Package for the Social Sciences, is a multi-purpose data analysis
and reporting tool. The SPSS SAVE FILE procedure provides an interface to this product.
(SPSSX is a synonym for SPSS.)

SPSS SAVE FILE creates a portable file that can be accessed by SPSS. One SPSS case is
created for each procedure table record generated by the VisualPQL program. In addition
to the data, the dataset contains value and variable labels and missing value indicators.

SPSS SAVE FILE FILENAME = filename
 [BOOLEAN = (logical_expression)]
 [NOLABELS]
 [PORTABLE]
 [SAMPLE = fraction]
 [SHORTNAME]
 [SORT = [(n)] variable [(A)|(D)] , ...]
 [VARIABLES = varlist | ALL]
 [WEIGHT = varname]
FILENAME Specifies the filename created by the procedure.
BOOLEAN Specifies which procedure table records are used by the procedure.

The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

NOLABELS Specifies that variable and value labels are not copied to the SPSS
SAVE FILE. This can save time if many labels are involved.

PORTABLE Specifies that the output file is in portable file format. By default,
the output file is in system file format.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure. The fraction specifies the percent of
records used and is specified as a positive decimal number less
than or equal to 1 (one). .25, for example specifies that a 25%
sample be used.

SHORTNAME Specifies that a maximum of eight characters is used for variable
names output to SPSS. Truncation occurs after eight characters. If
any names are truncated, these are reported on the summary
report.

Note. If variables have SIR/XS non-standard names, these may not
be acceptable SPSS names. SIR/XS does not check this and does
not change names. If a truncated name or non-standard name is not
the required SPSS name, specify an alternative name that is a valid

SIR/XS PQL Procedures 123

SPSS name on the VARIABLES clause. e.g.

 VARIABLES = Long_Name_Salary AS SALARY or
 VARIABLES = {Special Name Salary} 'Salary‘
This option also truncates variable labels to 40 characters.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

VARIABLES Specifies the procedure variables to write to the output file. The
order in which variables are specified is the order in which they
appear in the output file. If this option is not specified, the default
variables are output.

WEIGHT Specifies the variable that is the CASWGT variable which provides a
permanent weighting of the cases in the SPSS file. The default
WEIGHT is 1.

Notes on SPSS Files

• The basic numeric unit is an 8 byte real.
• The file uses base 30 arithmetic to represent all numbers.
• Strings are represented in 8 byte units. A short string is one that is less than or

equal to 8 characters. For string variables that are greater than 8 characters,
dummy variables are generated for every 8 characters.

• Undefined string variables are represented by blanks.
• Undefined numeric values and blank missing numeric values are represented by

the SPSS system missing value (see SYSMIS in SPSS).
• SPSS missing value ranges cannot be used.

Example

RETRIEVAL
PROCESS CASES ALL
AUTOSET
PROCESS REC EMPLOYEE
. GET VARS ALL
. PROCESS REC OCCUP WITH (CURRPOS)
. GET VARS ALL
. END PROCESS REC
. PERFORM PROCS
END PROCESS REC

SIR/XS PQL Procedures 124

END PROCESS CASE

SPSS SAVE FILE
 FILENAME = 'EMPLOYEE.DAT' /
 VARIABLES = ALL
END RETRIEVAL

When a VisualPQL program with an SPSS interface procedure is run, a summary report
is produced and has the following form:

SPSS SAVE FILE - System file

Written to: 'C:\sir2004\alpha\employee.dat'
Number of records: 20
User variables: 14

Variables in save file order

NAME GENDER
MARSTAT SSN
BIRTHDAY EDUC
NDEPENDS CURRPOS
SALARY CURRDATE
POSITION STARTDAT
STARTSAL DIVISION

End of SPSS report

SIR/XS PQL Procedures 125

SYSTAT Save File
The SYSTAT SAVE FILE procedure creates a binary file in SYSTAT® internal format that
contains data and schema information produced in a VisualPQL program. SYSTAT is a
statistical package that runs on PCs.

SYSTAT SAVE FILE FILENAME = filename
 [VARIABLES = var_list | ALL]
 [SORT = [(n)] variable [(A)|(D)], ...]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction]
FILENAME Specifies the filename created by the procedure.
VARIABLES Specifies the procedure variables that are written to the output file.

The order in which variables are specified is the order in which
they appear in the output file. If this option is not specified, the
default variables are output.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

• Note: All numeric variables are written as 8 byte reals. All string variables are
written as 12 character strings. Long strings are truncated and short strings are
blank filled.

SIR/XS PQL Procedures 126

Example

The following example creates a Systat binary file with one record per employee and the
variables ID, GENDER, CURRPOS and SALARY. The records are sorted by Salary in
descending order.

RETRIEVAL
PROCESS CASES
. PROCESS REC EMPLOYEE
. GET VARS ID GENDER CURRPOS SALARY
. PERFORM PROCS
. END REC
END CASE
SYSTAT SAVE FILE FILENAME = SYSTAT.DAT /
 SORT = SALARY (D)
END RETRIEVAL

After the retrieval finishes, the following summary report is displayed.

SYSTAT SAVE FILE SUMMARY REPORT

SYSTAT FILENAMESYSTAT.DAT

NO OF DATA RECORDS 20
NO OF COLUMNS 4

COLUMN NAME (TYPE)

ID (REAL) GENDER (REAL) CURRPOS(REAL)
SALARY (REAL)

SYSTAT SAVE FILE COMPLETE

SIR/XS PQL Procedures 127

Tabulate
The TABULATE procedure selects and summarises data. It then produces cross-tabulations
with summary data, statistics or percentages. See syntax. A wide variety of cross-
tabulations can be produced:

• One, two and three dimensional tables can be produced; the first dimension being
columns across a page, the second being rows down a page and the third being
different sections. These three dimensions are known as headers (for columns),
stubs (for rows) and wafers (for sections).

• Control variables, with discrete values, and observation variables, with continuous
values, can be used.

• Totals, means, minimums, maximums, standard deviations, medians, quantiles
and percentages can be specified with flexibility in choosing percent 'base' cells,
for various combinations of wafer, row and column percentages.

• Wafer, stub and header labeling can be controlled with use of variable labels and
value labels. There is automatic segmentation of labels and adjustment of table
size parameters to fit. Tables too large to fit on a single physical page are broken
across pages and page headings can be specified.

• Output can be in standard format or produced as html suitable for viewing and
printing by software that uses that format such as browsers or Microsoft Word®.

SIR/XS PQL Procedures 128

Syntax

TABULATE
 FILENAME = filename
 HEADER = (expression)
 [STUB = (expression)]
 [WAFER = (expression)]

Record Filtering

 BOOLEAN = (boolean expression)
 SAMPLE = fraction
 WEIGHT = varname

Cell Statistics

 TOTAL = varname ['label']...
 COUNT = varname ['label']...
 CSS = varname ['label']...
 CV = varname ['label']...
 CVERR = varname ['label']...
 MAXIMUM = varname ['label']...
 MEAN = varname ['label']...
 MEDIAN = varname ['label']...
 MINIMUM = varname ['label']...
 MISSING = varname ['label']...
 NORMALIZED = varname ['label'](n1)['label1'],(n2)['label2']...
 PERCENT = varname ['label']...
 QUANTILE = varname ['label'] n ['label1','label2'...]...
 QUANTILE = varname ['label'](n1)['label1'],(n2)['label2']...
 RANGE = varname (lo,hi) ['label']...
 STDERR = varname ['label']...
 STDEV = varname ['label']...
 TSTATISTIC = varname ['label']...
 USS = varname ['label']...
 ISDNUMBER = n

Data Print Formatting

 PRINTFORMATS= varlist (option)...

Page Formatting

 PAGETITLE = 'string'
 PAGELENGTH = n

SIR/XS PQL Procedures 129

 PAGEWIDTH = n
 COLLAPSE

Header Formatting

 HEADERWIDTH = n
 HEADERINDENTATION = n
 HEADERDIVIDER = 'character'
 NODIVIDERS
 NOHEADERCENTER

Stub Formatting

 STUBTITLE = option 'string'
 STUBWIDTH = n
 STUBINDENTATION = n
 STUBCONTINUATION= n
 STUBHEIGHT = n
 STUBFILLER = 'character'
 STUBDIVIDER = 'character'

Wafer Formatting

 WAFERTITLE = option 'string'
 NOWAFERTITLE
 WAFERCENTER
 WAFERSTART = n
 WAFERINDENTATION = n
 WAFERCONTINUATION = n
 WAFERHEIGHT = n

Other Options

 HTML
 NOBOTTOMBORDER
 NOLEFTBORDER
 NORIGHTBORDER
 NOTES= 'string'
 FOOTNOTES= 'string'
 WAFERNOTES= 'string'
 NOZEROS
 ZEROCHARACTER= 'character'
 NOEMPTYROWS
 DELETEMISSING
 UPPERCASE
 SPANNERS
 DUMMY = varname 'label' ...
 LANGUAGE = DUTCH | GERMAN

SIR/XS PQL Procedures 130

The FILENAME and the header expression are the only required clauses.

FILENAME Specify the filename created by the procedure. If a filename is not
specified on a subsequent TABULATE procedure, the output is
appended to the last TABULATE output file.

If the filename is CGI then, if the procedure is run when SIR/XS is
operating from the common gateway interface, the output is
returned to the user's browser. When run locally, a filename of CGI
results in the file sircgi.htm. It is normal to specify the HTML
keyword when using CGI as the filename.

expressions

The three possible expressions (HEADER, STUB & WAFER) define the data in one of the
dimensions of the table. Each expression consists of from one to n variables and/or
statistical keywords all enclosed in brackets. If multiple variables are specified on a
single expression they are related by the keywords BY or THEN.

Percentages can also be used in expressions.

The type of variable, Variable Modifiers, and statistics all effect the Cell contents.

HEADER =
(expression)

Defines the columns of the tabulation. This clause is required.

STUB =
(expression)

Defines the rows of the tabulation.

WAFER =
(expression)

Defines the sections of the tabulation. Sections are a number of
two dimensional sections specified by the stub and header.

BY Nest a variable within another thus producing combinations of the
variable values within one dimension of the table. The asterisk (*)
symbol may be used instead of the keyword.

THEN Appends a second variable or statistical keyword to the set of
variables displayed within one dimension of the table. The plus (+)
symbol may be used instead of the keyword.

BY and THEN Can be used in combination to create complex structures within a
single dimension or expression.

Errors may occur, not only if the table is misspecified, but also if it cannot fit the output
page.

SIR/XS PQL Procedures 131

Expressions

The TABULATE command has the general form:

TABULATE HEADER = (expression) [STUB = (expression) [WAFER =
(expression)]]

A table consists of up to three components or dimensions: header, stub and wafer. Each
dimension is defined by an expression. Each expression is identical in format but applies
to a different dimension of the table. These expressions name the variables to tabulate
and their relation to each other in the table. The different keywords (HEADER, STUB &
WAFER) define the dimension being specified. The HEADER is required; WAFER can only be
specified if a STUB is also specified. The sequence of the three expressions in the
command is irrelevant.

The header defines variables whose values correspond to columns; the stub defines
variables whose values correspond to rows. The rows and columns define a two-
dimensional array called the wafer. The wafer is a higher level categorisation resulting in
multiple individual row/column combinations. The table description consists of one to
three expressions.

Define an expression with variable names and keywords. At the most basic an expression
consists of a single variable name. Multiple variables or statistics may be defined in a
single expression separated with the keywords BY and THEN. BY specifies a level of
nesting within a single dimension; THEN specifies multiple variables within a single
dimension.

The structure of the table is defined by the values of the control variables specified in the
various expressions. The values in the variables named in these expressions are used as
the labels for the particular dimension being specified. The number of categories of any
control variable is taken from the schema definition which contains information on
variable ranges, valid values and value labels.

 The body of the table consists of Cells. The content of a cell is a summary of data which
applies to that particular combination of variables in the expressions. This might be a
count of occurrences of data, a sum of values, a percentage or some other statistic.

SIR/XS PQL Procedures 132

If the command has a single header expression, a table containing a single value for each
column is produced. That is one line of data is produced with one entry per column. For
example:

TABULATE HEADER = (REGION)
TABULATE HEADER = (AGE BY SEX)
TABULATE HEADER = (SALARY BY (MIN THEN MEAN THEN MAX))

If the tabulate statement contains a STUB expression, then a two-dimensional table is
produced. The stub defines the rows of the table going down the page. The header defines
the columns going across the page. For example,

TABULATE HEADER = (RACE) STUB = (REGION)
TABULATE HEADER = (RACE THEN SEX) STUB = (REGION)
TABULATE HEADER = (SALARY BY (MEAN THEN MEDIAN)) STUB = (REGION BY
RACE)

By specifying variables in two expressions, a cross-tabulation is produced with one cell
for each value of each variable. For example, if a cross tabulation for two variables is
specified, where each variable has two values, four cells are produced. The more values,
the more cells.

Nesting variables with the BY operator also produces a cross-tabulation within a single
dimension. If the same variables are used as a Stub and header or as a header with a BY
clause, the same cells are produced but the table has a different shape.

If the tabulate statement contains a WAFER expression, a set of two-dimensional tables is
produced. There must be a stub expression for a WAFER expression to be valid. When
more than one wafer is generated a table of contents is also produced. If a particular
wafer contains no data, it is not printed and is marked deleted in the table of contents. If
only one wafer is produced, it is printed even if it is empty. For example:

TABULATE HEADER = (SEX) STUB = (AGE) WAFER = (REGION)
TABULATE HEADER = (SEX) STUB = (AGE) WAFER = (REGION
BY RACE)
TABULATE HEADER = (AGE BY REGION) STUB = (RACE BY SEX) WAFER = (COUNT
THEN PCT)

SIR/XS PQL Procedures 133

BY

 Specifying BY between two variables nests each of the values of the second variable in
each of the values of the first variable. If a second BY is specified, a third level of nesting
takes place. BY defines a structure within a particular dimension. Each variable specifies a
further level of nesting. The number of cells produced is the product of the number of
values for each variable. There is no limit to the number of levels allowed within one
expression. The asterisk (*) symbol can be used instead of BY.

Example: BY

HEADER = (AGE BY INCOME)

Young Old

Rich Poor Rich Poor

6 4 8 3

HEADER = (SEX BY AGE BY INCOME)

Male Female

Young Old Young Old

Rich Poor Rich Poor Rich Poor Rich Poor

4 1 6 2 2 3 2 1

SIR/XS PQL Procedures 134

THEN

Specifying THEN between two variables or two clauses in effect concatenates two
independent tables with all values of the first table followed by all values of the table.
The plus (+) symbol can be used instead of THEN .

Example: THEN

The following header expression results in the independent tabulation of individual
occurrences of the two values for each of the two variables:

HEADER = (AGE THEN SEX)

Young Old Male Female

10 11 13 8

When two variables are joined by THEN, each value of each variable defines a cell. The
number of cells produced is the sum of the number of values for each variable.

SIR/XS PQL Procedures 135

Combining BY and THEN

BY takes precedence over THEN when the two operators are used in combination in an
expression. Use parentheses to specify a different precedence.

Example: BY and THEN

The following examples show various combinations of the same variables in a header
expression. In the first example, since nesting takes precedence, SEX is nested with
INCOME, and the result of that nesting operation is concatenated with AGE.

HEADER = (AGE THEN INCOME BY SEX)

Rich Poor
Young

Old Male Female Male Female

10 11 10 4 3 4

The next example concatenates AGE and INCOME and nests SEX within both AGE and
INCOME, using parentheses to cause the concatenation operator to be applied first.

HEADER = ((AGE THEN INCOME) BY SEX)

Young Old Young Old

Male Female Male Female Male Female Male Female

5 5 8 3 10 4 3 4

Other combinations might be:

HEADER = (AGE BY INCOME THEN SEX)

Young Old

Rich Poor Rich Poor

Male

Female

6 4 8 3 13 8
HEADER = (AGE BY (INCOME THEN SEX))

Young Old

Rich Poor Male Female Rich Poor Male Female

6 4 5 5 8 3 8 3

Nesting and concatenation can also be used in the stub and wafer expressions.

SIR/XS PQL Procedures 136

Variable Types

 Tabulate uses numeric variables only. This includes categorical variables, which are
numeric codes representing discrete string values. In a VisualPQL program, string
variables can be recoded into numeric categorical values. There are two types of numeric
variables; variables with discrete categories, known as CONTROL variables and variables
with continuous values, known as OBSERVATION variables.

Tabulate determines the tabulation type of a variable from the information in the variable
schema according to the following rules:

• Variables that are CATEGORICAL, or have VALID VALUES or have VALUE LABELS
are control variables. All other variables are observation variables.

• Database and table variables may be explicitly declared as CONTROL VARS or
OBSERVATION VARS in the data dictionary.

• Variables implicitly defined with GET VARS maintain their tabulation type.
• The CONTROL VARS and OBSERVATION VARS commands in a VisualPQL program

assign an explicit tabulation type to local variables created in the program.
• The tabulation type of variables can be modified in the tabulate statement.
• Variables declared as CONTROL variables must have ranges specified.

Most variables are either control or observation. For example, salary would be an
observation variable and department would be a control variable. However, some
variables may be reasonably used in either way. A variable containing number of persons
per family might be used as a control variable in one table but might be aggregated in
another table along with a count of families, in order to get the average persons per
family. Such a variable can be defined as observation type in the VisualPQL program or
database and then reclassified in the TABULATE statement as a control variable.

If a control variable contains missing values, the record is normally excluded from the
body of the tabulation. Categories can be generated to show cells for missing control
variables. If an observation variable contains missing values, the record is normally
included but the variable is not computed into the cell contents. This can give rise to
situations where overall totals do not agree with counts in the body of the table. Specify
the DELETEMISSING keyword to exclude records where any cross-tabulated variable has a
missing or undefined value.

SIR/XS PQL Procedures 137

Cell Contents

Different types of variables combine to give different cell contents and a different table.

Control variables provide classifications which determine the structure of the table and
the presence of a particular cell. Observation variables give the result that appears in the
cell.

When two control variables are cross tabulated or nested, the content of the cell is a count
of the number of occurrences of data which match that combination of values.

When an observation variable is cross tabulated or nested with a control variable, the
total (sum) for the observation variable is the default. That is, the structure of the table is
unaltered by the inclusion of an observation variable but, instead of a count of data
appearing in the cell contents, a total of the observation variable is calculated and an
appropriate header label printed. Other statistics can be specified for observation
variables.

Two observation variables cannot be cross tabulated or nested within each other and
therefore observation variables may be specified in one and only one expression
(dimension) of the TABULATE statement.

Different types of information are reported in the cell contents for Control and
Observation variables. For Control variables, which have discrete values, counts or
percentages are reported. For Observation variables, which have continuous values, a
variety of cell statistics are reported, the default being a sum of the values. For any cell
that cross tabulates a control and an observation variable, the observation variable
statistics are reported.

Example: Observation Variables

In the following three examples, the observation variable SALARY is included in the
expression. The number in any given cell is the sum of the SALARY values from each
record having the combination of values for the control variables for that particular cell.
The placement of the observation variable in the header expression determines the
placement of the label, but does not alter the content of the table. The observation
variable does not alter the number of cells. Observation variables and counts may be
specified in a single expression in various ways:

HEADER = (SALARY BY AGE BY SEX) STUB = (REGION)

SALARY

Young Old

SIR/XS PQL Procedures 138

 Male Female Male Female

North..........
South..........

2800
2200

5650
11700

20100
4950

3200
5000

HEADER = (SEX THEN (SALARY BY SEX) STUB = (AGE)

Current Monthly Salary
Male

Female Male Female

Young...
Old.....

5
8

5
3

13050
21900

14450
8200

HEADER = (AGE BY (SEX THEN SALARY)) STUB = (REGION)

Young Old

Male

Female

Current
Monthly Salary

Male

Female

Current
Monthly Salary

North....
South....

3
2

2
3

13600
13900

6
2

1
2

20150
9950

SIR/XS PQL Procedures 139

Variable Modifiers

Modifiers change the attributes of a variable in an expression. These have the form:

variable[.modifier][.modifier]...

Several modifiers can be appended to a single variable. The modifiers and their
abbreviations are:

.CONTROL (.C)
.OBS (.O)
.FIRST (.F)
.TOTAL (.T)
.MISSING (.M)
.UNDEFINED (.U)
.SPAN (.S)
.NOSPAN (.NOS)

The .CONTROL and .OBS modifiers alter the default tabulation type of a variable (i.e.
control or observation). The .CONTROL modifier may only be specified for an observation
variable if valid ranges have been specified for it.

The .FIRST modifier is used in conjunction with the percent base marker as described in
the section on percentages. It specifies that the first occurrence of the percent base marker
is used.

The .TOTAL modifier automatically concatenates a TOTAL control variable as described in
the section on TOTAL. The TOTAL is displayed before the variable being modified.

When a control variable has a missing or undefined value, it is normally excluded from
the detail cells in the table. Specify the .MISSING or .UNDEFINED modifiers to generate
additional cells in the table. The .UNDEFINED modifier groups all missing and undefined
values into a single cell. The .MISSING modifier displays undefined and each defined
missing value as separate cells. These modifiers override any DELETEMISSING
specification for that variable.

Example: Undefined Modifier

SIR/XS PQL Procedures 140

HEADER = (AGE.T.U)

TOTAL Young Old AGE=
UNDEFINED

22 10 11 1

 By default, the rows and columns of a table are labeled with value labels (if they exist)
or with the "variable=value" notation. The .SPAN modifier generates a second level of
heading for a variable. This heading is either the variable label (if it exists) or the variable
name. This new heading "spans" all the categories of the variable, hence the name .SPAN.

Example: SPAN Modifier

The next two tables illustrate the effect of .SPAN. The only difference between them is
the .SPAN modifier in the second table.

HEADER = (AGE BY SEX) STUB = (REGION)

Young Old
Male Female Male Female

North..........
South..........

3
2

2
3

6
2

1
2

HEADER = (AGE.S BY SEX.S) STUB = (REGION.S)

AGE

Young Old

Gender

Male Female Male Female

REGION
North..........
South..........

3
2

2
3

6
2

1
2

The SPANNERS option can be used to turn on spanning labels for all variables. The
.NOSPAN modifier turns off spanning labels for a particular variable when the SPANNERS
option is in effect.

SIR/XS PQL Procedures 141

Statistics

Other than TOTAL, statistics are used with observation variables. Statistics are specified
with the BY keyword to associate them to an observation variable.

There are two methods of specifying statistics.

The first method is to specify a pseudo-variable in the expression and to use one
of the statistical option clauses to specify the statistic and label to produce in the
form:

keyword = pseudo-variable 'label'

The 'label' is optional but the variable name is required.

The second method is to use a statistical keyword directly. In effect, these are pre-
defined, convenient pseudo-variables with standard labels. (This method cannot
be used with NORMALIZED, PERCENT, QUANTILE and RANGE, since additional data
is required on the specification.)

The statistical clauses are:

COUNT A count of records in this category.
CSS Corrected Sum of Squares, where the

cell = sum of squares - ((sum**2)/n).
CV Coefficient of Variance, where the

cell = (standard deviation/mean) * 100.
CVERR Coefficient of Error, where the

cell = (standard error/mean) * 100.
MAXIMUM Maximum value of the variable.
MEAN Mean value of the variable.
MEDIAN Median value of the variable.
MINIMUM Minimum value of the variable.
MISSING Count of missing values in the variable.
NORMALIZED* Normalized quantiles (by median value) where cell =

(quantile/median) * 100.
PERCENT* Percentage, where cell = (cell/base) * 100.

SIR/XS PQL Procedures 142

QUANTILE* Quantile, equal or unequal quantiles can be specified.
RANGE* Range produces the range of the variable expressed as the

difference between the lowest and the highest values encountered.
The format of the range clause is:
RANGE = variable (lo,hi) ['label']
The specification of the lo and hi values defines the outer limits of
any values to be included in the calculation. This can be used, for
example, to exclude negative or zero values or very high numbers
used as some coding convention.

STDERR Standard Error where cell = standard deviation/sqrt(n).
STDEV Standard Deviation about the mean.
TOTAL Count of records. When cross tabulated with an observation

variable, gives sum of values of the observation variable.
TSTATISTIC T-Statistic where cell = mean/standard error.
USS Uncorrected Sum of Squares where cell = sum of squares.

* Cannot be used as keywords directly in an expression.

Example Statistical Clauses

The TOTAL clause specifies that the pseudo-variable N is a total, with the label 'Valid
Cases'. The MEAN and STDEV clauses assign labels for these pseudo-variables to 'X Bar'
and 'Sigma'.

TABULATE HEADER = (N THEN SALARY BY (MEAN THEN STDEV)) STUB = (SEX)
 TOTAL = N 'Valid Cases'
 MEAN = MEAN 'X Bar'
 STDEV = STDEV 'Sigma'

Current monthly
salary

Valid
Cases X Bar Sigma

Male...........
Female.........

13
8

2688
2831

486
746

The pseudo-variables created can be used anywhere that is valid. If the pseudo-variable is
a TOTAL it is a control variable, otherwise it is an observation variable. Multiple pseudo-
variables can be created and assigned to the same keyword. In the next example, both N
and SUM are totals, N is the count of records and SUM is the total SALARY.

TABULATE HEADER = (N THEN SALARY BY (SUM THEN MEAN THEN STDEV)) STUB =
(SEX)
 TOTAL = N 'Valid Cases' SUM 'Sum'
 MEAN = MEAN 'X Bar'

SIR/XS PQL Procedures 143

 STDEV = STDEV 'Sigma'

Current monthly salary

Valid
Cases Sum X Bar Sigma

Male...........
Female.........

13
8

34950
22650

2688
2831

486
746

Example: Statistical keywords

HEADER = (SALARY BY (MIN THEN MAX)) STUB = (SEX)

Current monthly
salary
MINIMUM MAXIMUM

Male...........
Female.........

2000
1650

3600
4000

Keywords must be nested within an observation variable. Keywords may not be nested
within each other; they may be concatenated. For example, SALARY BY MEAN BY STDEV
is not allowed; SALARY BY (MEAN THEN STDEV) is allowed.

Accuracy and ISDNUMBER

Medians and quantiles are estimates of the true values. The accuracy of the estimates is
governed by a value called the interval size designator or ISD number . This number is
initially set to 4 which means that the maximum relative error in a median or quantile
estimate should not exceed 12.5%. The value is usually more accurate if the values are
distributed smoothly. Set the ISD number explicitly by using the clause:

ISDNUMBER = n /

that sets the ISD number to n. Increasing the ISD number by 1 cuts the maximum relative
error in half while doubling the internal storage required to compute the medians or
quantiles. The ISDNUMBER clause must precede the clauses it is to affect. For example,

TABULATE HEADER = (SALARY BY (MEAN THEN Q)) STUB = (TOTAL THEN
REGION)
 ISDNUMBER = 5
 QUANTILES = Q 'Quantiles' 4

SIR/XS PQL Procedures 144

Total

 TOTAL can be specified as an independent control variable which is a count of records. It
is specified in exactly the same way as other statistics (using either pseudo-variables or a
keyword). However, since it is a control variable rather than an observation variable, it
operates in a different manner.

Example: TOTAL

HEADER = (AGE THEN TOTAL)

Young Old TOTAL

10 11 22

The control variable, AGE, with two classifications is concatenated with TOTAL. The total
column equals the count of all occurrences at the appropriate level of nesting. (Note that
records with undefined values have still been counted.)

HEADER = (SALARY THEN TOTAL)

Current
monthly
salary

TOTAL

57600 22

SALARY is an observation variable and thus the sum is displayed by default. The keyword
TOTAL is a control variable and displays a count. Cross tabulating or nesting TOTAL with
either control or observation variables is allowed since it is a control variable. As per the
standard rules for cell contents, if TOTAL is nested with a control variable, a count is
produced; if it is nested with an observation variable, a sum of the observation variable is
produced.

Example: TOTAL with BY and THEN

The following header expression uses the observation variable SALARY and the control
variables AGE and SEX:

HEADER = (SALARY BY AGE BY (TOTAL THEN SEX))

Current Monthly Salary

Young Old

SIR/XS PQL Procedures 145

TOTAL Male Female TOTAL Male Female

27500 13050 14450 30100 21900 8200

Since TOTAL is nested within an observation variable, this column contains the total
SALARY for each AGE group.

TOTAL shorthand notation

There is a shorthand notation for TOTAL. Appending a single T to the variable name
separated by a period specifies that a TOTAL is produced before the variable. The
following two expressions are identical:

TOTAL THEN AGE
AGE.T

A tabulate statement can be shortened as follows:

TABULATE HEADER = (SALARY BY AGE BY (TOTAL THEN SEX))
TABULATE HEADER = (SALARY BY AGE BY SEX.T)

SIR/XS PQL Procedures 146

Normalized and Quantiles

 Normalized and Quantile specifications are very similar to other statistics but have to
supply some additional information. This can take one of two forms:

In the first form, the quantity "n" specifies the number of equal-sized quantiles to be
produced. Of these, n-1 are printed. Thus for n=4, TABULATE prints output for the 25%,
50% and 75% quantiles. In the second form a number of non-equal sized quantiles are
produced and each n specifies the quantiles to produce. For example, specifying Ns of 15
and 85 produces the 15th and 85th percentage quantiles. Both forms allow specification
of labels. In the first form, when labels are used for individual quantiles, the commas
separating 'label1', 'label2', etc. are required.

1) keyword = variable ['label'] n ['label1', ...]
2) keyword = variable ['label'] (n1) ['label'] (n2)...

Example: Quantiles

TABULATE HEADER = (SALARY BY (MEAN THEN Q)) STUB = (REGION.T)
 QUANTILES = Q 'Quantiles' 4

Current monthly salary

Quantiles

MEAN

QUANTILE-
=25

QUANTILE-
=50

QUANTILE-
=75

TOTAL.......
North........
South........

2743
2813
2650

2311
2238
2369

2678
2825
2538

3222
3315
2913

A specification in the first form , with multiple labels:

TABULATE HEADER = (SALARY BY (MEAN THEN Q)) STUB = (REGION.T)
 QUANTILES = Q 'Quantiles' 4 '25%', 'Median', '75%'

Current monthly salary

Quantiles

MEAN 25% Median 75%

TOTAL........
North........
South........

2743
2813
2650

2311
2238
2369

2678
2825
2538

3222
3315
2913

SIR/XS PQL Procedures 147

A specification in the second form:

TABULATE HEADER = (SALARY BY (MEAN THEN Q)) STUB = (REGION.T)
 QUANTILES = D 'Deciles' (10) '10th' (50) '50th' (90) '90th'

Current monthly salary

Deciles

MEAN 10th 50th 90th

TOTAL........
North........
South........

2743
2813
2650

2051
1973
2267

2678
2825
2538

3407
3647
3265

SIR/XS PQL Procedures 148

Percentages

 TABULATE can calculate and display percents. Tables can be specified which display just
percentages or which also include the original values.

Tables can be specified which contain row percentages, column percentages or overall
percentages. Multiple percentages can be displayed in a single table. A single table can
have percentages computed from more than one base value. However a table cannot have
any cell which is an intersect of two percentage calculations. This means that all
percentage cells must appear in a single expression; there cannot be percentages in both a
row and column expression.

To display percentages, specify where the percents appear and the base of each percent
calculation. Use the PERCENT option to define a pseudo-variable and then reference this in
an expression to display the percent. Specify the base variable to use to calculate the
percentage by appending a percentage symbol (%) and the same pseudo-variable name to
a base variable. The only valid base variables are TOTAL control variables, typically cross
tabulated against the observation variable that is the percentage variable.

Shorthand Notation for Base Marker Specification

If a percent base marker is appended to a variable, it specifies that a TOTAL precedes the
variable and that this is the base. For example, the following expressions are equivalent:

TOTAL%X THEN REGION
REGION%X

This shorthand notation can simplify the tabulate expressions. For example, both the
following statements are equivalent:

TABULATE HEADER = (TOTAL%X THEN REGION) STUB = (X BY (TOTAL%X THEN
AGE))
TABULATE HEADER = (REGION%X) STUB = (X BY AGE%X)

The table output is the same in both cases. With the shorthand form, the label of the
created TOTAL category is always "TOTAL".

A brief review of .T and %X notation: An expression such as AGE.T, produces three
rows or columns - TOTAL,Young and Old. An expression such as REGION%X, produces
three categories - TOTAL, North and South. It also specifies the TOTAL column as the

SIR/XS PQL Procedures 149

percent base. The sub-expression, X.T, is the same as TOTAL THEN X and produces two
cells for each category.

The basics of producing percentages in tables are covered in simple percentages. You can
also get percentages with observation variables and tables with values and percentages.
Tables can have percentages for row totals and can be displayed in different wafers.
There are numerous examples of different tables using percentages in percentage
examples.

SIR/XS PQL Procedures 150

Percentages with Counts

The simplest percentage tables are produced with control variables and cell contents are
therefore counts. Consider the following standard table:

HEADER = (TOTAL THEN REGION) STUB = (TOTAL THEN AGE)

 TOTAL North South

TOTAL..........
Young..........
Old............

22
10
11

12
5
7

9
5
4

To add percentages to this table, define a pseudo-variable, say X, and reference this on
PERCENT clause, for example:

PERCENT = X 'Percent'

Choose the base row or column for the percentage computations. Base cells are indicated
within an expression by appending a percentage symbol (%) and the pseudo-variable to
the base variable. For row percentages, there must be a total column for the base or
100% column. In the example, the TOTAL variable in the header expression is the total
column. Therefore, append %X to TOTAL to make it the base for percentage calculations.

Decide where to place the percent variable X, ensuring that it is nested correctly.
Specifying it in the header expression or in the stub expression only affects the labeling
of the table.

Row Percents

TABULATE HEADER = (X BY (TOTAL%X THEN REGION)) STUB = (TOTAL THEN AGE)
 PERCENT = X 'Percent'

Percent
TOTAL North South

TOTAL..........
Young..........
Old............

100
100
100

55
50
64

41
50
36

SIR/XS PQL Procedures 151

The total (100%) and regional percentages for each age group (row) are displayed in the
table. The table contains only percentages because the percent variable, X, is at the
highest level of the header expression nesting. The remainder of the header, (TOTAL
THEN REGION), is nested within X. The percent marker, %X, specifies the header column
TOTAL as the 'set' of base cells for this table's percent calculations. Each cell value for
TOTAL is the base for the percents in its row. For example, the calculations for the first
row of the table are:

TOTAL = 2200/2200 * 100 = 100
 North = 1200/2200 * 100 = 55
 South = 800/2200 * 100 = 41

Note: The above illustrates the effect of missing values in a control variable. Some
records had missing values in REGION and thus the columns do not reflect these records.
If required, specify the MISSING modifier on REGION to generate an extra column for
those records.

Moving X to the stub expression changes the labeling of the table but not its contents:

TABULATE HEADER = (TOTAL%X THEN REGION) STUB = (X BY (TOTAL THEN AGE))
 PERCENT = X 'Percent'

 TOTAL North South

Percent
TOTAL..........
Young..........
Old............

100
100
100

55
50
64

41
50
36

Column Percents

To display column percentages instead of row percentages, use a total row to be the base
or 100% row.

In the example, move the base marker, %X, from TOTAL in the header and append it to
TOTAL in the stub:

TABULATE HEADER = (X BY (TOTAL THEN REGION)) STUB = (TOTAL%X THEN AGE)
 PERCENT = X 'Percent'

Percent
TOTAL North South

TOTAL.......... 100 100 100

SIR/XS PQL Procedures 152

Young..........
Old............

45
50

42
58

56
44

As in the preceding table, the percent variable, X, is nested with all cells of the table so
that all cells contain percents. In this table, however, the percent marker, %X, specifies the
TOTAL row in the stub expression as the set of base cells for this table's percent
calculations. For example, the calculations for the first column of the table are:

 TOTAL = 2200/2200 * 100 = 100
 Young = 600/2200 * 100 = 45
 Old = 1400/2200 * 100 = 50

Base Markers in Both the Header and the Stub

• If the percent base marker is appended to a total column in the header expression,
row percentages are produced.

• If the percent base marker is appended to a total row in the stub expression,
column percentages are produced.

To get overall or grand total percentages, place the percent base markers in both the stub
and the header. By convention, the cell (or cells) at the intersection of the base row and
column are considered the base cells for the table.

TABULATE HEADER = (X BY (TOTAL%X THEN REGION)) STUB = (TOTAL%X THEN
AGE)
 PERCENT = X 'Percent'

Percent
TOTAL North South

TOTAL..........
Young..........
Old............

100
45
50

55
23
32

41
23
18

In this table, all percentages are measured using the first cell of the table as the base. This
cell is at the intersection of the stub TOTAL row and the header TOTAL column.

SIR/XS PQL Procedures 153

Percentages with Observation Variables

Percentages of observation variables can be produced but at least one control variable
must be nested with the percent variable.

Example: Percentages for Observation Variables

The following shows salary by age group:

TABULATE HEADER = (SALARY BY (TOTAL THEN AGE))

Monthly salary

TOTAL Young Old

57600 27500 30100

The corresponding percentage table is:

TABULATE HEADER = (X BY SALARY BY (TOTAL%X THEN AGE))
PERCENT = X 'Percent' /

Percent

Monthly salary

TOTAL Young Old

100 48 52

Moving the clause (TOTAL%X THEN AGE) to the front of the expression, results in the
same data in the table with different labeling:

TABULATE HEADER = ((TOTAL%X THEN AGE) BY X BY SALARY)
 PERCENT = X 'Percent'

TOTAL Young Old

Percent Percent

Monthly salary Monthly salary Monthly salary

100 48 52

SIR/XS PQL Procedures 154

Original Values and Percents

Original values can be included as well as the percents. In the examples that follow, all of
the manipulations are performed in the header expression. However, they could equally
be done in stub or wafer expressions.

The following has alternating columns of original values and percents. Note only the cells
nested within the percent variable X contain percents.

TABULATE HEADER = (REGION%X BY X.T) STUB = (AGE.T)
 PERCENT = X 'Pct' /

TOTAL North South
TOTAL Pct TOTAL Pct TOTAL Pct

TOTAL......
Young......
Old........

22
10
11

100
100
100

12
5
7

55
50
64

9
5
4

41
50
36

Instead of presenting the data in alternating columns, it could be grouped into separate
blocks of frequencies and percents by inverting the order of the header expression.

TABULATE HEADER = (X.T BY REGION%X) STUB = (AGE.T)
 PERCENT = X 'Pct' /

TOTAL Pct
TOTAL North South TOTAL North South

TOTAL.....
Young.....
Old.......

22
10
11

12
5
7

9
5
4

100
100
100

55
50
64

41
50
36

SIR/XS PQL Procedures 155

Percents for Row Totals.

TABULATE HEADER = (TOTAL THEN (X BY REGION%X)) STUB = (AGE.T)
 PERCENT = X 'Pct' /

Pct TOTAL
TOTAL North South

TOTAL..........
Young..........
Old............

22
10
11

100
100
100

55
50
64

41
50
36

An analogous set of tables can be designed for percentages and totals of an observation
variable. The following table displays alternating columns of total salary and percentage.

TABULATE HEADER = (SALARY BY SEX%X BY X.T STUB) = (AGE.T)
 PERCENT = X 'Pct'

Current monthly salary

TOTAL Male Female

TOTAL Pct TOTAL Pct TOTAL Pct

TOTAL.....
Young.....
Old.......

57600
27500
30100

100
100
100

34950
13050
21900

61
47
73

22650
14450
8200

39
53
27

This table groups all salary columns followed by all the percent columns.

TABULATE HEADER = (SALARY BY X.T BY SEX%X) STUB = (AGE.T)
 PERCENT = X 'Pct'

Current monthly salary

TOTAL Pct

TOTAL Male Female TOTAL Male Female

TOTAL.....
Young.....
Old.......

57600
27500
30100

34950
13050
21900

22650
14450
8200

100
100
100

61
47
73

39
53
27

The following shows total salary for both sexes and percentage by sex.

TABULATE HEADER = (SALARY BY (TOTAL THEN (X BY SEX%X))) STUB = (AGE.T)
 PERCENT = X 'Pct'

SIR/XS PQL Procedures 156

Current monthly salary

Pct
TOTAL TOTAL Male Female

TOTAL.....
Young.....
Old.......

57600
27500
30100

100
100
100

61
47
73

39
53
27

SIR/XS PQL Procedures 157

Percentages in Wafers

It is possible to display frequencies and percentages in different wafers of the same table.
For example:

TABULATE HEADER = (REGION%X) STUB = (AGE%X) WAFER = (X.T)
 PERCENT = X 'Percent'

The wafer expression is X.T which stands for TOTAL THEN X. Thus the table consists of
two wafers, the first wafer contains totals and the second contains percentages. Each
wafer is a two-dimensional table of AGE (in the stub) by REGION (in the header). Since the
base marker, %X, appears in both the stub and the header, the percentage wafer contains
overall percentages. The following two wafers are the output of the previous tabulate
statement:

HEADER = (REGION%X) STUB = (AGE%X) WAFER = (X.T)
Table of Contents:
TOTAL.. page 1
Percent...................................... page 2

HEADER = (REGION%X) STUB = (AGE%X) WAFER = (X.T)
TOTAL..............

 TOTAL North South

TOTAL..........
Young..........
Old............

22
10
11

12
5
7

9
5
4

(On next page)

HEADER = (REGION%X) STUB = (AGE%X) WAFER = (X.T)
Percent............

 TOTAL North South

TOTAL..........
Young..........
Old............

100
45
50

55
23
32

41
23
18

SIR/XS PQL Procedures 158

Example percentage tables

The following examples illustrate some of the different ways to display percentages. The
examples are all based on the following table of frequency counts.

TABULATE HEADER = (REGION.T) STUB = (AGE.T BY SEX.T)

 TOTAL North South

TOTAL
TOTAL...........
Male............
Female..........
Young
TOTAL...........
Male............
Female..........
Old
TOTAL...........
Male............
Female..........

22
13
8

10
5
5

11
8
3

12
9
3

5
3
2

7
6
1

9
4
5

5
2
3

4
2
2

Base marker appended to AGE

This table contains nine base (100%) cells. The TOTAL for AGE is the base cell (AGE%X).
Since SEX.T is nested within AGE, there are three base cell rows, and since the header
contains three columns (REGION.T) there is a total of nine base cells (three columns times
three rows).

TABULATE HEADER = (X BY REGION.T) STUB = (AGE%X BY SEX.T) PERCENT = X
'Percent'

Percent
TOTAL North South

TOTAL
TOTAL..........
Male...........
Female.........
Young
TOTAL..........
Male...........
Female.........
Old
TOTAL..........
Male...........

100
100
100
45
38
63
50
62
38

100
100
100
42
33
67
58
67
33

100
100
100
56
50
60
44
50
40

SIR/XS PQL Procedures 159

Female.........

Base marker appended to SEX

Note that the nine base cells now occur where TOTAL for SEX appears.

TABULATE HEADER = (X BY REGION.T) STUB = (AGE BY SEX%X) PERCENT = X
'Percent'

Percent
TOTAL North South

Young
TOTAL..........
Male...........
Female.........
Old
TOTAL..........
Male...........
Female.........

100
50
50

100
73
27

100
60
40

100
86
14

100
40
60

100
50
50

Use of FIRST

In the previous table, base rows appeared at every occurrence of the TOTAL variable for
SEX. The next table uses .FIRST to restrict the base row to the first occurrence of TOTAL
for SEX.

TABULATE HEADER = (X BY REGION.T) STUB = (AGE BY SEX%X.F)
 PERCENT = X 'Percent'

Percent
TOTAL North South

Young
TOTAL..........
Male...........
Female.........
Old
TOTAL....... ...
Male...........
Female.........

100
50
50

110
80
30

100
60
40

140
120
20

100
40
60

80
40
40

Multiple Base Markers

SIR/XS PQL Procedures 160

The next three tables are similar to the first three with the addition of a second base
marker appended to REGION in the header. The base cells occur at the intersections of the
base rows and columns.

TABULATE HEADER = (X BY REGION%X) STUB = (AGE%X BY SEX.T)
 PERCENT = X 'Percent'

Percent
TOTAL North South

TOTAL
TOTAL..........
Male...........
Female.........
Young
TOTAL.....
Male...........
Female.........
Old
TOTAL..........
Male...........
Female.........

100
100
100

45
38
63

50
62
38

55
69
38

23
23
25

32
46
13

41
31
63

23
15
38

18
15
25

TABULATE HEADER = (X BY REGION%X) STUB = (AGE BY SEX%X)
 PERCENT = X 'Percent'

Percent
TOTAL North South

Young
TOTAL..........
Male...........
Female.........
Old
TOTAL....... ...
Male...........
Female.........

100
50
50

100
73
27

50
30
20

64
55
9

50
20
30

36
18
18

TABULATE HEADER = (X BY REGION%X) STUB = (AGE BY SEX%X.F)
 PERCENT = X 'Percent'

Percent
TOTAL North South

Young
TOTAL..........
Male...........
Female.........
Old

100
50
50

50
30
20

50
20
30

SIR/XS PQL Procedures 161

TOTAL....... ...
Male...........
Female.........

110
80
30

70
60
10

40
20
20

Multiple Percent Variables Within a Table

More than one percent distribution can be displayed in a single table by specifying more
than one percent variable. For example, the following two variables could be specified
representing row and column percentages:

PERCENT= PR 'Row Pct' PC 'Col Pct' /

Since PR represents row percentages, the base marker associated with PR must be in the
header expression. Similarly, since PC, represents column percentages, the base marker
associated with PC must be in the stub expression. In the example below, the results are
presented in two tables concatenated together. The first table contains row percentages,
the second contains column percentages.

TABULATE HEADER = ((PR + PC) BY REGION%PR) STUB = (AGE%PC)
 PERCENT = PR 'Row Pct' PC 'Col Pct'

Row Pct Col Pct
TOTAL North South TOTAL North South

TOTAL.....
Young.....
Old.......

100
100
100

55
50
64

41
50
36

100
45
50

100
42
58

100
56
44

Multiple percents in Rows

The next example presents the same data in a more conventional form. Notice (PR + PC)
is moved to the stub expression.

TABULATE HEADER = (REGION%PR) STUB = (AGE%PC BY (PR + PC))
 PERCENT = PR 'Row Pct' /
 PERCENT = PC 'Col Pct' /

 TOTAL North South

TOTAL
Row Pct.........
Col Pct.........
Young

100
100

55
100

41
100

SIR/XS PQL Procedures 162

Row Pct.........
Col Pct.........
Old
Row Pct.........
Col Pct.........

100
45

100
50

50
42

64
58

50
56

36
44

Example: Overall Percents

Overall percentages can be included in the same table by adding a third percent variable,
PT. Since PT is to represent overall percentages, append the PT base marker to both the
stub and the header variables.

TABULATE HEADER = (REGION%PR%PT) STUB = (AGE%PC%PT BY (PR + PC + PT))
 PERCENT = PR 'Row Pct'
 PERCENT = PC 'Col Pct'
 PERCENT = PT 'Tot Pct'

 TOTAL North South

TOTAL
Row Pct.........
Col Pct.........
Tot Pct.........
Young
Row Pct.........
Col Pct.........
Tot Pct.........
Old
Row Pct.........
Col Pct.........
Tot Pct.........

100
100
100

100
45
45

100
50
50

55
100
55

50
42
23

64
58
32

41
100
41

50
56
23

36
44
18

Counts and Multiple Percents

Counts can be included by adding the TOTAL keyword:

TABULATE HEADER = (REGION%PR%PT) STUB = (AGE%PC%PT BY (TOTAL + PR + PC
+ PT))
 TOTAL = TOTAL 'Count'
 PERCENT = PR 'Row Pct'
 PERCENT = PC'Col Pct'
 PERCENT = PT 'Tot Pct'

 TOTAL North South

TOTAL
Count...........
Row Pct.........

22
100

12
55

9
41

SIR/XS PQL Procedures 163

Col Pct.........
Tot Pct.........
Young
Count...........
Row Pct.........
Col Pct.........
Tot Pct.........
Old
Count...........
Row Pct.........
Col Pct.........
Tot Pct.........

100
100

10
100
45
45

11
100
50
50

100
55

5
50
42
23

7
64
58
32

100
41

5
50
56
23

4
36
44
18

Percentages in both Columns and Rows

It is not possible to produce a table which has a column of percentages on the total and a
row of percentages on the same total. The solution to this is to produce a second table on
the same file with a single row - the final percentages.

Suppose the table is a breakdown of males and females under and over forty. The basic
table (without percentages) is easily produced with a table statement such as:

TABULATE HEADER = (AGEGROUP.T) STUB = (GENDER.T)

However it is impossible to produce both sets of percentages in the same table. The
required output is the following:

 Total Young and
Old

Under
40 40+ % BY

AGE

Total Males and
Females 20 6 14 100%

Male 12 2 10 60%

Female 8 4 4 40%

% BY GENDER 100% 30% 70%

It is simple to add percentages to either the row totals, giving percentages of males and
females or the column totals giving percentages of age groups but not both at once. The
solution is to produce two tables in the one run:

TABULATE HEADER =(TOTY THEN AGEGROUP THEN X) STUB = (TOTX%X THEN
GENDER)
 FILENAME = A
 TOTAL = TOTX 'Total Males and Females'

SIR/XS PQL Procedures 164

 PERCENT = X '% BY AGE'
TABULATE HEADER = (TOTY%Y THEN AGEGROUP) STUB = (Y)
 TOTAL = TOTY 'Total Young and Old'
 PERCENT = Y '% BY GENDER'

Note that the second tabulate does not have a FILE clause and thus writes the output to
the same file. This second tabulate produces one row which is the required set of final
percentages.

SIR/XS PQL Procedures 165

Record Filtering
BOOLEAN = (logical expression)
SAMPLE = fraction
WEIGHT = varname
BOOLEAN Specifies which procedure table records are used by the procedure.

The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

WEIGHT Specifies an integer procedure variable used to weight the
frequency counts and aggregations. By default, each record adds a
count of 1 to frequency counts. Specifying a weight variable, adds
the value of that variable rather than 1. For example, if WEIGHT =
FAMSIZE were specified, then, in a table of RACE by REGION, a
procedure table record would contribute a count of 5 to the
RACE=1, REGION=2 cell of the table if it contained the data:
RACE=1 REGION=2 FAMSIZE =5

SIR/XS PQL Procedures 166

Print Formatting
PRINTFORMATS = var list (options,...) .../

 By default, cell contents are printed as integers. The PRINTFORMATS option is used to
alter the defaults. The options and their abbreviations are:

COMMAS (C) Separates groups of 3 digits by commas.
DECIMAL=n (n) Specifies the number of decimal places to be printed. A decimal

point is only printed when the number of decimal places is non-
zero.

DOLLAR (D) Places a floating dollar sign before the number.
PERCENT (P) Places a trailing percent sign after the number.

By default the DOLLAR, PERCENT and COMMAS options are not in effect and DECIMAL= 0
(i.e. numbers are printed as integers).

Use of the PRINTFORMATS clause.

TABULATE HEADER = (SALARY BY (TOTAL THEN (X BY SEX%X))) STUB = (AGE.T)
 PERCENT = X 'Pct' /
 PRINTFORMATS = SALARY (D,C) X (P,2) /

Current monthly salary

Pct
TOTAL

TOTAL Male Female

TOTAL..........
Young..........
Old............

$57,600
$27,500
$30,100

100.00%
100.00%
100.00%

60.68%
47.45%
72.76%

39.32%
52.55%
27.24%

TOTAL under SALARY is printed with dollar signs and commas. However, TOTAL under
PCT is printed with a percent sign and two decimal places because of the precedence
rules for print formats.

Precedence rules for print formats

• Except for percents, variables that have no assigned PRINTFORMAT are not
considered in the precedence analysis.

• PRINTFORMATS for percentages have the highest precedence. If a percent variable
is not assigned an explicit PRINTFORMAT, it is printed as an integer.

SIR/XS PQL Procedures 167

• In an expression containing an observation variable nested with a control variable,
the observation variable's PRINTFORMAT takes precedence.

• When a statistical keyword (e.g. MEAN, MAX, etc.) is nested with an observation
variable, the observation variable's PRINTFORMAT is used. When nesting variables,
the PRINTFORMAT of the variable lower in the nesting takes precedence.

For example:

TABULATE HEADER = (SALARY BY REGION BY (MIN THEN MAX))
 MINIMUM = MIN 'Lowest'
 MAXIMUM = MAX 'Highest'
 PRINTFORMATS = SALARY (D) MIN (2)MAX (2)

The salaries are listed with 2 decimal points and no dollar sign. To print the salaries with
dollar signs and no decimal points the expression is:

TABULATE HEADER = (REGION BY (MIN THEN MAX) BY SALARY)

• When an expression contains two or more nested control variables, the
PRINTFORMAT of the lowest variable in the nesting takes precedence.

• For the purposes of PRINTFORMAT precedence, the header expression has highest
precedence followed by the stub and then the wafer.

Labels

When control variable values are printed, they are labeled by their value labels. If there
are no value labels, the name of the variable and the individual value is displayed.

Observation variables are displayed in a summary cell labeled with the variable label. If
there is no variable label, the variable name is used.

When not enough room is provided in a table for label or title information, the label or
title is broken into two or more segments so that it can fit in the allotted space. The VALUE
LABELS command defines value labels for missing values including BLANK and
UNDEFINED.

SIR/XS PQL Procedures 168

Page Formatting
PAGETITLE = 'string'['string'['string']]
PAGELENGTH = n
PAGEWIDTH = n
COLLAPSE

The following options alter the default formatting of the page.

PAGETITLE Specifies the title printed left justified at the top of the page. By
default, the page title is the string "SIR/XS Tabulate Procedure"
and the page number is printed at the top right-hand side of the
page. The page title may consist of up to 3 lines. The first line
contains the page number. The second and third lines are printed if
there are wafers and/or if the wafers must be broken into chunks
(i.e. the wafer does not fit on a single page).

PAGELENGTH The maximum number of lines that can appear on a page.
Specifying PAGELENGTH = NOEJECT turns off paging. The default
PAGELENGTH value is the current output file page length. This must
include space for:
the page title and page number line(s),
the wafer title, wafer label, and the blank lines between,
the table (wafer) itself and any WAFERNOTES specified.

PAGEWIDTH Controls the width of the printed page. By default, tables are
printed centred within PAGEWIDTH print positions. The default
value is the current output file page width.

COLLAPSE If a wafer exceeds either PAGELENGTH or PAGEWIDTH, an attempt is
made to break the wafer into multiple 'chunks', each printed on a
separate page. The chunks appear in the output in order from left
to right, then top to bottom. The wafer and stub labels appear as
needed. The COLLAPSE option allows chunks of broken up wafers
to be printed on the same page. No more than 2 chunks are printed
per page. The default is not to collapse chunks into a single page.

SIR/XS PQL Procedures 169

Header Formatting
HEADERWIDTH = n
HEADERINDENTATION = n
HEADERDIVIDER = 'character'
NODIVIDERS
NOHEADERCENTER

The following options alter the default formatting of the column header.

HEADERWIDTH Specifies the width to be used in printing each column of the table.
This width does not include the column divider. The default
header width is 10 print positions.
If HEADERWIDTH is set too small, there may be insufficient room to
print a number in the table, in which case the field is filled with Xs.
Also, if HEADERWIDTH is too small, there may not be enough room
for the header labels to be printed and they may be severely
segmented. Conversely, if HEADERWIDTH is set too large, the table
header may contain too many print positions for one page. When
this occurs, the page is broken into chunks. Chunks are printed on
successive pages left to right, top to bottom.

HEADERINDENTATION Specifies the number of print lines for each level of the header
nesting. The default is 3 and it cannot be set smaller.

HEADERDIVIDER Specifies the character used as the column divider. The default is a
vertical bar (|). This character is used for both the label area of the
header as well as between the columns of data.

NODIVIDERS Sets the divider character between columns of data to blank. It
does not affect the label area of the header.

NOHEADERCENTER Left justifies header labels in a column. By default header labels
are centred in the column.

SIR/XS PQL Procedures 170

Stub Formatting
STUBTITLE = option 'string'
STUBWIDTH = n
STUBINDENTATION = n
STUBCONTINUATION = n
STUBHEIGHT = n
STUBFILLER = 'character'
STUBDIVIDER = 'character'

The following options alter the default formatting of the stub:

STUBTITLE Specifies a title which appears in the boxed in area to the left of
the header and directly above the stub labels. The options allowed
are CENTER, LEFT and RIGHT and control the justification of the
stub label. If the option is omitted, it is assumed to be CENTER. If
the stub title is too long, it is automatically segmented over two or
more lines. There is no default stub title.

STUBWIDTH Specifies the number of print positions for stub labels. The default
is 20 print positions.
If "too much" stub label segmentation occurs, TABULATE aborts
with a WAFER/STUB OUTPUT FORMATTING ERROR. The solution is
to increase the STUBWIDTH.

STUBINDENTATION Specifies the indentation for each level of nesting. The default is 2
print positions.

STUBCONTINUATION Specifies the indentation for continuation lines. A label which
exceeds the stub width is segmented into two or more lines.
Continuation lines are indented by the parameter. The default
indentation is 3 print positions.

STUBHEIGHT Specifies the number of print lines used for each stub label. The
default is 1 line. Label segmentation works independently from the
STUBHEIGHT parameter and, therefore, some stub labels may
occupy more than STUBHEIGHT lines.

STUBFILLER Stub labels (on lines which contain data) are filled with the
character to the full width of the stub. The default stub filler is a
period (.).

STUBDIVIDER Specifies the horizontal divider character. The default is the dash
(-).

Stub Formatting

SIR/XS PQL Procedures 171

TABULATE STUB = (AGE BY SEX) HEADER = (REGION.T)
 STUBTITLE = 'Age by Sex'
 STUBWIDTH = 20

Age by Sex TOTAL North South

Young
Male............
Female..........
Old
Male............
Female..........

5
5

8
3

3
2

6
1

2
3

2
2

TABULATE STUB = (AGE BY SEX) HEADER = (REGION.T
 STUBFILLER = ' '

 TOTAL North South

Young
Male
Female
Old
Male
Female

5
5

8
3

3
2

6
1

2
3

2
2

SIR/XS PQL Procedures 172

Wafer Formatting

WAFERTITLE = option 'string'
NOWAFERTITLE
WAFERCENTER
WAFERSTART = n
WAFERINDENTATION = n
WAFERCONTINUATION = n
WAFERHEIGHT = n

When a tabulate statement contains a wafer expression, each wafer produced contains a
wafer label in the upper left corner below the wafer title. If there is no wafer expression
in the tabulate statement, a wafer label is not printed.

Wafer labels are formed in the same way that header and stub labels are produced.

WAFERTITLE Specifies a wafer title printed above each wafer. By default, the
tabulate statement is printed as the wafer title, centred and one line
above the wafer (table). The option may be CENTER, LEFT or
RIGHT to position the wafer title over the wafer.

NOWAFERTITLE Suppresses printing of the wafer title.
WAFERCENTER Centres the wafer on the page. By default wafers are left justified

on the page.
WAFERSTART Specifies the starting print position for the wafer. Does not apply

when WAFERCENTER is specified.
WAFERINDENTATION Specifies the indentation used for each level of nesting in the

wafer title. The default is 2 print positions.
WAFERCONTINUATION Specifies the indentation for continuation lines when a wafer label

is broken up into multiple lines. The default is 3 print positions.
WAFERHEIGHT Specifies the number of print lines for the wafer label. The default

is 1. This height is automatically adjusted if a label does not fit in
the width of the wafer title and has to be segmented.

The number of print positions available for printing the wafer label is the same as the
width of the stub titles. If the wafer title does not fit, TABULATE reports a WAFER/STUB
OUTPUT FORMATTING ERROR. The solution is to increase the size of STUBWIDTH.

Wafers

SIR/XS PQL Procedures 173

The following table would consist of four wafers labeled as follows:

TABULATE WAFER = (AGE BY REGION) STUB = (SEX) HEADER = (RACE)
 Under 21
 North.......

 Under 21
 South.......

 21 and Over
 North.......

 21 and Over
 South.......

SIR/XS PQL Procedures 174

Other Options

HTML

NOBOTTOMBORDER

NOLEFTBORDER

NORIGHTBORDER

NOTES = 'string'
FOOTNOTES = 'string'

WAFERNOTES = 'string'

NOZEROS

ZEROCHARACTER = 'character'

NOEMPTYROWS

DELETEMISSING

UPPERCASE

SPANNERS

DUMMY

 = variable 'label' ...
LANGUAGE

HTML

Specifies that the output file contains data in html format for viewing by a browser or
other package which expects this format.

SIR/XS PQL Procedures 175

When output is in html format, then the print formatting, page formatting and many of
the general output control options can be specified but have no effect. There is no control
over the detailed appearance of the table. The general shape of the table is dictated by the
table expressions and the specifics of the table appearance depend on the software used to
view and/or print the resulting html.

Border Generation

By default all borders are generated. The NOBOTTOMBORDER, NOLEFTBORDER and
NORIGHTBORDER options alter the production of the left, right and bottom borders of
each wafer. They can be used in conjunction with the HEADERDIVIDER and STUBDIVIDER.

Footnotes

There are no default footnotes. NOTES specifies text printed at the end of the Table of
Contents which is produced if there are multiple wafers or a NOTES option specified.
FOOTNOTES specifies text printed on a new page following all wafers. WAFERNOTES
specifies text printed at the end of each wafer or chunk of a wafer.

Zero Printing

By default zeros are printed as a 0 (or as specified in the PRINTFORMAT statement).
Specify NOZEROS to print zeros as dashes (-). Specify ZEROCHARACTER to print another
character for zero cells.

Suppression of Empty Rows and Wafers

An empty row or wafer is one that contains zero in all cells. By default empty rows are
printed. In a table with a single wafer or with no wafer expression at all, the table is
printed whether it is empty or not. If multiple wafers are produced, empty wafers are
automatically deleted. The deletion is noted in the table of contents. Empty columns
cannot be deleted. NOEMPTYROWS suppresses the printing of empty rows.

Exclusion of Records with Missing Values

Specify DELETEMISSING to exclude records where any of the cross tabulation variables
have missing or undefined values in a variable.

Converting Text to Uppercase

Specify UPPERCASE to convert text to uppercase. By default, both upper and lower case
are used.

Spanner Labels

SIR/XS PQL Procedures 176

Specify the SPANNERS option to produce spanner labels for all control variables. Specify
spanner labels on a per variable basis with the .SPAN modifier. When the SPANNERS
option is in effect, suppress spanner labels for an individual variable with the .NOSPAN
modifier.

Dummy Spanner Labels

Specify the DUMMY clause to create label information that is not related to any specific
variable. The DUMMY clause creates a dummy variable whose sole purpose is to carry label
information into the table. Dummy spanner labels can be used to span concatenated
expressions.

Example: Dummy Spanner Labels

TABULATE HEADER = (J BY (SEX THEN REGION))
 DUMMY = J 'Sex and region Data'

 Sex and region Data

 Male Female North South

Dummy.......... 13 8 12 9

Language

If a language is specified, the effect is to produce translated versions of the following
words or phrases:
SIR/XS Tabulate Procedure, Footnotes, Notes,Page, empty/deleted, Table of Contents,
cont'd, of, Wafer, and, Chunk.
Recognised language keywords are HEBREW, DUTCH and GERMAN.

String Specifications

Whenever an option includes the specification of strings or labels, a string can be
specified in multiple segments using the following format:

'segment' option 'segment'

Option can be a plus (+), blank or minus(-); the different characters specify where strings
can be broken across lines:

Plus (+) simply concatenates two segments; blank forces a line break between the two
segments; minus (-) specifies optional segmentation as per the following rules.

Label Segmentation

SIR/XS PQL Procedures 177

If a label does not fit, it is broken into segments by splitting the text at an appropriate
breakpoint. The breakpoint is chosen by searching the label from right to left looking for
one of the following conditions taken in sequence:

• Forced break.
• Conditional break.
• Space, hyphen, or underscore.
• Vowels. If a vowel is found, the break occurs after the vowel, with that segment

followed by a hyphen when printed.

If no breakpoint is found, the label is truncated at a point which allows a hyphen to be
printed.

After the first line segment has been formed, all the remaining characters of the original
label to the right of the break character are considered next. If the remaining segment fits
in the allocated space, it is printed, otherwise, the first n characters of this portion of the
label (where n is the space available) are also scanned from right to left and segmented as
described above. This process continues until the entire label has been printed.

SIR/XS PQL Procedures 178

Error Processing

 There are two stages at which errors in the TABULATE command are detected, during
compilation and during execution. Errors detected during compilation cause error
messages to be displayed and the VisualPQL program is not executed. Errors detected
during execution cause the program to terminate.

If during compilation, a CELL CONTENTS ERROR error occurs, check that:

• Not more than 1 observation variable or statistic has been nested into the same
table cell.

• That there is an observation variable nested with each cell that contains statistics
such as mean and median.

• The base marker(s) have been specified for a percentage table.

The table is formatted after the program is run, and some problems are diagnosed at this
stage. The error WAFER/STUB OUTPUT FORMATTING ERROR implies that there is a problem
inserting the wafer and/or stub labels within their allocated space in each wafer. Usually
there are too many levels of nesting, within the wafer or stub, for the width of the
STUBWIDTH.

If there is not enough room on a page to print an entire row or column, TABULATE breaks
the wafer into + "chunks". If a BY clause has been specified, all of the rows or columns
beneath the highest level in a nesting must fit on a single page, otherwise a CHUNK
FORMATTING ERROR is reported. This implies that a wafer is too large to print on a single
page and that it cannot be broken at any 'clean' place to produce multiple 'chunks' of
output. A wafer can be broken into chunks only along the highest variable nested within
the stub or header. The solutions are to:

• Reorganise the TABULATE statement, or
• Change the size formatting options to fit more of each wafer onto each page.

SIR/XS PQL Procedures 179

WRITE RECORDS
The WRITE RECORDS procedure produces a fixed format data file and serves as a general
purpose interface to other programs. The WRITE command in VisualPQL also creates
output files. The WRITE RECORDS procedure allows an output file to be written in a
different sequence from the input data.

WRITE RECORDS FORMAT = (format_specifications)
 [FILENAME = filename]
 [VARIABLES = varlist | ALL]
 [LRECL = number]
 [MISSCHAR = char]
 [SHOWMISS]
 [UPPERCASE]
 [SORT = [(n)] variable [(A)|(D)] , ...]
 [BOOLEAN = (logical_expression)]
 [SAMPLE = fraction]
FORMAT The FORMAT clause describes the format of the variables output to

the file. Every output variable requires a format specification. The
order of the FORMAT clause specifications matches the order of
variables on the VARIABLES clause. The format specification list is
enclosed in parentheses.
FORMAT = (var1_fmt,var2_fmt,var3_fmt) /
VARIABLES = VAR1 VAR2 VAR3

The output record length may not exceed the value of LRECL
(Logical Record Length), the default for which is 80 characters.
Numbers in the output record are right justified within the field
size, strings are left justified. Data padding and spacing is with
blanks.
The following FORMAT specifications may be used:
Fw.d Floating point field, w characters

wide, d characters to the right of the
decimal point. The decimal point takes
up one of the w characters.

Iw Integer field, w characters wide, no
decimal point.

Aw Alphanumeric (string) field, w
characters wide.

Ew.d Exponential (scientific) notation w
characters wide, d characters to the
right of the decimal point. The
decimal point takes up one of the w

SIR/XS PQL Procedures 180

characters.
Bw String, printed Backwards (reversed),

right-justified and blank filled on the
left.

nX Skip n characters on the output record.
Tn Tab to column n before writing the

next variable. Tabbing may only be
done to the right.

'text' The specified string enclosed in
quotes is written to the output record.

If several variables have the same format, a repeat count can be
used, as in 5F4.1 or 3I6. Parentheses can be used to specify groups
of repeating format specifications as in 3(1X,I4,2A10).
Parenthetical expressions can be nested up to 10 levels deep. For
example:
 VARIABLES = TEST1 TEST2 TEST3 /
 FORMAT = 3(I3)

 VARIABLES = NAME1 TEST1 NAME2 TEST2 /
 FORMAT = 2(A15 , I3)
If the number of variables in the variable list exceeds the number
of format fields, the excess variables are output using the format
over again from the last nested left parenthesis. Each time the end
of the format is encountered, a new line is started in the output
file.

FILENAME Specify the filename created by the procedure. If this is not
specified, the default output file is used in batch or the scrolled
output buffer is written to in an interactive session.

VARIABLES Specifies the procedure variables written to the output data file.
The order in which variables are specified is the order in which
they appear in the output file. If this option is not specified, the
default variable list is used.

LRECL Specifies the logical record length written to the output file
produced by WRITE RECORDS. The default is 80 characters. The
format clause must not specify lines that exceed LRECL characters.

MISSCHAR Specifies the character used as the Missing or Undefined value
indicator. The default is a blank. For example, to have all missing
values represented by asterisks, specify:
MISSCHAR = *

SHOWMISS Specifies that a variable's original missing values are printed for
fields containing missing values. The default character is blank.
Missing values are always excluded from totals - this option only
affects printing.

SIR/XS PQL Procedures 181

UPPERCASE Specifies that string values are converted to uppercase.
SORT Specifies the sequence of the output. n is an integer that specifies

the maximum number of records to be sorted. The default for this
parameter is either the number of records in the database or the
value specified in the sortn parameter and need only be specified if
the number of records in the procedure table is greater than the
default. The procedure table is sorted by the specified variables in
variable list order. A variable name followed by (A) or (D)
specifies that for that variable the sort is in Ascending order (the
default) or in Descending order.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

Example

In this example, WRITE RECORDS creates a file named SCHOOL having 2 lines for each
procedure table record.

WRITE RECORDS FILENAME = SCHOOL
 VARIABLES= CASENO NAME SCHOOLNO SCHLNAME
 AGE GRADE SEX RESP1 TO RESP5
 FORMAT = (2(I6,A20),2I2,I1,/,5I1)

The first line of each pair contains the variables CASENO through SEX in the format
(I6,A20, I6, A20, I2, I2, I1). The second line contains the variables RESP1 to RESP5 in the
format (I1, I1, I1, I1, I1).

SIR/XS PQL Procedures 182

XML SAVE FILE

XML SAVE FILE
 FILENAME = filename
 [BOOLEAN = (logical expression)]
 [MISSCHAR = character]
 [SHOWMISS]
 [SAMPLE = fraction]
 [SORT = [(n)] variable [(A)|(D)] , ]

 [ROOT = 'string']
 BREAK = break_variable (TAG = 'string',
 ATTRIBUTES = (varname (format)),...),
 ELEMENTS = (varname (format)),...)),
 break_variable
 [DTD [= filename]]
 [SCHEMA [= filename]]

The XML SAVE FILE procedure produces a text file which is an Extensible Markup
Language, abbreviated XML, document. The XML File is a text file and consists of an
hierarchical set of tags which enclose lower levels of tags and, at some point, enclose
data. It resembles HTML, only it uses tags defined by users. Many products can now deal
with XML based files. (Note. Statements in this document do not purport to describe
XML or make comprehensive statements about the language but some explanation is
necessary to describe the clauses on the procedure command. There are published
standards for XML for those interested.)

An example bit of XML from within a document might be:

<company>
 <person>
 <name>John D Jones</name>
 <salary>2150</salary>
 <birthday>1986</birthday>
 </person>
 <person>
 <name>James A Arblaster</name>

SIR/XS PQL Procedures 183

 <salary>1500</salary>
 <birthday>1981</birthday>
 </person>
</company>

XML has its own standard for names (which is different to SIR/XS) and any names that
are generated by this procedure should meet this standard. XML names begin with
alphabetic character (or underscore _) and should not start with XML. They are case
sensitive and allow letters, numbers plus some special characters but no spaces.

FILENAME Specify the filename created by the procedure. If you do not
supply a file extension, then .xml is added to the filename as a
suffix.

BOOLEAN Specifies which procedure table records are used by the procedure.
The procedure table records for which the logical expression is
true are used by the procedure. If this option is not specified, all
procedure table records are used.

MISSCHAR Specifies the character used as the Missing or Undefined value
indicator. The default is a blank. For example, to have all missing
values represented by asterisks, specify:
MISSCHAR = *

SAMPLE Specifies that a random sample of the procedure table records are
used by the procedure.
The fraction specifies the percent of records used and is specified
as a positive decimal number less than or equal to 1 (one). .25, for
example specifies that a 25% sample be used.

SHOWMISS Specifies that a variable's original missing values are printed for
fields containing missing values. The default character is blank.
Missing values are always excluded from totals - this option only
affects printing.

SORT Specifies the sequence of the output. n is an integer that specifies
the maximum number of records to be sorted. The default is either
the number of records in the database or the value specified in the
sortn parameter and need only be specified if the number of
records in the procedure table is greater than the default. The
procedure table is sorted by the specified variables in variable list
order. A variable name followed by (A) or (D) specifies that for
that variable the sort is in Ascending order (the default) or in
Descending order.

ROOT The XML file consists of a well formed hierarchy and the ROOT is
the top-level outermost component of this. This defaults to
SIR_XS_ROOT if not specified. Specify a valid XML name as the

SIR/XS PQL Procedures 184

root that the processing application expects.
BREAK The BREAK clause determines the hierarchy of the XML document.

Each variable listed on the clause means one further level of
nesting. The first variable is the outer level. By default the variable
name is used as the tag. Specify a TAG = to override this.
There are two ways in which data can be included in an
hierarchical level. There can be a number of individual data
ELEMENTS or a set of ATTRIBUTES can be specified. Both of these
name data variables but they appear in a different way in the
output. Elements appear as individually tagged items whereas
attributes appear within the start tag. For example, if there are
three data variables for a person Name, Salary, Birthday then
using elements, the output looks like:

 <person>
 <NAME>John D Jones</NAME>
 <SALARY>2150</SALARY>
 <BIRTHDAY>01 15 78</BIRTHDAY>
 </person>
 <person>
 <NAME>James A Arblaster</NAME>
 <SALARY>2650</SALARY>
 <BIRTHDAY>12 07 82</BIRTHDAY>
 </person>
Using attributes the output looks like:

 <person NAME="John D Jones" SALARY="2150"
BIRTHDAY="01 15 78">
 </person>
 <person NAME="James A Arblaster" SALARY="2650"
BIRTHDAY="12 07 82">
 </person>
If designing an XML application from scratch, this may be a
matter of style and choice. If supplying a file to an existing
application, then it is a matter of matching a specification.

The name of the element or attribute is the variable name. If this
does not match the tag required, you can alter this as per the
standard method for specifying variable lists in procedures (e.g.
S(1) AS SALARY or S(1) 'SALARY'). Specify any formatting to
be applied to the data as per the normal formats specified on a
WRITE command.

DTD Additional files may be produced which describe the XML file
written. You can specify a DocumentType Definition or DTD.
XML provides an application independent way of sharing data.
With a DTD, independent groups of people can agree to use a
common DTD for interchanging data. Your application can use a
standard DTD to verify that data that you receive from the outside

SIR/XS PQL Procedures 185

world is valid. If you specify the DTD keyword, the default
filename is the name of the main XML file produced with the
extension .dtd

SCHEMA XML Schema is an XML based alternative to DTD. You can
produce an XSD file which describes the XML. If you specify the
SCHEMA keyword, the default filename is the name of the main
XML file produced with the extension .xsd.
Specifying either Schema or DTD changes the header information
written to the main XML file and so informs other processes that a
descriptive file exists. You may find other applications that
process the XML need a certain style of descriptive file.

Example

RETRIEVAL /PROGRESS
. PROCESS CASES ALL
. get vars id
. PROCESS RECORD EMPLOYEE
. GET VARS NAME BIRTHDAY SALARY
. PERFORM PROCS
. END PROCESS RECORD
. END PROCESS CASES
XML SAVE FILE
 FILENAME = "c:\sirxs\alpha\XML2.XML"
 ROOT = 'company'
 BREAK = ID (TAG = 'person' ATTRIBUTES = (name salary birthday))
 SORT = ID
 schema

END RETRIEVAL

SIR/XS PQL Procedures 186

* TABULATE 133
+ JOINING STRINGS 58
+ TABULATE 134
A FORMAT 18, 58, 179
AFTER REPORT 75
AT END BLOCK 76
ATTRIBUTE .. 184
AVERAGE....................................... 16, 36
B FORMAT............................... 18, 58, 179
BACKWARD STRINGS 18, 58
BASE VARIABLES 148
BEFORE REPORT 77
BLANK LINES....................................... 78
BMDP SAVE FILE 13
BOOLEAN... 9, 18
BORDERS ... 175
BRANCHED REPORT............................. 97
BREAK ... 61, 184
BREAK CHARACTERS 58
BREAK LEVEL 79
BREAK VARIABLES........................ 57, 65
BY .. 133
C COMMAS..................................... 18, 58
C REPRINTING...................................... 61
CASEID .. 118
CASELESS DATABASE........................ 118
CASWGT .. 123
CATEGORICAL VARIABLES 136
CELL CONTENTS ERROR 178
CELLS .. 131
CENTER.. 62, 63
CHUNK FORMAT ERROR 178
CI 16, 36
COEFFICIENT OF VARIABILITY 16, 36
COLHEAD... 64
COLLAPSE 168
COLUMN BREAK 57
COLUMN HEADINGS 58, 140
COLUMN REPRINTING HEADINGS........ 61
COLUMNS .. 131
COMMA.. 18, 58
CONCATENATING STRINGS 58
CONDESCRIPTIVE 15
CONDITIONAL BREAKS........................ 81
CONFIDENCE INTERVAL 16, 36

CONNECT TO.. 82
CONSOL ... 8
CONTINUOUS....................................... 35
CONTINUOUS VARIABLES 136
CONTROL MODIFIER 139
CONTROL STATEMENT FILE 111
CONTROL VARIABLES 136
CORRELATION 53
COUNT 16, 36, 141
CSS... 141
CSV SAVE FILE..................................... 18
CV .. 16, 36, 141
CVERR ... 141
D DOLLAR SIGN 18, 58
DATABASE... 117
DATABASE SUBSET 117
DATE.. 18, 58, 63
DBASE SAVE FILE 22
DELETEMISSING................... 174, 175
DESCRIPTIVE 25
DETAIL .. 64
DETAIL BLOCK 83
DETAIL LINE .. 57
DIF SAVE FILE...................................... 32
DISK SPACE.. 11
DOLLAR ... 166
DOLLAR SIGN 18, 58
DOUBLE ... 64
DTD.. 184
DUMMY................................... 174, 176
DUMMY COLUMNS 22
E FORMAT 18, 58, 179
ELEMENT ... 184
EMPTY ROWS/WAFERS 175
END END BREAK LEVEL 84
END OF REPORT 57
END REPORT .. 85
EXCLUDE ... 11
EXPONENTIAL 18, 58
EXPORT.. 111
F FORMAT 18, 58, 179
FILENAME.. 8
FIRST MODIFIER 139
FOOTING .. 86
FOOTING BLOCK.................................. 87

SIR/XS PQL Procedures 187

FOOTNOTES 174, 175
FORMAT......................... 18, 58, 111, 179
FORMAT ERROR IN TABULATE 178
FORMAT EXPRESSION.................... 18, 58
FREQUENCIES 25, 35
G GROUPING .. 61
GENERAL ... 35
GRAPH ... 43
GROUPING 61, 63
GROUPS ... 114
HEADCENTER 62
HEADER ... 20
HEADERDIVIDER 169
HEADERINDENTATION 169
HEADERS ... 131
HEADERWIDTH 169
HEADING 63, 88
HEADING BLOCK 89
HEADINGS.. 58
HISTOGRAM... 37
HTML ... 25, 174
I FORMAT............................... 18, 58, 179
INCLUDE .. 11
INITIAL BLOCK 90
INTEGER .. 35
INTERVALS 25, 36
ISDNUMBER 143
KEY FIELDS.. 118
KURT ... 16, 36
KURTOSIS 16, 36
L FORMAT 18, 58
LABEL SEGMENTATION 167, 176
LABELS 18, 58, 167
LANGUAGE 174
LEFT... 62, 63
LEVEL .. 79
LINE ... 53
LRECL .. 111, 180
MAIN ROUTINE 4
MAX... 16, 36
MAXIMUM 16, 36, 141
MAXKEYSZ .. 118
MAXRECS .. 118
MAXTYPES... 118
MEAN..................................... 16, 36, 141
MED ... 36

MEDIAN 36, 141
MIN .. 16, 36
MINIMUM....................................... 16, 36
MISSCHAR ... 63
MISSING... 141
MISSING MODIFIER 139
MISSING OBSERVATIONS............... 25, 35
MISSING VALUES 139
MISSING VALUES, EXCLUDING RECOR

... 175
MODE... 36
MODIFIERS... 139
NEW PAGE ... 61
NOBOTTOMBORDER............ 174, 175
NOCASEID.. 118
NOCENTER... 63
NOCOLHEAD.. 63
NODETAIL.. 63
NODIVIDERS 169
NOEJECT .. 64
NOEMPTYROWS............................ 174
NOFCASES ... 118
NOGROUPING 63
NOLABELS 16, 37, 112, 119, 122
NOLEFTBORDER................... 174, 175
NOPAGEHEAD 63
NOPAGING ... 63
NORIGHTBORDER 174, 175
NORMALIZE 146
NORMALIZED 141
NOSORT ... 63
NOSPAN MODIFIER 139
NOSUBTOTALS 63
NOTES.. 175
NOTOTALS ... 64
NOUNDERCOL...................................... 64
NOUNDERHEAD 64
NOWAFERTITLE 172
NOZEROS .. 174
OBS MODIFIER 139
OBSERVATION VARIABLES 136
ON ERROR.. 91
ORDER ... 37
OUTPUT ERROR IN TABULATE........... 178
P NEW PAGE... 61
P PERCENT 18, 58
PAGE.. 63

SIR/XS PQL Procedures 188

PAGE BLOCK.. 92
PAGE BREAK.................................. 57, 93
PAGE BREAKS...................................... 72
PAGE EJECT ... 93
PAGE HEADINGS 63
PAGELENGTH 64, 168
PAGELIMIT... 64
PAGESIZE....................................... 64, 73
PAGETITLE 168
PAGEWIDTH................................. 64, 168
PAGING .. 63
PASSWORD .. 117
PERCENT.................................... 141, 166
PERCENT SIGN 18, 58
PERCENTAGES 148
PERFORM PROCS.............................. 4, 10
PLOT .. 53
PRINT ... 56, 58
PRINT POSITION 58
PRINTFORMATS 166
PRINTING LABELS................................ 58
PROCEDURE COMMAND 7
PROCEDURE TABLE 4, 10
PROCEDURE VARIABLES 8, 10
QUANTILE.................................. 141, 146
QUARTILES .. 36
QUICK REPORT 56
RANDOM SAMPLE.................................. 9
RANGE ... 26, 141
RECSCASE.. 119
RECTYPE.. 118
REJECTED OBSERVATIONS 35
REPLACE.. 115
REPORT.. 56, 73
RIGHT .. 62, 63
ROOT ... 183
ROWS ... 131
SAMPLE ... 9, 20
SAS DATA STEP.................................. 111
SAS SAVE FILE 111
SAVE TABLE 114
SCATTER.. 53
SCHEMA... 185
SEGMENTATION, LABELS 176
SELECTING PROCEDURE TABLE RECORD

... 9
SEPARATOR ... 20

SHOWMISS 64, 73, 180, 183
SIMPLE BREAK..................................... 98
SINGLE... 64
SIR SAVE FILE 117
SKEW ... 16, 36
SORT .. 9, 20
SORTIDS... 118
SORTING .. 9, 63
SPACING .. 64
SPAN MODIFIER 139
SPANNER LABELS 175
SPANNERS 140, 174
SPREAD SHEET................................... 120
SPSS SAVE FILE.................................. 122
SPSSX SAVE FILE 122
SQL .. 56
STANDARD DEVIATION 16, 36, 53
STANDARD ERROR OF THE MEAN . 16, 36
STATISTICS 15, 16, 36, 53
STDE .. 16, 36
STDERR.. 141
STDEV .. 36, 141
STDOUT ... 8
STDV.. 16
STRINGS... 176
STUB FORMAT ERROR 178
STUBCONTINUATION......................... 170
STUBDIVIDER 170
STUBFILLER....................................... 170
STUBHEIGHT...................................... 170
STUBINDENTATION 170
STUBS .. 131
STUBTITLE... 170
STUBWIDTH 170
STUDENTS T-TEST................................ 53
SUBTITLE... 26
SUBTOTAL VARIABLES........................ 65
SUBTOTALS 61, 63, 64, 65
SUM ... 16, 36
SYSTAT SAVE FILE............................. 125
T TABBING 58, 179
TABFILE ... 114
TABLE OF CONTENTS 175
TABLES .. 114
T-DISTRIBUTION 53
THEN.. 134

SIR/XS PQL Procedures 189

THOUSANDS 18, 58
TIME .. 18, 58, 63
TITLE 16, 26, 32, 36, 53
TOTAL............................ 16, 36, 141, 144
TOTAL MODIFIER............................... 139
TOTALS.. 64, 66
TRIPLE ... 64
TST... 141
UNDEFINED MODIFIER 139
UNDEFINED VALUES 139
UNDERLINING.............................. 64, 107
UPPERCASE.................. 66, 174, 175, 181
USERS .. 114
VALUE LABELS...................... 18, 58, 167
VAR ... 16, 36
VARIABLE HEADINGS 58
VARIABLE MODIFIERS 139
VARIABLES.. 8

VARIANCE 16, 36
WAFER FORMAT ERROR 178
WAFERCENTER 172
WAFERNOTES........................ 174, 175
WAFERS ... 131
WAFERSTART 172
WAFERTITLE...................................... 172
WCOUNT .. 16, 36
WEIGHT 15, 26, 37, 123
WEIGHTED COUNT......................... 16, 36
WRITE RECORDS................................ 179
X COLUMN POSITION 58
XML SAVE FILE.................................. 182
XTITLE ... 54
YTITLE ... 54
ZERO PRINTING 175
ZEROCHARACTER........................ 174

